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Open boundary molecular dynamics of sheared star-
polymer melts

Jurij Sablić,a Matej Praprotnik,a,b∗ and Rafael Delgado-Buscalionic,d†

Open Boundary Molecular Dynamics (OBMD) simulations of a sheared star polymer melt in
isothermal conditions are performed to study the melt’s rheology and molecular structure un-
der a fixed normal load. Comparison is made with the standard molecular dynamics (MD) in
periodic (closed) boxes with a fixed shear rate (using the SLODD dynamics). The OBMD system
exchanges mass and momentum with adjacent reservoirs (buffers) where the external pressure
tensor is imposed. Insertion of molecules in the buffers is made feasible by implementing there
a low resolution model (blob-molecules with soft effective interactions) and then use the Adaptive
Resolution Scheme (AdResS) to connect with the bulk MD. Straining with increasing shear stress
induces melt expansion and a significantly different redistribution of pressure compared with the
closed case. In the open sample the shear viscosity is also a bit lowered but more stable against
the viscous heating. At a given Weissenberg number, molecular deformations and material prop-
erties (recoverable shear strain, normal stress ratio) are found to be similar in both setups. We
also study the modelling effect of normal and tangential friction between monomers implemented
in a dissipative particle dynamics (DPD) thermostat. Interestingly, the tangential friction substan-
tially enhances the elastic response of the melt due to a reduction of the kinetic stress viscous
contribution.

1 Introduction
Die swelling1 is a well known phenomenon in polymer melts
and most viscoelatic liquids which consist of the sudden expan-
sion of the liquid after exiting out a slit or orifice. The most
frequent explanation has a microscopic origin: molecules elon-
gate in the stream direction and compress perpendicularly exert-
ing extra elastic pressure in the normal planes. This leads to the
so called normal stress differences which are the landmark of vis-
coelasticity. Despite this accepted view, the devil is in the details
and although considerable effort has been carried out since the
middle of the last century (see e.g. Refs.1 for historic details)
accurate modelling of polymer melts is a very difficult task. Any
of the many constitutive relations1 for continuum models cannot
generally predict the rheology of a new molecular polymer de-
sign. In turn, the huge span in time scales in any standard poly-
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mer melt limits the scope of molecular dynamics (MD) to sim-
ple rheological tests with extremely small samples under simple
(usually steady) flows. However, a detailed account of bonded
and nonbonded interactions in atomistic (AT) simulations (see
e.g.2–4) is able to grasp relevant information, maybe then to feed
continuum (fluid dynamics) models. In between, coarse grained
(CG) molecular modelling is useful for many reasons. We give at
least a couple: first, polymer science has some degree of univer-
sality which benefits the use of simplified models, quite often able
to provide insight and valuable predictions4,5. Second, the theory
of coarse graining to extract precise coarse potential interactions
pertaining to the atomistic model at hand is now advancing at rel-
atively fast rate4,6,7. More recently the community has started to
recognize the relevance of the dynamic aspects of coarse graining
either based on following routes such as GENERIC8 or the Mori-
Zwanzig formalism9. The idea is to perform short atomistic sim-
ulations8 to extract the quantities determining the reversible and
irreversible dynamics of the slow variables, such as the friction
kernels9. These friction kernels (between polymer “blobs”) are
naturally implemented in the dissipative particle dynamics (DPD)
method as, notably, Español et al.9 showed (under the Markovian
and pairwise approximation) that DPD can be formally derived
from the Mori-Zwanzing coarse graining route. Another relatively
newer route is the use of hybrid models concurrently combining
continuum and molecular simulations. Yasuda et al.10 and other
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(mostly Japanese) groups are exploiting a version of these hy-
brids to model polymer melts. We have also worked in this field
using essentially the same technique used in this work for simple
fluids11,12. Contrary to Yasuda et al.10 and other hybrid schemes
the present method is designed to open up the simulation box so
as to consider melt expansions. Here we apply the idea to study
the rheology of much larger, polymeric molecules. At present we
restrict to the Open Boundary Molecular Dynamics (OBMD) sim-
ulation13, without connection to the continuum side. However,
the present method naturally connects with continuum fluid dy-
namics via hybrid schemes14–20.

Another aspect of this work is the use of DPD as a tool to check
the effect of details of monomer friction in the rheological be-
haviour of these CG models. In particular, the tangential friction
between blobs naturally arises when performing dynamic coarse
graining9 but is seldom included in these sort of analysis (see
e.g. the DPD study for melts by Fedosov et al.21). To conclude
our comments on methodological aspects, we also note that the
present simulations in open domains use a useful trick which con-
sists of using an even lower detailed molecular model to feed the
molecular reservoir close to the open system boundaries. The
idea is taken from the so called “Adaptive Resolution Scheme”
(AdResS)22–34 and permits to generalize the use of AdResS in
standard periodic (closed) boxes (see e.g. Refs.11,12,35–37).

The main physical question we pose here is what are the rhe-
ological consequences of imposing a fixed pressure load to a
sheared sample of polymer melt, compared to the case of shear-
ing at a fixed volume. This question was also raised by a bunch of
groups spread over the last two decades38–43 with contradictory
results. It is indeed a particularly relevant question for molecu-
lar simulations because the vast majority of numerical studies on
melts have considered closed (usually periodic) systems, while
many rheological experiments are carried out under a normal
load: melt across slabs in Ref.44 (cited experiments therein) or
cone and plate rheometry under a fixed load1.

From the fundamental side, this question connects with the al-
ready mentioned die swelling phenomena whose details are still
not completely understood. It also connects with another inter-
esting question which is, what consequences do boundary con-
straints have on flowing (far-from-equilibrium) polymer melts
(see Ref.45 for a recent study). The OBMD is a flexible tool
for these questions on boundary constraints because it can be
tuned to permit different ensembles46 such as the grand canon-
ical, isoenthalpic, isothermal, constant stress (Neumann-like) or
constant shear (Dirichlet-like)14. In particular it could be useful
to validate theories for non-equilibrium thermodynamics (such
as Extended Thermodynamics47,48), or the far from trivial fate of
fluctuations of mass (related to sound modes) and momentum in
sheared complex fluids, which often leads to undesirable instabil-
ities in sheared or extruded melts, like the shark skin1,49.

Even in unentangled melts the influence of boundary or global
constraints on the density expansion of sheared melt is still poorly
understood with studies present contradicting results. At least
there is a consensus on the fact that for a given shear, the shear
viscosity η is larger in the isochoric (NVT) constraint, than under
either a constant pressure39,40 or a constant load43,44. A clear

manifestation of this effect was presented in a numerical study of
Thompson et al.44: a slab of lubricating liquid (20-mers) flow-
ing between two solid walls presented a shear thinning exponent
βη ≃ 2/3 under a constant normal load while just 0.5 under a con-
stant volume (here η ∼ γ̇−βη with γ̇ the shear rate). This effect
has been ascribed to the shear dilatancy manifesting in a larger
hydrostatic pressure under a constant volume39,40. Indeed, poly-
mer melts viscosities often increases with the pressure49 as also
observed in Ref.44. In Sec. 6 we offer a more precise analysis
showing that the springs’ stress is reduced in the open system due
to the smaller intermolecular friction in the expanded melt.

There are several kinds of “isobaric” conditions: a constant hy-
drostatic pressure (Piso) is usually termed isobaric, while a con-
stant normal load (here P22) is closer to industrial processes like
slit extrusion1 or lubricants44. Both can show substantially differ-
ent rheological behaviour when compared with constant volume
studies (see e.g. Ref.44). Experimental works of the Couette flow
under constant load are also scarce and indicate shear expansion
and a measurable increase of the melt’s viscosity with increasing
external pressure50,51.

The most striking differences in the computational literature
are found in the density variation with shear. Dlugogorski38 (for
a FENE dumbbell) and Daivis and Evans (modelling decane)39

seem to be the first to perform a molecular simulation show-
ing density decreasing under shear (using isobaric conditions).
Daivis and Evans use the term “shear dilatancy”, following the
term used by Reynolds on the same phenomena (see quotation
in Ref.39). Note that “shear dilatancy” has been later often used
instead of “shear thinning”, but here it is not. By contrast, Xu et
al.40 (attractive linear chains up to 50-mers) report just the op-
posite result (compression under shear). For (purely repulsive)
branched chains (under NVT), they also report a reduction in the
hydrostatic pressure with shear. A subsequent study by Matin43

for linear chains at a constant load (and chain lengths up to 50
monomers) found shear dilatancy and also a non-monotonous
trend for the hydrostatic pressure (as Xu et al.40 and others2,3

did). Shear dilatancy was also later also found by Bosko et
al.41 when analysing dendrimer melts under isobaric conditions.
Consistently, they found a pressure increase under constant vol-
ume. Shear dilatancy is the trend we also observe but, under our
imposed constant normal load (which is closer to experimental
setup1,39,44) we find that the density (and viscosity) is controlled
by the load and not by the hydrostatic pressure. However, there
is a lack of studies and the question remains about universality of
shear dilatancy of polymer melts under a Couette flow (consistent
with die swell phenomena under Poisson flow1).

To conclude the introduction some words should be said about
the technological relevance of star molecules (see discussion in
Ref.52–54) which certainly arises from its unique dynamic fea-
tures. Star molecules present a broad range of relaxation times
associated with different molecules pulsations (rotation, elastic
deformation, arm entanglements) analysed in Ref.53. Each re-
laxation time triggers a change in rheological regime once the
external perturbation (shear) exceeds the corresponding thresh-
old rate. Present results also illustrate this phenomena. More-
over star molecules bridge the gap between linear polymers and
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colloids54,55 and can present interesting (colloidal-like) ordering
effects, sometime enhanced due to its softer character53,56–59. In
this context, a suggesting observation in these simulations is the
onset of some ordering in the neutral direction at large shear rates
whose origin (hydrodynamic or entropic) remains to be estab-
lished.

In Sec. 2 we briefly present the OBMD method which was oth-
erwise more thoroughly explained in Ref.13. The star molecule
melt model is presented in Sec. 3 and Sec. 4 shows that the
OBMD correctly reproduces thermodynamic equilibrium accord-
ing to the grand canonical ensemble. In Sec. 5 we present results
for sheared melts in absence of the tangential friction between
monomers and analyze the results in Sec. 6 according to the pres-
sure balance. This serves to enlighten the discussion on the ef-
fect of the tangential friction in Sec. 8. Finally Sec. 9 discusses
some interesting results obtained in melts presenting severe vis-
cous heating that depends on the characteristics of the DPD ther-
mostats and their friction kernels. Comparison with previous re-
sults is made in Sec. 10 while conclusions and future outlook are
given in Sec. 11.

Fig. 1: Schematic representation of the open system in equilibrium along
the longitudinal direction. All monomers and polymers in the system are
of the same kind. Different colors are used for the sake of clarity of the
picture. In the region of interest polymers are represented in the high-
est, i.e. atomistic (AT), resolution. Buffer regions (see text) are hetero-
geneous, i.e. containing regions of different resolution. The change of
resolution from AT (dots), to coarse-grained, i.e. CG, (spheres) occurs in
hybrid region (HY) of each buffer, carried out by AdResS. New molecules
are inserted into CG part of buffers. The system is open at both ends of
the box. Upper part of the figure depicts schematic representations of a
molecule inside regions of different resolution.

