Achieving stable lithium metal anodes via the synergy of electrostatic shielding and the high Li+ flux inorganic interphase†
Abstract
Uncontrolled dendrite growth and slow Li+ transport kinetics at the anode/electrolyte interface severely hamper the practical applications of lithium metal batteries (LMBs). Herein, a high–charge density cationic polymer, poly(octaallyltetraazacyclo–decane nitrate) (POTA–NO3), was developed as an anodic protective layer to moderate Li+ deposition and enhance Li+ transport efficiency. According to Li+ deposition characteristics and simulation, POTA–NO3 with multiple positive charge sites provided excellent electrostatic shielding and enhanced Li+ desolvation process to the anodes. Meanwhile, anions generated a robust and high Li+ flux inorganic SEI to inhibit the polymer cationic layer and electrolyte decomposition. With the POTA–NO3 protective layer, Li||Li symmetric batteries achieved a stable cycling of 6300 h at a high current density of 5 mA cm−2 with a capacity of 5 mA h cm−2. Furthermore, the POTA–NO3-protected Li||LiCoO2 batteries exhibited a capacity retention of over 80% after 1400 long-term cycles at 1C. This work opens up the possibility for the development of stable lithium anodes.
- This article is part of the themed collection: Energy & Environmental Science Recent HOT Articles