2 Open Boundary Molecular Dynamics
We begin by briefly explaining the method for the OBMD which
combines features of the open MD46 and adaptive resolution11.
The reader is referred to a review on open MD14 and to Ref.13

for a more detailed presentation of the present OBMD implemen-
tation to star polymers. The OBMD simulation is carried out in
an open rectangular box which, in the present setup, permits the
MD domain to exchange mass and momentum through two of
its boundaries (along the x2 direction) with a reservoir (called
buffer) which is maintained at some desired thermo-mechanic
state. The buffer’s two domains of finite extent embed the central
part of the box (the MD domain). They allow for molecular in-
sertion or deletion so as to keep their average molecular density

fixed (typically to a fraction between 0.5 to 0.7 of the bulk den-
sity). The OBMD is therefore not periodic in the coupling direc-
tion. Molecules are free to enter or leave the buffer from or to the
MD domain, but in doing so they cross another layer where they
gradually change their atomistic resolution (73 monomers for the
star molecule considered hereby) to a reduced CG model, com-
prising one only spherical “blob” per molecule. Obviously the CG
layer is placed inside the buffer domain (which here also contains
a smaller atomistic part). This strategy permits to perform an oth-
erwise impossible task: the insertion of new polymeric molecules
into the melt. New molecules are inserted into the low resolution
layer of the buffer, where soft CG interactions govern the dynam-
ics of the blob-model polymers. Soft effective interactions can be
obtained from the Boltzmann iteration procedure60,61, although
we shall see that in principle, the consistency of OBMD (in terms
of pressure balance across the layers) does not depend on the CG
potential chosen. The insertion of these blob molecules is carried
out by the USHER scheme62 and the change from CG to monomer
molecular resolution (usually termed atomistic resolution, AT) is
carried out by the AdResS22–34.

The dynamics of the monomers can be described by the follow-
ing equations of motion:

dri

dt
= vi, (1)

mi
dvi

dt
= Fad

i ({r})+Fth
i ({v})+Fext

i (ri) . (2)

Here ri denotes the position of i-th particle, vi its velocity, and mi

its mass. The total force acting on this particle has three contri-
butions: the external force Fext

i acting only on the particles at the
buffer (to impose the desired momentum flux); the adaptive res-
olution force Fad

i which accounts for all type of particle-particle
interactions and the thermostat Fth

i contribution (here, it is ap-
plied to the whole system).

The adaptive resolution force Fad
i is constructed to allow

for a momentum conserving “alchemic” transformation of the
molecules, which takes place gradually along the transition layer
(where 0 < w < 1, see below). The transition is achieved by the
following linear combination of the AT and CG forces (respec-
tively FAT

αβ and FCG
αβ )22,

Fad
αβ = w(xα )w(xβ )F

AT
αβ +(1−w(xα )w(xβ ))F

CG
αβ . (3)

Both expressions are correspondingly weighted by a position de-
pendent function w(X), whose value equals 0 in the CG region
and 1 in the AT one and gradually changes in between (transition
layer). The adaptive resolution force provided by AdResS is not
derived from a Hamiltonian and does not conserves the energy23.
It is however constructed to obey Newton’s third law, ensures the
conservation of total linear momentum of the system and can
thus be used to study fluid flows. This fact is unimportant to
the present study which targets isothermal sheared systems (not-
conserving energy anyhow). The OBMD model might be gener-
alized by using the recent Hamiltonian AdResS (H-AdResS)63,64

which is based on a global Hamiltonian (i.e. also allows Monte
Carlo simulations). In such hypothetical case, extra care should
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be taken with the momentum conservation because of the pres-
ence of drift-forces in H-Adress coming from the free energy dif-
ference between the AT and CG models65.

An essential function of the buffer region is the imposition of
boundary conditions to the open MD box. This is done by adding
an extra “external” force at the buffer regions, Fext , calculated
from Eq. 4 (see e.g. Ref.66).

Fext = (Pout −Pin)/δ t +AJPn (4)

Here Pout and Pin represent the total linear momenta of the par-
ticles that exited and were inserted into the simulation in the last
time step of integration δ t, respectively. JP is the momentum
flux tensor, while n is the outwards normal vector of an open-end
plane of the box11. In general, the pressure tensor contains nor-
mal and tangential contributions, i.e. JP = −pext

nn nn− pext
nt nt. The

external force is designed to exactly conserve the linear momen-
tum over the whole particle system (buffer+MD) and it is dis-
tributed among the buffer particles according to Fext

i = G(xi)Fext .
To allow a different distribution of the normal and tangential
forces, the distribution function G is chosen to be a tensor de-
fined by Eq. 513,

G(xi)≡
g||(xi)

∑i∈B g||(xi)
nn+

g⊥(xi)

∑i∈B g⊥(xi)
tt, (5)

with g|| determining the spatial distribution of the normal force
and g⊥ the distribution of shear stress. Both functions are de-
picted in Fig. 2.

Fig. 2: Buffer distribution function. The force Fext , that acts on buffer
regions in order to impose the boundary conditions at open ends of the
box to the region of interest, is distributed among molecules inside buffers
via the depicted functions, forming the distribution function tensor G,
given by Eq. 5. The force acting on each molecule equals Fext

i = G(xi)Fext .

Many OBMD applications (as those illustrated hereby) involve
transfer of momentum (the pressure tensor) from outside the MD
domain. This requires a momentum conserving thermostat. In
production runs we used the DPD thermostats (while a strong
damping Langevin for equilibration purposes). Our choice for the
DPD thermostat is not only due to conserve momentum (in prin-
ciple one could use the Lowe-Andersen67) but also because of

modelling purposes. The Mori-Zwanzig formalism, under Marko-
vian conditions leads to coarse-graining dynamics with DPD-like
equations of motion9. The message of that solid theoretical result
is that the friction kernels introduce an important modelling as-
pect. The friction kernels in a CG model of some real melt, should
ideally be measured from force-force correlations of the detailed
all-atom model9. Here we adopt a simpler but yet useful route,
which is to study how friction affect the rheology of the model
melt. The generic form the of the DPD thermostat used is

Fth
i =−∑

j
Γ(ri j)

(

vi −v j
)

+ R̃i j, (6)

where R̃i j is the fluctuating force constructed to satisfy the
fluctuation-dissipation under equilibrium conditions. We refer the
reader to Refs.68–70 for details on the DPD implementation. As in
Ref.9,69,70 the friction kernel has normal and tangential compo-
nents,

Γ = γ||ni jni j + γ⊥ti jti j,

where ni j is the vector joining two monomers i and j and ti j de-
termines the directions in the perpendicular plane. The kernels
γ|| and γ⊥ are distance dependent. Its shape (for a particular all-
atom model) can be obtained from dynamic CG9, here we will use
Heaviside functions with a certain cutoff distance (see Table 1 for
details). Most thermostat require or introduce some form of fric-
tion, albeit, the great majority of simulations of polymer melts do
not considered thermostatting (and its added friction) as part of
the molecular model, but just a way to remove the heat dissipated
under shear. Also most DPD simulations, such as the relatively re-
cent work on sheared melts21 do not introduce the tangential fric-
tion between blobs, but rather take the form of the most standard
DPD kernel (normal friction alone). However, as also pointed out
by Padding and Briels5, friction should be considered as a part of
the CG model. Indeed, as shown by Hijon9 et al. (CG of a star
molecule as the unit blob), tangential and normal frictions can be
quite different from each other. Here we start to explore how tan-
gential and normal frictions affect the rheology of a star molecule
under far-from-equilibrium conditions.

In the following sections we present and analyse results ob-
tained for the DPD thermostat with no tangential friction between
monomers (blobs). This analysis is then used to understand the
effect of the tangential friction, considered in Sec. 8. In the case
of the normal friction alone, the substantial heat dissipated by the
sheared melt requires from us to implement a slight modification
of the DPD thermostat to keep constant (kinetic) temperature at
the largest shear rates. Details of this modified DPD thermostat
(we call it “adaptive”) and of friction kernels are given in Sec. 3.

Importantly, simulations in closed isothermal (periodic) boxes
(NTV) are used as reference to investigate the effect of open
boundaries. Shear flow in the closed system has been simulated
using Lees-Edwards boundary conditions71 and the SLLOD algo-
rithm72,73.

3 Setup and melt models

The simulation setup is illustrated in Figs. 1 and 2. The polymer
melt is exposed to a Couette flow in the x1 direction being sheared
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along the x2 direction (gradient direction). The vorticity or neu-
tral direction is x3. In the closed box we use the SLODD72,73 dy-
namics to impose the desired shear rate γ̇ in a closed periodic box
(with constant particle number and volume). In the open setup,
the surfaces located at x2 = ±L2/2 are submitted to equal nor-
mal pressures pext

22 and (opposite sign) tangential stresses ±pext
12 ,

in such a way that the rotational part of the shear flow turns
counter-clockwise in the flow-gradient (x1 − x2) plane. No con-
straint is imposed to the remaining component of the pressure
tensor, resulting in 〈p13〉= 0 and a self determined 〈p33〉. The box
is periodic in the other two directions x1 and x3 so this setup cor-
responds to an slice of polymer melt with fixed load at two of its
boundaries (at x2 =±L2/2).

The melt is made of the star polymer model already presented
in Refs.9,74 Each polymer consists of 73 monomers, i.e. 12 arms
of 6 monomers attached to the central monomer. In what fol-
lows we use m0, σ0 and ε0 for mass, length and energy units
and we will arbitrarily set these units to m0 = 1, σ0 = 1, and
ε0 = 1. The resulting time unit is τ0 = σ0(m0/ε0)

1/2 = 1. Excluded
volume interactions of monomers are modelled by the repulsive
Weeks-Chandler-Anderson interaction with diameter parameter
σ = 2.415σ0 and energy parameter ε = 1. The interactions be-
tween two adjacent bonded monomers are harmonic with a lin-
ear spring of stiffness constant K = 20.0ε/σ2

0 . The equilibrium
distance between non-central monomers is req

i j = 2.77σ0 while the
equilibrium distance between the central monomer and the first
monomer of an arm is req

i j = 3.9σ0. The size of the simulation box
is 390×117×117(in units of σ0).

Simulations were performed at the fixed constant (monomer’s
kinetic) temperature (T = 4.00±0.01) . Results presented in the
following sections correspond to simulations obtained using a
modified DPD thermostat which we label as “adpd”. This adpd
thermostat has no tangential friction γ⊥ = 0 while γ|| = 1 (some
results also with γ|| = 5). The cutoff of the Heaviside friction ker-

nel is Rd pd = 21/6σ . We refer to Table 1 for thermostat and kernel
details. We recall that the effect of the tangential friction is anal-
ysed in Sec. 8. In Sec. 9 we illustrate the heat dissipation and
temperature increase observed when using standard thermostats
DPD with normal friction.

Thermostatting sheared polymer melts is a delicate issue due to
the large amount of heat they dissipate. At a large enough shear
rate or large shear stress, the temperature of the melt increases.
The same phenomenon is also observed in experiments and in-
dustrial processes (extrusion) at high shear rates (typically above
500Hz)47,75,76. Phenomenological temperature “corrections” for
the melt’s viscosity are often used in industry and experiments77.
Although this problem goes beyond the present manuscript, the
temperature of a system under a non-equilibrium steady state
is also a fundamental problem because equipartition is lost and
the different temperature definitions present slight variations (ki-
netic versus configurational temperature78). In the literature,
few works comment on the problem of viscous heating in molec-
ular simulation (see the exceptions in Refs.79–81) and many pub-
lished material elude reporting on possible temperature variation
in their sheared thermostated systems. After the present expe-

Table 1: Thermostats used in simulations. Standard means a stan-
dard DPD thermostat and the adaptive DPD is explained in Eq. 7.
The transverse DPD thermostat from Ref.70 is denoted by “tdpd”.

Label Kernel cutoff (RDPD
cut ) γ|| γ⊥

sdpdshort 21/6 σ [1.0-20.0] 0
sdpdlong 1.5×21/6 σ 1.0,5.0 0

adpd 21/6 σ 1.0,5.0 0
tdpd 1.5×21/6 σ 1.0 1.0

rience, we believe that some of the data presented in previous
papers might be somehow biased by temperature. We will show
an indication later in Sec. 9.

We considered four different thermostats: the “standard”
(sdpd)69 and “transverse” (tdpd)70 DPD thermostats and also
a modified DPD thermostat. The latter is able to extract larger
amounts of heat by self-adapting its temperature parameter TDPD

which controls its random force term. This “adaptive DPD ther-
mostat” (adpd) as we call it, dynamically adjust TDPD according
to a sort of coupled heat equation,

dTDPD

dt
=−

1
τDPD

(

TMD −Ttgt
)

, (7)

where Ttgt = 4 is the target system’s temperature and TMD is the
kinetic temperature obtained from the variance of the monomers
peculiar velocities ui = vi −v f (ri). Here v f (ri) is the flow velocity
at the position of the monomer ri evaluated on-the-fly from (time
averaged) binned x2 coordinate. Eq. 7 resembles the character-
istic equation of the Berendsen thermostat82, where the linear
differential equation in time is solved for the current temperature
of the system. In our case, on the other hand, TDPD is just the
temperature incorporated in the equations for the DPD thermo-
stat and not the actual temperature of the system. The basic idea
is simple: if the system under non-equilibrium sheared state is
producing substantial heat due to the friction, the thermostat’s
noise term (or in physical terms, the hypothetical reservoir tem-
perature TDPD) should be made colder to faster extract heat. The
adpd thermostat does not alter the equilibrium state (indeed we
first checked this fact), but reduces the noise term under substan-
tial shear.

The thermostat time τDPD (acting like a coefficient of heat
transfer to the “reservoir”) was set to τDPD = 100δ t. The ther-
mostat nominal temperature TDPD was updated using a simple
explicit Euler scheme for Eq. 7 with a time step of 100δ t. All the
thermostats used are applied to the monomers relative velocities.
The friction kernels of the DPD thermostats (damping and noise
terms are constructed using the same kernel70) is chosen to be a
Heaviside function with a cutoff distance RDPD

cut , i.e. γ(R) = 1 for
R ≤ RDPD

cut and zero otherwise.
All results presented here correspond to a normal friction ker-

nel γ|| = 1 (some results for the adpd thermostat were also carried
out for γ|| = 5 to test sensitivity). To test the effect of tangential
friction we also run simulations with γ|| = γ⊥ = 1 in the tdpd ther-
mostat. The thermostat details and labels used are given in Table
1.

The integration step ranges from δ t = 0.01τ0 to δ t = 0.005τ0
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for the highest shear rates. Note that τ0 = 1 is smaller than the
standard Lennard-Jones time (monomer-monomer interaction),
τ = σ(m/ε)1/2 = 2.415τ0 where m = 1 is the monomer mass.

The equilibration of the lump of melt in the OBMD simulation is
conducted by a modified version of AdResS, whereby the weight-
ing function w in Eq. 3 is gradually increased in time starting
from w = 0 (CG model)83. The weighting function is therefore
switched from a position-dependent to a time-dependent one.
The resolution is thus gradually sharpened from CG to AT. The
procedure is in detail described in Ref.13. After equilibration,
each simulation is run for 10000τ0.

4 Melt at Equilibrium

4.1 Characteristic times

In view of the close relation between structure and dynamics that
takes place in sheared melts (and complex fluids in general), it
is interesting to present the range of physical times of the melt
before analysing its structural transformation with shear. In star
polymers one can observe three types of relaxation phenomena84.
First is elastic deformation of the overall shape of polymers, sec-
ond relaxation occurs via the rotational diffusion, and the third
one regards disentanglement of arms of every star polymer. Each
of the relaxation processes can be estimated from the integral of
the corresponding normalized autocorrelation function (ACF), via
τA =

∫ ∞
0 CA(t)dt, and these are given by Eqs. 8, 9, and 10, respec-

tively.

Celas (t) =
∑i

〈

Ri (t)Ri (0)−〈Ri〉
2
〉

∑i
〈

R2
i

〉

−〈Ri〉
2 Center-end correlation (8)

Crot (t) = ∑
i

〈Ri (t) ·Ri (0)〉

∑i
〈

R2
i

〉 Rotational diffusion (9)

Carm (t) =
1

f ( f −1)

f

∑
i, j=1
i6= j

〈[

Ri (0) ·R j (0)
][

Ri (t) ·R j (t)
]〉

Arm entanglement

(10)

Ri represents the center-end vector of arm i, Ri its length, t
time, f number of arms of each polymer. And i and j are indices
of different arms within the same polymer. Each autocorrelation
function decays with its characteristic time of the relaxation pro-
cess84,85 and these are given in Table 2 for the different DPD ther-
mostat friction kernels considered. We checked that under equi-
librium state all thermostats produce consistent results, in terms
of pressure and density, while the correlations and the charac-
teristic times differ, as they should. The adpd and the sdpdshort
correspond to the same friction kernel and produce similar re-
laxation times at equilibrium (within statistical uncertainty) in-
dicating that the adpd modification does not essentially alter the
dynamics. We observe that the disentanglement of the arms oc-
curs more rapidly than rotational diffusion and that is due to the
short length of the arms, as each contains only 6 monomers. The
longest time is the diffusion time for the molecules’ center of mass
(CoM) τdi f = R2

g/D, where Rg = 7.6σ0 is the radius of gyration of

Table 2: Polymer times scales obtained at equilibrium for different
setups and thermostats (see text). All times are in units of τ0 =
τ/2.415, where τ = σ(m/ε)1/2 is the standard Lennard-Jones time
scale for monomers. In all standard and adaptive DPD cases the
thermostat damping constant is γDPD = 1m0/τ0, while for the tdpd
thermostat γ‖ = 1m0/τ0 and γ⊥ = 1m0/τ0 . τelas, τrot , and τarm are
defined as characteristic decay times of the ACF given by Eqs. 8,
9, and 10, respectively. Diffusion time is defined as τdi f = R2

g/D,
with Rg = 7.6σ0 the average radius of gyration in equilibrium.

Simulation τarm τelas τdi f τrot

open sdpdshort 33±2 6±1 800±100 55±5
closed sdpdshort 33±2 6±1 800±100 55±5

open sdpdlong 55±2 10±1 1200±100 100±5
closed sdpdlong 55±2 10±1 1100±100 100±5

open adpd 33±2 3±1 700±100 59±5
closed adpd 33±2 3±1 800±100 59±5

open tdpd 195±5 35±5 4800±400 332±5

polymers and D the diffusion constant of CoMs, which is different
for every friction kernel. The differences in the relaxation times
between the sdpdshort and sdpdlong thermostats are due to the
larger thermostat cutoff distance RDPD

cut leading to a larger inter-
particle friction in the sdpdlong case70,86. Interestingly, the ratio
between relaxation times and viscosity is similar for all the ther-
mostats in Table 1 (values coincide within error bars), regardless
of the kernel and RDPD

cut
87. This indicates that the translational

and orientational dynamics are affected in a similar way by the
thermostats.

Using the adpd thermostat (normal friction alone) we get
τelas = 3±1, τarm = 33±2, τrot = 59±5 and τdi f = 700±100, which
illustrates the wide range in time scales involved in these sort of
simulations. These times are similar in the open and closed sys-
tems (in equilibrium) and are compared with those obtained with
other thermostats and kernels in Table 2. However, as shown be-
low the rheology of the melt is not determined by the molecular
diffusion, but rather by the molecular relaxation times. For the
star molecule under study with f = 12 arms of length la = 6σ ,
molecular rotation is slower than the arms elastic relaxation, the
ratio being τrot/τarm > 10 in all cases considered (see Table 2).
This ratio determines the type of rheological behaviour of the
melt according to a theoretical approach based on solving the
Fokker-Planck equation for the bonds distribution88,89. We will
come back to this issue in Sec. 5.3.

4.2 Equation of state

As explained in Ref.13, the OBMD simulations of the melt at equi-
librium provide the correct average thermodynamic variables.
The pressure equation of state obtained in OBMD agrees with
that obtained from a standard NVT simulation for all volume frac-
tions studied13. More precisely, the average equilibrium density
〈ρ〉(pext

22) obtained with OBMD at a fixed normal pressure pext
22

are consistent with the equilibrium pressure p calculated in a
closed MD simulation at fixed density ρ = 〈ρ〉(pext

22 ). In passing,
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it should be highlighted that the same CG potential was used for
all the melt densities considered, indicating that the pressure con-
sistency at the MD domain is independent of the coarse-grained
potential used in the buffer.

In the following we work with the polymer volume fraction, de-
fined as Φ = ρNπσ3/6, where ρN = N/V is the number density (N
and V represent the number of monomers and the volume of the
region of interest and the mass density is ρ = mρN with monomer
mass m = 1, thus ρ = 0.136Φ). For the NVT ensemble, the study
conducted here corresponds to p = (0.093±0.001) and Φ = 0.20,
fixed for any shear rate. In the open box we fix pext

22 = 0.093 and
for zero shear rate (equilibrium) we get 〈Φ〉= (0.20±0.01). Fig. 3
shows the normalised density profile of polymers (ρslab

M /ρavg
M ).

Here ρslab
M denotes mass density of polymers in each slab, where

it is measured, and ρavg
M its average value. The latter is constant

in closed simulations, i.e. ρavg
M = 0.0271, while its calculated value

in open cases equals ρavg
M = 0.0271±0.0001. We observe that the

obtained density profile is flat in the region of interest with some
minor artefacts, which are due to the lack of statistics. Along the
buffer zones the density gradually decreases as a consequence of
the application of the external pressure pext

22 . As it has been ex-
plained in previous related works on hybrid atomistic-continuum
schemes14,66, this inhomogeneity does not affect the transfer of
pressure and stress from the exterior, provided that the density
profile is flat around the hybrid interface. This is indeed the case,
as it can be seen in Fig. 3 (see the interface between “region of
interest” and “buffer”). The radial distribution function (RDF) of
CoMs of molecules is in perfect agreement with NVT simulations.
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Fig. 3: Normalised density profile (NDP - top panel) and comparison of
RDFs (bottom). NDP is depicted in the direction, in which the box is open.
It is normalised to the desired value of the density, which corresponds
to occupational factor Φ = 0.2. RDFs are calculated from molecules in-
side the region of interest in open simulation (red) and in closed system
(green).

4.3 Mass fluctuations

In the grand canonical ensemble, mass fluctuations are related to
the integral of the RDF90, so the excellent agreement between
the RDF’s from NVT and open boxes suggest that the fluctuations
in the number of molecules inside the interest domain should be

thermodynamically consistent with the grand canonical prescrip-
tion: namely, the relative fluctuation in polymer mass M = ρMV
should be Std[M]/M = [kBT/(M c2

T )]
1/2, where cT is the isothermal

sound velocity c2
T = (∂ p/∂ρ)T . cT , which is evaluated using the

pressure equation of state from Ref.13, is shown in Fig. 4. The
agreement between OBMD and the NVT ensemble is excellent. In
the same figure we plot the results for the relative mass fluctua-
tions at different pressures (average densities) and compare with
the grand canonical prediction. We find that the agreement is very
good, notably because of the tiny relative mass fluctuations in the
(not small V = 3504384σ3

0 = 248805σ3) volume considered for our
open box: which range between 3.6% and 0.26% at the largest
density considered (Φ = 0.2). In terms of mass density variance
σ2

ρ = ρkBT/(V c2
T ), for the state we considered hereafter under

shear (p = 0.093ε0/σ3
0 , Φ = 0.2 and ρ = 0.0271m0/σ3

0) the OBMD
result is σ2

ρ = (5.0± 0.3)× 10−9m0/σ3
0 in excellent agreement

with the variance predicted for the µV T ensemble 4.79× 10−9.
The conclusion of this study strongly supports our claim that the
OBMD equilibrium simulation is sampling the grand canonical
ensemble without any (or negligible) bias. It has to be said that
the value of the external chemical potential µext = µ(pext

22 ,T ) can
however not be imposed in OBMD, although it could be recon-
structed following the standard Gibbs-Duhem route with varying
external pressure. New implementations of AdResS29,65 might
also be used to evaluate µ .

A typical outcome for the time evolution of the total mass of
polymer in the MD domain is shown in Fig. 4. It presents oscil-
lations, suggesting that it might contain some information about
the sound velocity of the system.

Sound propagation can indeed be studied in our simulations
because we work with momentum preserving (DPD) dynamics
(by contrast, sound is damped in the standard Langevin dynam-
ics). It is noted that an “ideal” open system should be transpar-
ent to all waves, meaning that all waves, either created by inner
mass fluctuations of any wavelenght or by external waves trav-
elling across, should leave the system and do not reflect back.
This implies, in particular, that in the absence of external lon-
gitudinal forces, fluctuations of the total mass should have no
memory, being a white noise (or at least a broad-band signal)91.
The presence of correlations in the total mass of our “region
of interest” is in fact due to partial reflections of waves at the
rarefied buffers, where density fluctuations are reduced (recall
we fix the average total mass of these reservoirs, see e.g.66).
In the autocorrelation (ACF) of the total mass fluctuation, the
dominant wavelenght should obviously be the largest possible
one compatible with this condition and the total simulation box
length. A density mode with wavenumber k = 2π/λ decays like
〈ρ(k, t)ρ(k,0)〉= 〈δρ2〉exp[νLk2t]cos[ωt] with νL the sound atten-
uation coefficient92 and ω = cT k the oscillation frequency. In-
spection of Fig. 3 indicates that the density profile of the whole

system (MD+ buffer) roughly conforms to Dirichlet boundary
conditions with fixed density at the end of the buffer domains
ρ(x2 = ±L2/2) < ρ0. In such case, the longest wavelength avail-
able to the system’s mass fluctuations would be λe f f ≃ 2L2. We
fitted the time autocorrelation function of the MD mass to extract
ω and compare it with the ansatz ω = cT ke f f using ω = cT ke f f
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with ke f f = 2π/λe f f . The best fit to the simulation results cor-
responds to λe f f = 760σ0, while 2L2 = 780σ0 and it is shown in
Fig. 4 in terms of ω/ke f f and compared with the melt’s sound
velocity cT . The excellent match confirms that the mass in the
MD domain has memory induced by reflections of sound waves
against the low density domains (buffers). Such reflections could
be reduced by coupling the MD with a continuum hydrodynamic
field outside66, or by imposing a non-reflecting boundary condi-
tion91 (still to be generalized to MD, see also92). However, in the
present scenario we find that this result is quite interesting be-
cause it suggest the possibility of measuring the sound velocity cT

from the fluctuations of the total MD mass. In particular, it might
allow to measure how the sound velocity is modified in a sheared
melt, cT (Wi). Although a detailed study would be certainly re-
quired; just as an indication, we find that cT (Wi) (estimated in
this way, i.e. from mass fluctuations), does decrease.
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Fig. 4: Top panel: The relative fluctuation of the polymer mass (standard
deviation over average polymer mass M) in the interest MD-domain of
the open setup (see Fig. 2). Comparison is made with the grand canoni-
cal theoretical result (green dashed line) Std[M]/M = [kbT/(Mc2

T )]
1/2 and,

also included, the ideal gas limit (dot dashed) obtained with the isother-
mal sound velocity cid

T =(kBT/Mm)
1/2 with Mm = 73m0 the molecular mass.

The volume of the interest domain is V = 156× 117× 117σ3
0 . Recall

that the monomer LJ diameter is σ = 2.415σ0 and its mass is m0 = 1.
The right ordinate axis shows the values of the isothermal sound ve-
locity cT = (∂ p/∂ρ)T (from the pressure equation of state) that is com-
pared with ω/ke f f obtained from the oscillation frequency ω of the to-
tal mass autocorrelation function in the MD domain (see bottom panel).
The effective wavenumber is ke f f = (π/370)σ−1

0 and the total open box
is L2 = 390σ0. Bottom panel: the time autocorrelation function of the
mass in the MD domain at equilibrium with imposed external pressure
pext

22 = 0.001ε0/σ3
0 (dashed line is the fit to extract ω, see text); the inset

illustrates the evolution of the total mass in the MD domain for this case.

5 Sheared melt with normal friction
This section presents results for the star molecule model with zero
tangential friction between monomers. Kernel and thermostat
details (adpd) are given in Secs. 3 and 4. We decided to first focus
on this model to avoid embarrassing the discussions with details
of different cases (open versus closed, normal versus tangential
friction) and also because this model present a richer dynamical
behaviour, whose analysis will be useful to understand the effect
of tangential friction in Sec. 8.

5.1 Weissember number

The Weissemberg number Wi is a useful number to compare and
dissect different regimes in polymer rheology. It is defined as

Wi = τrel γ̇, (11)

where τrel is the longest molecular relaxation time and γ̇−1 is
the “shear flow time” needed to affinely deform a square box
of sheared fluid into a parallelepiped with an angle of 45o be-
tween adjacent planes. As stated, around Eq. 9 and in Table 2, the
longest relaxation of our star polymer is related to the molecular
rotation so τrel = τrot in Eq. 11. In fact, the diffusion of the CoM
of the molecules is much slower (see Table 2). The CoM diffusion
does not directly sample the molecule’s structure whose modifi-
cation under flow is related to the non-Newtonian character of
polymers. The Peclet number determines the ratio between CoM
diffusion and flow advection Pe= τdi f γ̇ and for our setup is about
10 times larger than Wi. In colloidal suspensions, the shear thin-
ning typically starts for Pe> 1 due to shear banding. Interestingly,
star polymers constitute a sort of a bridge between the open struc-
tures of linear polymers and the compactness of colloids. Thus,
one might elucubrate that the onset of shear thinning in compact
stars could well be due to shear banding (collective molecular
ordering in lanes), rather than by (individual) polymer elonga-
tions. We shall see later on that both (collective and individual)
effects take place in our sheared system, although we advance
that the transition to the non-Newtonian regime takes place at
Wi = τrot γ̇ > 1. Hence at least for the (not so compact) star poly-
mer studied here, shear thinning is not determined by collective
ordering at straining rates faster than the CoM diffusion. The hy-
brid character of star molecules (between colloids and polymers)
is the subject of current research56–58.

5.2 Density and Hydrostatic pressure

Denoting Pα,β the symmetric pressure tensor (exerted by the
melt), the hydrostatic pressure is defined as

Piso =
P11+P22+P33

3
. (12)

We find that our model for a star polymer melt expands when
sheared under the normal load (see Fig. 17 which collects results
from different cases). This behaviour is consistent with the die
swell phenomena of polymer melts1 and with the increase in the
normal pressure P22 observed in all cases. By contrast, the hy-
drostatic pressure decreases with Wi in the open domain, while
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in the NVT box presents a non-monotonous trend (with not large
variations). As explained in Sec. 6 Piso is influenced by several
molecular mechanisms, whose relevance changes with γ̇ along
with the molecular structure. The density (in the open domain)
and the pressures (P22 in NVT and also Piso in both cases) are quite
sensible to temperature changes, as shown in Sec. 9.

5.3 Rheology

We start by determining the zero shear viscosity, η0 = η(γ̇ = 0). A
standard way is the Green-Kubo equilibrium route (via the inte-
gral of the time autocorrelation of shear stress)93. To keep consis-
tency with the non-equilibrium route we follow the experimental
approach which fits the trend for η(γ̇) for a range of values of
the shear rate with some suitable expression such as the popular
Carreau fit 50,94. We also checked that Green-Kubo viscosities95

are similar to the Carreau-fitted ones within statistical uncertainty
(about 10%). The Carreau fit has the following expression,

η = η0

[

1+
(

τη γ̇
)2
]−βη/2

, (13)

shown in Fig. 5 along with simulation data. Fig. 5 shows the
shear viscosity η obtained under open and closed setups for sev-
eral models with different thermostats and friction kernels (see
Table 1). η(γ̇) was calculated from the off-diagonal pressure ten-
sor component P12 = −ηγ̇, which was measured in simulations.
From Eq. 13, the viscosity shear thinning exponent βη , is such
that,

η → γ̇−βη for largeγ̇

and for polymer melts βη ranges between 0.4 and 11,88. This
fit of Eq. 13 also provides an estimation of the zero-shear vis-
cosity η0 and a characteristic time τη related to the onset of the
shear thinning regime. η0 differs for different friction kernels of
DPD thermostat (see Table 1). The adpd and sdpdshort ther-
mostats (identical friction kernels) consistently provide the same
zero shear rate viscosity η0 = 0.5 (that does not increase largely
for γ|| ≤ 10). The sdpdlong model with increased kernel cutoff

RDPD
cut = 1.5×21/6σ presents η0 = (0.60±0.1)+0.29γ|| an increase

consistent with an increasing relaxation time with friction ∗ as
deduced in the analysis of Kindt and Briels96. Tangential friction
(tdpd) leads to η0 = 2.6 (γ|| = γ⊥ = 1). The meaning of τη becomes
clear when it is compared with the estimated star rotational re-
laxation time τrot . Here are their values for different thermostats:
τη = 61 and τrot = 59 for the adpd; τη = 58 and τrot = 55 for the
sdpdshort; τη = 125and τrot = 100for the sdpdlong; and τη = 287,
τrot = 332 for the tdpd. The error bar of the given values is ap-
proximately ±5. We observe τη ≃ τrot indicating that the onset of
shear thinning, which takes place at γ̇τrot > 1, coincides with the
molecular deformation altering the equilibrium rotational diffu-
sion.

We now focus on the adpd model and defer the discussion
on the tangential friction to Sec. 8. The system temperature is

∗An interesting remark is that the recoverable shear compliance 87 obtained from

Je = τrot/η0 results to be Je ≃ 110 independently on the friction kernel.
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Fig. 5: Normalized shear viscosity obtained for several models under
open and closed conditions. Details of the model (varying in thermostat
and kernels) are given in Tables 1 and 2. Lines are best Carreau fits.

fixed to T = 4.0± 0.01. In this case we get a zero shear viscos-
ity η0 = 0.50±0.05. At larger Wi, the shear thinning exponents
β obtained from Carreau fits (Eq. 13) are found to be slightly
steeper in the open domain βη = 0.41(2) than in the NVT box
βη = 0.35(4). Thus at a fixed shear rate, the open system is slightly
less viscous than the closed sample. This is in agreement with pre-
vious studies for linear and branched melts carried out at constant
and unconstrained density (see Sec. 10).

The first and second normal stress coefficients Ψ1 = N1/γ̇2 and
Ψ2 = N2/γ̇2 (for the adpd model, discussed in this section) are
shown in Fig. 6. For Wi < 20 we find a decrease in Ψ1 con-
sistent with the Carreau standard behaviour (Eq. 13), provid-
ing Ψ1(γ̇ = 0) = 21± 1 and an exponent βΨ1 ≃ 1.30± 0.04 (i.e.
N1 ∼ γ̇0.7) quite similar for both ensembles. The relaxation time
for Ψ1 obtained from the fit is also consistent with τη = τrot within
error bars. At larger Wi > 20we find a measurable decrease of Ψ1

with respect the Carreau trend (see Fig. 6), which takes place at
slightly smaller Wi in the open case. This corresponds to a loss in
the elastic component of the melt at large shear rates. The second
normal stress coefficient Ψ2 = N2/γ̇2, shown in Fig. 6 also takes
quite similar values in both environments and at large γ̇ scales
like Ψ2 ∼ −γ̇−1. The similar behaviour for N2 under open and
closed boxed might be due to the fact that we just fix the normal
load (in the x2 direction) and not the hydrostatic pressure as in
some other studies39,40,42, presenting different trends for N2 in
NVT and NPisoT constraints.

The normal stress ratio VR ≡ −Ψ2/Ψ1 and the recoverable
shear strain87

SR≡ Ψ1/(2ηγ̇) = (P22−P11)/(2P12) (14)

are standard indicators of viscoelasticity87 (e.g. SR vanishes for
a Newtonian fluid). As shown in Fig. 7 in our melt model, SR in-
creases with the shear rate, as expected; however, both indicators
(SR and VR) clearly show that a change in the elastic component
of the model takes place for Wi > 20. Notably, SR decreases, so
the melt becomes less compliant to shear strain and stores less
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Fig. 6: First and Second normal stress coefficients of the star polymer
melt under open and closed conditions and the adpd thermostat for γ|| = 1
(blue) and γ|| = 5 (purple). Dashed line for Ψ1 is the Carreau fit (see text).

elastic energy across the flow-gradient plane, with a jump in the
VR. We advance that the amount of the elastic energy loss at large
Wi depends on friction forces (notably on the presence of tangen-
tial friction as shown in Sec. 8). This is a clear indication that
calibration of friction from detailed all-atom models9 is crucial to
represent or simulate some particular real melt.

5.4 Gyration tensor

Thermodynamic and rheological properties of any polymeric sys-
tem are intimately related to the deformation of the molecules
induced by flow. It is therefore convenient to start by present-
ing the results for the average gyration tensor of our star polymer
model under shear, whose components are shown in Fig. 8. For
Wi > 1 the flow induces the alignment of the star molecules in the
flow direction and at the same time a compression in the gradient
direction. The width of the stars in the neutral direction slightly
increases up to Wi ∼ 20 and for larger shear rate, they also start
to contract in this direction. It is also instructive to observe the
molecule’s shape in their principal deformation axes, obtained
from the diagonalization of the gyration tensor. The molecular
axes are s1 = cos(θG)x1− sin(θG)x2, s2 = −sin(θG)x1+ cos(θG)x2,
and s3 = x3 (since G13 = G23 = 0). The ith eigenvalue is noted
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Fig. 7: (Top pannel) Normal stress ratio and (Bottom pannel) Recov-
erable shear strain index for some model melts under open and closed
environments. Results for the case with tangential friction (tdpd) are also
included.

as G̃i. The angle θG is the average molecular tilt over the flow
direction that satisfies:

tan(2θG) =
2G12

G11−G22
. (15)

Results for the eigenvalues of G are shown in Fig. 8 and reveal the
strong contraction of the molecule in the s2 direction. In particu-
lar for Wi ∼ 50 we observe that G̃1/2

2 ∼ 1.12σ so the chain width
in the contracted axis reaches the monomer (or blob) diameter.
In a real polymer at this shear rate, the flow starts altering the
structure of the chain “blobs” smaller than σ . But this is precisely
our modelling unit length so we will take this as the maximum Wi
to be explored here (roughly Wi < 100). Above this (size depen-
dent) shear rate, one should also expect a shear rate dependence
of the blob-blob friction kernel (see Ref.97 for a related study on
this issue). It is also interesting to note that the total volume
of the molecule (evaluated from the product of the eigenvalues
of the gyration tensor) first increases (molecules expand) up to
Wi ∼ 10 and due to contraction in the neutral direction, it tends
to contract (in the form of a highly extended ellipsoid) for larger
Wi. In this sense, the behaviour of the arms in the neutral di-
rection of the star have some similarities with what was found in
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tethered polymers98,99, which also presents a maximum volume
at intermediate Wi.

 0

 2

 4

 6

 8

 10

 0.01  0.1  1  10  100

G~
i/σ

2

Wi

neutral direction

adpd (closed)
adpd (open)
tdpd (open)

Fig. 8: Eigenvalues of the gyration tensor scaled with the monomer di-
ameter σ2. Results include cases with adpd friction kernel γ|| = 1 (no
tangential friction) and the tdpd model γ|| = γ⊥ = 1 discussed in Sec. 8.
Estimated error bars of the data are approximately 5%.

6 Analysis of stress-structure and dynam-
ics relationship

The present analysis provides relations between stress compo-
nents and the molecular structure and dynamics. It focuses on
the results presented in the previous section, which corresponds
to the adpd star model, with zero tangential friction. The conclu-
sions will be useful for the comparison done in Sec. 8.

6.1 Pressure balance in closed system

Pressure is the leading mechanical variable in rheology as it di-
rectly connects the microscopic world with material properties.
We now elaborate on the pressure balance in an attempt to con-
nect the molecular structure with the observed rheology.

The pressure exerted by the melt † is calculated using the
Irving-Kirkwood method and the method of planes100, which
is particularly suited to the open setup as it was designed for
non periodic boundaries. The pressure can be first decomposed
in virial and kinetic parts. The virial pressure includes contri-
butions from spring forces and intramolecular forces (both act-
ing amongst pairs of monomers of the same molecule) and in-
termolecular forces (between monomers of different molecules).
The pressure balance allows to analyze the different molecular
contributions,

Pα,β = Pkin
α,β +Pspring

α,β +Pintra
α,β +Pinter

α,β . (16)

The pressure tensor is symmetric for the type of molecules consid-

†Traditionally, following the experiment standpoint, rheological magnitudes are ex-

pressed in terms of the pressure on the system (here given by −P). For instance, the

normal stress difference is then N1 =−(P11−P22) and this explains the opposite sign

used in this (and others) simulation studies.

ered hereby (in fact for most polymers)1. The “average” pressure
on the system is given by the hydrostatic pressure which is just the
third part of the trace of P (see Eq. 12). The hydrostatic pressure
is not involved in (although indirectly affects) the main rheologi-
cal quantities such as the shear stress P12 and the first and second
normal stress differences, defined as

N1 = P22−P11, (17)

N2 = P33−P22. (18)

It is customary to introduce the traceless pressure tensor

P̂ ≡ P−PisoI,

with I = δα,β the unit second rank tensor. Indeed, the hydro-
static pressure can be decomposed in different molecular contri-
butions Piso = ∑A(1/3)Tr

[

PA
]

with A = kinetic, springs, etc. Also,
due to the linearity of the trace operator we can decompose the
traceless stress tensor P̂ in a sum of contributions of traceless ten-
sors, i.e., P̂ = ∑A P̂A with P̂A = PA − (1/3)Tr

[

PA
]

. This is useful
to simplify the analysis. In fact, before discussing the differences
between open and closed ensembles, we inspect some generali-
ties of the pressure balance focusing on the results obtained for
closed (NVT) ensemble. To that end we present in Fig. 9 the con-
tributions to the melt’s pressure components under shear: to the
hydrostatic pressure and to the different traceless stress tensors
(component-wise: gradient P̂22, flow P̂11, neutral P̂33 and shear
P12 obviously P13 = P23 = 0).

6.1.1 Springs stress

Bonded interactions are hereby modelled by linear springs with
non zero equilibrium distance. The contribution of the star
molecules’ springs to the traceless stress tensor are illustrated in
Fig. 9 (again, for the case of closed systems). As expected, as
the shear rate is increased, molecules tend to be stretched in the
flow direction and compressed in the gradient direction. Springs
tend to restore the equilibrium (spherical) shape of the molecules
by producing a negative stress (compressing) in the x1 direction
and a positive (expanding) in the gradient direction. As in any
material with elastic properties, both effects contribute to enlarge
the first normal stress difference N1 = P22−P11. In turn, we find
that elastic contribution to the second normal stress difference
N2 = P33−P22 is negative, as it happens in real polymeric fluids1.
Fig. 9 shows that the springs crossed tension Pspring

12 is the most
important contribution to the shear stress, although as discussed
below, the kinetic pressure becomes significant at large Wi (above
Wi > 20 for the adpd model discussed in this section).

6.1.2 Kinetic pressure

The kinetic pressure tensor Pkin
α,β = 1

V ∑i〈δvα
i δvβ

i 〉 was obtained
from the peculiar velocities δvi = vi−u(ri), where u(r) = u1(x2)e1

is the average velocity field obtained by binning the velocity
gradient direction x2. Indeed, the ideal part of the hydrostatic
pressure is one third of the trace of the kinetic pressure tensor,
(1/3)Tr[Pkin] = ρT . However, its traceless part, P̂kin ≡ Pkin −ρT I,
contains relevant information about the correlations in velocity
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0 .

12 | 1–25

Page 12 of 26Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



fluctuations over different axes. In particular, monomer’s veloc-
ity fluctuations in the x1 and x2 directions become correlated for
γ̇ > 0 and contribute to the shear stress and viscosity. In our
setup this correlation becomes negative (owing to the imposed
counter-clockwise shear) and leads to a negative contribution to
Pkin

12 with a non-negligible viscous contribution to the shear vis-
cosity η = −P12/γ̇ which tends to reduce the shear thinning ex-
ponent (see the comparison with the case with tangential friction
in Sec. 8). Although seldom pointed out in the literature (see
Ref.4), at high enough shear rates the monomers kinetic pressure
becomes significant in polymer melts. This is in fact what we
clearly observe in Fig. 9 for the star model with normal friction
(adpd). The anisotropy in the kinetic pressure observed in the co-
variance of monomer’s peculiar velocities is certainly much larger
than what would be observed in a simple fluid47,78. It is also of
a different nature because in the melt, the monomers’ motions
are constraint and they fluctuate and rotate being tethered to the
center of their star molecule. This leads to different monomer
peculiar velocities in the flow, gradient, and neutral directions
which are reflected in the kinetic pressure. In Fig. 9 we show P̂kin

versus Wi (recall that Pkin = P̂kin +ρT and diagonal components
of Pkin are positive). For Wi > 1, the kinetic pressure contributes
to the first and second normal stress Nkin

1 and Nkin
2 . As soon as

the molecule become stretched in the flow direction (for Wi > 1),
velocity fluctuations in the flow direction are enhanced with re-
spect to those along the gradient and neutral directions: P̂kin

11 > 0
and P̂kin

22 < 0, P̂kin
33 < 0. We find that Nkin

2 < 0 (see Fig. 10 below),
so the kinetic stress acts in the same way as the elastic (springs)
components. However, the kinetic contribution to the first nor-
mal stress differences is negative Nkin

1 < 0 so it goes just opposite
of the elastic contribution of the chain. Our conclusion is that the
kinetic pressure of monomers tends to reduce the elasticity of the
melt in the flow-gradient direction at large shear rates.

6.1.3 Intramolecular pressure

Intramolecular pressure gives an indication of excluded volume
effects and molecular collisions within one molecule. For our
moderate-size molecules it has a minor contribution to the total
stress. Intramolecular collisions induce a viscous (not-restoring)
stress in the melt which slightly contributes to the shear stress
and tends to counterbalance the elastic first normal stress differ-
ence Nintra

1 < 0 (just like the kinetic pressure - see Fig. 10). It has
the same effect in the gradient-neutral plane (Nintra

2 > 0) where
due to the molecule stretching, monomers tend to collide less in
the gradient direction. However, above Wi ∼ 20 a shallow maxi-
mum is observed in Pintra

33 (and a minimum for Pintra
22 - see Fig. 9)

suggesting that the reduction of the arm extension in the neutral
direction has the consequence of increasing monomer collisions
in the gradient direction (thus Nintra

2 diminishes - see Fig. 10). Ev-
idence of arm retraction in the neutral direction is shown in Fig. 8
as a clear the reduction of G̃3 = G33 for Wi > 20 (also observed
in “sdpdshort” and “sdpdlong” thermostats). Somewhat similar
rebound in the intramolecular pressure at a large shear rate has
been observed in simulations of entangled and disentangled lin-
ear polymer melts (see Ref.3 and reference therein). However,
in these works the monomer-monomer interaction is attractive,

and this fact modifies (reverses) the intramolecular contributions
(polymer compression then reduces the intramolecular pressure,
unlike for our purely repulsive potential).

6.1.4 Intermolecular pressure

According to Fig. 9, the contribution of the intermolecular pres-
sure to the melt is minor. The seemingly irrelevant contribution
of intermolecular stress is assumed in many theoretical models87

to explain viscoelasticity (stress-optic rule). However, this is a
simplistic view because intermolecular forces are responsible to
spread the external momentum introduced through the system’s
boundaries (note that, in this respect, the open boundary setup
behaves like a real experiment). In fact, internal forces (between
monomers of the same molecule) sum up to zero so they can-
not modify the CoM’s velocity of the molecule. For the present
star molecule (with relatively short arms) momentum in the flow
direction is transferred and maintained across x2 by intermolecu-
lar collisions9. These friction forces gradually build up the elas-
tic stress in the molecules, until it finally collapses to a station-
ary value in the steady state. The central role of intermolecular
forces can be also seen by considering the alternative molecu-
lar formulation of the pressure tensor101 (based on molecules
(µ) CoM Rµ = (1/Mµ )∑i miri,µ and virial pressure proportional
to ∑µ Rµ Fµ ). This “molecular pressure” formulation is however
less informative because the effect of all internal forces, like the
springs, are hidden in the spatial CoM distribution g({R}). Nev-
ertheless, it serves to illustrate the central role of intermolecular
forces and to shed some light on the apparently striking similarity
between the intermolecular pressure and the total pressure de-
pendence with Wi, which can be seen by comparison between the
corresponding (inter and total) panels of Fig. 9 (note the differ-
ence in values). This similarity between intermolecular (IM) and
global magnitudes (such as IM energy and hydrostatic pressure,
see Fig. 9) has also been reported as “striking” in previous sheared
melt simulations2,3. It is interesting to note that the dominant ve-
locity gradient component of the IM force Pinter

22 reaches a plateau
around Wi ∼ 20 and slightly decreases at larger Wi (as the total
P22 does - see Fig. 9). This is indicative of a change in the dy-
namics of polymers, which according to the concomitant increase
observed in Pinter

11 , most probably start to rotate and collide more
often in the flow direction.

6.1.5 Hydrostatic pressure

The hydrostatic pressure is key in shear induced polymeric phe-
nomena, such as shear induced crystallization87 or separation of
blends47. Its dependence with the shear rate is not well under-
stood. Piso depends on the molecules size40,43 and on its archi-
tecture3,40,42,88 . However, there have been reports of both in-
crease and decrease in different (sometimes contradicting) stud-
ies. Fig. 9 indicates that Piso can present a non-monotonous trend
with Wi due to changes in the molecular structure under shear.
Non-monotonous trends for Piso(γ̇) have also been observed for
different polymers in Refs.2,3,40,43. The present analysis (see
Fig. 9) reveals in fact that Piso depends on a competition of several
mechanisms. Below Wi ≃ 10 the hydrostatic pressure varies little
but presents a slight descend, probably due to the chain expan-
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sion (revealed by the analysis of the gyration tensor) which de-
creases the intramolecular pressure. At larger shear rates Wi > 10,
two opposite mechanisms enter in play: First, an increase in P11

due to the strong increase of kinetic pressure (and to a lesser ex-
tent to intermolecular collisions). This is probably due to molecu-
lar rotations similar to the tank-thread motion reported for a star
molecule solution102 and also pointed out in Ref.2,3. And second,
a decrease in P33 due to the contraction of the stars in the neu-
tral direction (see Fig. 8) and consequent reduction of the kinetic
pressure Pkin

33 . Both effects nearly counterbalance each other (see
Fig. 9) leaving small variations in Piso. The relevance of these ef-
fects depends on the boundary conditions (the open case is anal-
ysed in next section) and type of friction (Sec. 8). More generally
variations of Piso depend on the presence of attractive monomer
interactions and on the molecular structure.

It is interesting to note that the decrease of neutral kinetic pres-
sure in our adpd star model starts to take place around Wi ≃ 20,
which is precisely the ratio τrot/τelas ≃ 20. Above this shear rate
the flow strains faster than the elastic relaxation of the molecule
thus reducing the fluctuations of the arms in the neutral direc-
tion. This effect finally induces a net decrease Piso above Wi > 30.
We shall see (Sec. 8) that this effect is absent (or at least de-
layed) when introducing the tangential friction, again indicating
that friction should be essential part of any CG model9.

6.1.6 Intermolecular forces and the Hookean limit

To summarize, at low shear rates the elastic energy stored by the
melt grows in response to intramolecular (nonbonded) interac-
tions (here mainly friction forces). At large enough shear rates
viscous (Newtonian) effects coming from the kinetic and intra
molecular pressures, tend to modify (normally reduce) the elas-
tic response of the melt (notably first normal stress differences).
Our findings are in agreement with the conclusions of Kroger et
al.4 clearly and succinctly summarized in his book (page 144)
in relation with the breakdown of the linear stress-optic-response
(SOR) due to the Newtonian viscous transport at large Wi. In
our simulations we find a linear relation between G22−G11 and
P22−P11 (essentially similar in open and closed setup), indicat-
ing the validity of the linear SOR up to Wi ≃ 10. In Kroger’s ap-
proach (applied to linear multibead FENE chains), both, kinetic
and intramolecular pressures, are collected in what he calls the
“simple fluid” stress contribution4,89. We find here that both con-
tributions can have different roles, which more generally should
probably depend on the molecular shape (kinetic pressure) and
monomers (intramolecular) interactions (attraction/repulsion).

To highlight the relevancy of the intermolecular stress in the
linear SOR regime, we plot in Fig. 11 (top panel) the total and
elastic contributions (springs) to the normal and shear stress
against the intermolecular counterparts. At low shear rates, about
Wi < 10, the same linear relation is found for the first normal
stress difference and shear stress, N1 ≃ 8Ninter

1 and P12 ≃ 8Pinter
12 ,

while we find N2 ≃ 4Ninter
1 . Approximately the same linear rela-

tion holds for the elastic stress and also for the normal molecular
strains evaluated with the gyration tensor (G11−G22 and G22−

G33, scaled in Fig. 11(top panel)). This provides the Hookean
limit of the melt N1 ≃ C (G11−G22) and N2 ≃ (C/2)(G33−G22)

with C = 62.5 (we find P12 ∼CG12 holds only for smaller Wi < 5).
In the open (adpd) setup, the linear regime for N1 and P12 per-
fectly agree with closed simulations; however we found deviation
from linearity in the case of N2, an issue which deserves further
investigation. The bottom panel of Fig. 11 presents results for
stars with the tangential friction, analysed in Sec. 8.

7 Effect of open environment

7.1 Density and hydrostatic pressure

In our open domain we fix the load of the melt in the gradient
direction (Pext

22 = P22) and this produces a redistribution of the
pressure tensor, reducing its component in the flow and neutral
directions and also, indirectly, its shear stress. This is deduced
from Fig. 12 where we compare the traceless stress tensor and
the hydrostatic pressure in the open and closed setups at the fixed
T = 4 temperature. Note that Pext

22 = P22 = P̂22+(1/3)Piso is con-
stant in the open setup (within statistical uncertainties). In the
open domain, the sheared melt expands in the gradient direction;
a phenomenon similar to the die swell observed in polymer ex-
trusion at the pipe’s orifice and related to other viscoelastic phe-
nomena103. In the open domain this corresponds to a decreasing
melt’s density (at faster shear rates) and brings about a smaller
hydrostatic pressure than in the closed environment at similar
Wi (see Fig. 12). However, the relative decrease of Piso is larger
than the density jump. This fact is due to several related effects
we now analyze from the inspection of Fig. 10. Indeed, at the
fixed temperature, a lower density brings the lower kinetic pres-
sure Pkin

iso = ρT found in the open domain (this trend also applies
here to the intramolecular pressure Pintra

iso because our model con-
siders purely repulsive nonbonded interactions, the opposite ef-
fect could arise for attracting chains2,3) However, an even larger
reduction in Piso with respect to the closed box comes out from
the smaller intermolecular pressure in the open box (see Fig. 10
for Wi > 10). Indeed, at a high shear, a less dense melt presents
less molecular collisions, less intermolecular friction and thus less
elastic load. As stated, at the fixed temperature, the elastic strain
is essentially activated by intermolecular friction in the melt. No-
tably, for Wi ∼ 20, these intertwined effects induce a reduction
of about 25% of the open domain’s hydrostatic pressure mainly
arising from the decrease of elastic stress. At that Wi, density has
only decreased about 10% (see Fig. 17). In agreement with this
comment, we note this depressurizing effect is doubled when the
tangential friction is added as commented in Sec. 8.

7.2 Normal stress differences and shear stress

Fig. 10 compares the different contributions to the normal stress
differences and the shear rate in the open and closed systems.
Much of what has been already said in the previous section ap-
plies here. The results for the shear stress nicely corroborates
what we pointed out before about the close relation between in-
termolecular and elastic stresses. Fig. 10 (right bottom) clearly
shows that the kinetic and intra molecular shear stresses are es-
sentially equal in the open and closed domains. The decrease in
elastic shear stress found in the open case is due to the reduc-
tion in the intermolecular friction at a lower density (although
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2 , etc). Results for

adpd (top panel) and for the tdpd model under open conditions (bottom
panel). Estimated error bars of the depicted quantities are approximately
5%.

seemingly paradoxical, the “nominal” contribution to Pintra
12 in the

monomer pressure balance is minor). In all instances, at low
enough shear (Wi < 10) the elastic stress is close to the total stress
(and proportional to the intramolecular stress). This is the regime
of validity of the stress optic rule which is broken at larger shear
due to viscous (and compressible) effects related to the "simple
fluid” of monomers. Remarkably, for the present model of star
polymer melt, the kinetic normal stress becomes the dominant
“viscous” contribution and at large Wi > 20 it even induces a de-
crease in the first normal stress difference N1.

7.3 Molecular ordering under shear

Fig. 13 presents the angle of the largest eigenvector of different
contributions to the pressure tensor with the flow direction (mea-
sured according to Eq. 15). We also include the molecular orien-
tation, measured from the angle associated to the gyration tensor
(Eq. 15). This plot condenses what has been already mentioned
in previous sections. Recall that a spherical molecular structure
provides θG = 45o and similarly from Eq. 15 a Newtonian fluid
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Fig. 12: Hydrostatic pressure and components of the traceless stress ob-
tained in closed and open domains at fixed T = 4 and under the adpd
thermostat (normal friction). Error bars of the measured quantities are
approximately 0.005ε/σ3

0 .

without elastic component, necessarily presents θ = 45o. This is
what is observed for the total pressure tensor angle θP and the
molecular orientation θG at Wi → 0 in Fig. 13. As the strain-
ing rate is made faster both angles decrease in a similar fashion,
however, for Wi > 10, the pressure tensor angle θP presents a min-
imum and starts increasing towards 45o. By contrast, the molec-
ular orientation θG keeps aligning with the flow direction. This
in an indication of the loss of the Hookean behaviour of the melt
which here is mainly due to the kinetic pressure (see its principal
direction in Fig. 13). The springs stress direction also aligns with
the flow, although its angle is larger than the molecular orienta-
tion (a similar outcome was observed in Ref.3). Finally, note the
close match between the direction of intermolecular forces and
the total pressure tensor. As stated, intermolecular forces are the
driving mechanism of transformation between the viscous flow
and elastic energy. Lastly, as observed by other authors39,42,43,
the open boundary does not modify the molecular structure or
orientation with Wi, when compared with the closed case. Here,
Fig. 13 show another remarkable result: the significant redistri-
bution of pressure in the open case (see Fig. 12) does not alter the
orientation of the different contributions of the pressure tensor at
increasing shear rate. The orientation of pressure eigenvectors is
a function of its eigenvalues which in turn determine the mate-
rial properties of the polymer (its viscoelasticity87). A relevant
example is the the recoverable shear strain (SR) given by Eq. 14.
Material properties should not depend on the constraints used to
perturb the polymer and this precisely what our analysis provide.

To observe the collective order of the star molecular, we calcu-
lated the CoM pair distribution function g(Ri j). Fig. 14 illustrates
the marginal distributions g2D(Xα ,Xβ ) =

∫

g(R)dXγ for different
planes and at increasing shear rates. It is illustrative to draw
the directions of the principal components of the pressure and
the gyration tensor to observe the departure from the Hookean
(linear SOR) regime. Above Wi > 20 molecules start to orient in
lanes in the flow-gradient plane, as indicated by the elongated
shape of the CoM distribution in Fig. 14. In linear polymers at
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large shear rate this effect creates order and even crystallization
(Ref.87). This collective order is also clearly visible in one snap-
shot of the system, in Fig. 15. Molecules with different relative
velocities (closeby in the gradient direction) slide over creating a
stress which is larger along a direction differing from the inidi-
vidual molecule’s orientation. This direction of maximal stress is
correlated with the CoM distribution (see Fig. 14) which shows
bright spots where molecules slide over and depleted regions in
the “wake” of each molecule. At the largest shear rates considered
we also observe some collective ordering in the neutral (vorticity)
direction. In sheared colloids, lanes of particles in the neutral di-
rection appear due to hydrodynamic interactions104. This could
be a plausible hypothesis, in view of the hybrid colloid-polymer
nature of star molecules. direction.

8 Effect of tangential friction
To investigate how the tangential friction between monomer
blobs alters the rheology of the melt model we use a standard (i.e.
not adaptive) DPD thermostat70 with γ|| = 1 and γ⊥ = 1 (see Secs.
3, 4, and 5.3 for details). As stated the friction kernels are Heavi-
side functions, in this case with cutoff distance Rd pd = 1.5×21/6σ .

In the following we label this tangential friction thermostat as
“tdpd”. This tdpd thermostat was found to be strong enough to
keep the system’s temperature relative increase smaller than 5%
at the largest shear rates considered.

In a real system friction acts by reducing the relative veloci-
ties of interacting monomers, generally in the normal and also in
the tangential directions. Under Markovian and pairwise inter-
action assumptions, this form of friction leads to the DPD equa-
tions as shown by the Mori-Zwanzing dynamic coarse graining
applied to the microscopic Liovillian dynamics9. The same ef-
fect is properly captured by the tdpd thermostat, although here at
a qualitatively level. Reducing the monomers relative velocities
immediately leads to a reduction in kinetic pressure which has
large consequences in the system’s rheology. In particular, the be-
haviour of the melt is essentially ruled by its elastic component,
activated by the more effective intermolecular friction. Just to
illustrate this point, we plot in Fig. 16 the contributions of the
first normal stress difference (a direct measure of viscoelasticity)
for the tdpd case. Compared with Fig. 10 (for the γ⊥ = 0 adpd
case) the tdpd model has a much smaller kinetic pressure and N1

is essentially determined by the elastic stress (particularly as Wi
increases). The same conclusion applies to P12 in Fig. 16.

An interesting difference related to the presence of tangential
friction concerns shear dilatancy. Fig. 17(a) presents the relative
density expansion δρ/ρ0 = 1−ρ/ρ0 for different models. Let us
now focus on the adpd and tdpd models which are kept isother-
mal (non-isothermal cases are discussed in Sec. 9). The den-
sity expansion of the adpd model (without tangential friction)
scales like δρ/ρ0 ∼ Wi, while tangential friction (tdpd) leads to a
much softer trend δρ/ρ0 ∼ Wi0.5 (although it expands relatively
more at moderate shear rates). Under a constant normal load,
shear dilatancy is a consequence of the growth of pressure in the
velocity-gradient direction. In the case of small kinetic effects
(tdpd) this growth is controlled by the expansion force arising
from the compressed springs. This elastic pressure appears as
soon as molecules start to align with the flow and to compress
in the gradient direction. Under enough tangential friction, the
elastic stress is dominant and also controls the hydrostatic pres-
sure, which in absence of kinetic pressure effects, presents faster
decrease at large Wi compared to the adpd case (see Fig. 18). Of
course, this decrease is also related to the fact that the tpdp sim-
ulations were done in the open system; notably for the tdpd we
get about 50%reduction in hydrostatic pressure for less than 10%
reduction in density (see Fig. 17).

The eigenvalues of the gyration tensor shown in Fig. 8 also indi-
cate that adding tangential friction makes star molecules “stiffer”,
in the sense that one needs larger values of the Weissemberg
number to deform them. This observation is however somewhat
misleading because for a fixed Wi, the real (physical) shear rate
γ̇ = Wi/τrot is now smaller due to the increase in τrot with the
friction. In any case, the tangential friction is expected to al-
ter the stress-strain relations in the Hookean regime (related to
the linear stress-optic rule coefficient). This is (indirectly) seen
in Fig. 11 where we plot the normal strain differences G11−G22

and G22−G33 (also G12) against the corresponding intermolec-
ular stress differences (against Pintra

12 ). We choose this plot to il-
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Fig. 14: The pair distribution of molecules, g(R) providing the probability of finding the CoM of a molecule at a distance (vector) R from the target
molecule’s CoM. Left: Marginal probability g12(X1,X2) =

∫

dX3g(R) in the flow-gradient plane and (right) in the gradient-neutral. Results for increasing
Wi in a closed domain (open simulations at similar Wi are visually indistinguishable). Green line denotes the direction of the deviatoric stress and the
blue line the molecular orientation obtained from the gyration tensor Eq. 15.
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w

Fig. 15: Snapshot of a closed box simulation under shear rate (Wi = 42).
For the sake clarity only 10 % of randomly chosen molecules are shown.
Colors indicate position in the neutral direction. The snapshot clearly
shows the formation of lanes tilted in the flow-gradient plane created due
to sliding over rows of oriented molecules. Compared to Fig. 14, the
snapshot is rotated for 180◦ with respect to the gradient axis.

lustrate two facts: first, if the kinetic pressure is minor, the inter-
molecular friction is the leading mechanism driving the molec-
ular deformation (and its elastic response). Second, molecu-
lar strains (and elastic stresses, not shown in the figure) in the
flow-gradient and gradient-neutral planes (corresponding to first
and second normal stress differences) present a quite similar lin-
ear scaling (the shear deformation also) with the intermolecular
stress. This is to be contrasted with the top pannel of Fig. 11
(model in absence of tangential friction), where the second nor-
mal stress (and G22−G33) is half of the first N1 counterpart (also
G22−G11). A perfect alignment between intermolecular forces,
elastic stress and molecular strain was also found by Kroger89 in
linear FENE chains. It thus seems that tangential friction (tdpd)
helps to reduce the second normal stress in such way that N1 and
N2 present similar scaling laws N1 ∼ γ̇0.68±0.02 with N2 ∼ −0.3N1.
This is to be compared with the adpd case in Fig. 6 (N1 ∼ γ̇0.70 and
N2 ∼ γ̇1.0). As shown in Fig. 7 the tdpd model yields −N2/N1 ≃ 0.3
for any Wi < 100. This value is characteristic of disentangled melts
(being −N2/N1 = 2/7 the theoretical prediction for small shear
rates1,88).

The monotonous increase of elastic storage with γ̇ found in the
tdpd model is reflected in the recoverable shear strain (SR) shown
in Fig. 7. Somewhat paradoxically, adding tangential friction in-
creases the melt’s elasticity. Albeit, this reinforces the conclusions
in Sec. 6: the intermolecular friction is the principal mechanism
loading elastic stress into an disentangled melt. In passing we
note that in the tpdp model the orientational resistance parameter
mG =Wi tan(2θG) grows like mG = 3.7Wi0.65 (at least for Wi < 100),
a scaling which agrees with that reported for stars in solution105

(the prefactor being however about twice larger in our melt.)

Not unexpectedly, the zero shear viscosity for the tdpd star
model is larger η0 = 2.6 than the adpd case η0 = 0.5. The relax-
ation time is also larger τη = 287 (compared with 60). However,
the tdpd viscosity shear thins faster we find βη ≃ 0.5 compared
with 0.4 for the adpd case (recall η ∼ γ̇−βη ). Again, this is also a
consequence of a much smaller contribution of the viscous stress
coming from kinetic effects. If the tangential friction is absent,
the kinetic (and intramolecular) contribution increases the shear
stress and the viscosity at any Wi leading to a softer shear thin-
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for the tdpd model including tangential friction. Compare with Fig. 10 for
the zero tangential friction case. Error bars of the measured quantities are
approximately 0.002−0.005ε/σ3

0 .

ning exponent.

9 Thermostats and heat dissipation

9.1 Density and temperature

We now briefly analyze the effect of the temperature increase due
to heat dissipation in the sample. In all cases, the temperature
reaches a steady state, but as shown in Fig. 17 (bottom panel)
plotting δT/T0 = T/T0−1, we face severe viscous heating when
performing the first row of simulations with the sdpdshort and
the (stronger) sdpdlong thermostat (see Table 1). Heating is ob-
served for Wi > 10 and irrespective of the damping parameter
(we tried up to γDPD = 50m0τ−1

0 ). Tangential friction drastically
reduces heating (δT/T0 < 0.045 for Wi < 70) however the adpd
thermostat enabled us to simulate zero tangential friction at fixed
temperature, providing δT/T0 < 0.01.

Let us focus on the “heated” runs at increasing shear rate to il-
lustrate the effect of an uncontrolled temperature. Fig. 17 shows
that heating introduces further melt expansion under shear and
this kinetic energy induces larger hydrostatic pressure (which it is
seen to increase with shear in the sdpdshort case). Pressurization
due to viscous heating can also alter the rheology response. This
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Fig. 17: Top panel: Relative density variation for the different cases stud-
ied (open and closed, and different models and thermostats, see Table 1).
Bottom panel: Relative temperature increase observed in simulations with
standard DPD thermostats with vanishing tangential friction. The relative
variation of T for the adpd thermostat is smaller than 0.01 and less than
0.045 for the tdpd case (both of them not shown in the graph). Details
of the thermostats are given in Table 1. The lines correspond to Eq. 21,
with the characteristic constant A defined there. Error bar estimations of
the data are approximately 0.005and 0.01 for the upper and lower graph,
respectively.

is seen in Fig. 5 where the sdpdshort case present shear thickening
for Wi > 10, but only under closed conditions. The shear thickening
reported in some of the published works on polymer melts (closed
box simulations) might in fact have been due to viscous heating.
(see e.g. Ref.39). More interesting than this elucubration is the
result of Fig. 5 for the sdpdshort-open. The viscosity obtained for
the same thermostat in an open environment is not affected by
the temperature increase with γ̇. In fact it presents the very same
trend as the adpd case. This observation indicates that shear vis-
cosity is dominated by the normal load. In fact, the same outcome
was also observed for the sdpdlong model (with shear exponent
βη = 0.39) and for all γ|| ≤ 10 considered. Thus, this insensibility
of viscosity to temperature found only under normal load is not
probably due to a cancellation of effects sometimes observed in
experiments50 (viscosity decreasing with T and increasing with
P22). Rather it should be due to the viscosity dominated by pres-
sure as happens in highly pressurized melts50. Here monomers
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Fig. 18: Hydrostatic pressure and components of the traceless stress for
the adpd model (normal friction between blobs) compared with the tdpd
model (including tangential friction). Both cases in open boxes at fixed
T = 4. Error bars of the measured quantities are approximately 0.002−
0.005ε/σ3

0

interact via purely repulsive forces (WCA) which might map a
sample under large pressure, in fact, adding attractive interac-
tions would probably trigger temperature effects on viscosity.

9.2 Viscous heating

The rate of heat production per unit volume due to viscous dissi-
pation is Q̇η = ηγ̇2 leading to a larger steady temperature whose
value depends on the heat extraction rate. The onset of tempera-
ture increase is usually determined by a non-dimensional param-
eter which depends on Wi and on the rate of cooling Q̇c (see the
recent computational study in Ref.10). Although in this work we
shall not focus on heat and entropy productions, we believe it is
interesting to share our observations on this phenomena, partly
because of the relative small simulation literature accurately re-
porting heating effects in sheared, thermostatted melts. A simple
equation for the heat produced in the sheared melt includes fric-
tional gain and cooling,

Q̇ = Q̇η + Q̇c =
ηWi2

τ2
rot

− cX α (T −T0) , (19)

where cX the specific heat capacity (molar) at constant pressure
(X = p) or volume (X = V ) and dQc = ρncX dT (here ρn is the
monomer number density). The DPD thermostat extracts (ki-
netic) energy upon pair collisions, at a rate which is proportional
to the temperature difference T − T0, where T is the system’s
(kinetic) temperature and T0 the thermostat’s nominal temper-
ature ‡. The value of cooling rate α (which has units of number

‡This can be proved from the equation for the time dependence of the covariance

〈dvi/dt(t)dvi/dt(t ′)〉 of the DPD Langevin’s equation and can be easily checked (and

the cooling rate α measured) upon observation of an exponential convergence of T

towards T0 after an instantaneous change (increase or decrease) of T0.
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of colliding pairs divided by volume and time) should scale as

α ∝
1
2

ρ2
n

∫

4πr2g(r)w(r)γDPDdr, (20)

where we note that w(r) is the DPD kernel, which is simply a
Heaviside function in our thermostat. The heat cooling rate of
the thermostat increases with its damping coefficient γDPD, the
kernel cutoff RDPD

cut , and with the square of the monomer local
density, which determines the number of thermalizing monomer
collisions. In the steady state Q̇ = 0 we thus have,

T −T0

T0
=

η
αcX T0τ2

rot
Wi2. (21)

Using the viscosity trend η = η(Wi) obtained from simulations
(see Sec. 5.3 above), we plot the prediction Eq. 21 in Fig. 17
(lines) for different cases considered. The agreement is quite rea-
sonable, indicating that the temperature increase in the melt can
be forecast using a simple thermodynamic argument. Best fits to
Eq. 21 provide A≡αcP = 0.011in the open-sdpdshort while some-
what larger A = 0.017 for the closed-sdpdshort. For the closed sd-
pdlong thermostat, which has about twice as much colliding part-
ners within the dpd kernel, we consistently get A= 0.03. A prelim-
inary calculation of cX from the variance of the system’s energy
in a closed (NVT) equilibrium simulation cV = 〈δU2〉NV T /(NT 2)

provides cV ≃ 1.7. From Eq. 21 we get the same order of magni-
tude (A ≃ 0.05 for sdpdshort and A = 0.09 for sdpdlong). A better
agreement is found when comparing with the tdpd (sdpdlong)
thermostat whose best fit provides A = 0.06(5) against the predic-
tion 0.09. This indicates that Eq. 20 should also depend on the
number of degrees of freedom the thermostat acts upon (3 in the
case of tdpd, 1 otherwise). A more refined calculation would also
require including the dependence of cx and g(r) with the shear
rate.

10 Comparison with previous studies
It is interesting to compare our results with previous rheological
studies, some of them carried out at isobaric (constant Piso) or
constant load (P22) constraints. As stated in the introduction, the
number of studies of flowing melts under the constant pressure
(either hydrostatic pressure or normal load) is not large. How-
ever, they present significant discrepancies on the density and
pressure variations with shear. For instance, Ref.42 presents re-
sults for dendrimer melts under the isobaric condition (constant
hydrostatic pressure) revealing a decrease in the melt’s density
under shear. For linear chains, Ref.40 presents just the opposite
effect (contraction under shear) while Ref.43 (constant load) re-
ports shear expansion (density increase).

The shear thinning exponents found here for a star polymer
melt are consistent with those found in other simulations for
somewhat similar systems such as hyperbranched and dendrimer
polymers41,42. Recall that the shear thinning exponent of any
quantity Φ is βΦ with Φ ∼ γ̇−βΦ at large γ̇. For viscosity we find
βη ≃ 0.4 (adpd) and βη ≃ 0.5 (tdpd), for the first normal stress
coefficient βΨ1 ∼ 1.30 (adpd) and 1.31 (tdpd), while for the sec-
ond one the values are βΨ2 ∼ 1.0 (adpd) and 1.31 (tdpd). For
dendrimers, Bosko et al.41 reports shear thinning exponents in-

creasing with M under NVT (βη ∈ [0.28−0.36]) while, for NPisoT
the were roughly independent on M (βη ∈ [0.37− 0.39]). The
same work reports βΨ1 ≃ 1.27 and βΨ2 ≃ 1.23 under NPisoT while
βΨ1 ≃ 1.1 βΨ2 ≃ 1.0 under NVT. Closed simulations for hyper-
branched polymer melts42 predict βη ≃ 0.3 (slightly increasing
with molecular mass M) while βΨ2 ≃ 0.95 and βΨ1 ≃ 1 (both
roughly independent on M). The scaling of (first and second)
normal coefficients are probably sensible to the type of external
constraint (either isobaric Piso or constant load P22). As an in-
dication, a numerical study at constant load for linear chains43

reports the same exponents found in this work (βΨ1 = 1.35 and
βΨ2 ≃ 1 respectively). Concerning shear viscosity, if the density is
allowed to relax (under isobaric or constant load conditions) the
shear thinning exponents reported in the literature show much
less variation with the molecular weight than under a fixed den-
sity. This has been shown for linear chains under constant load43

and also for dendrimers42. In both cases, the shear thinning ex-
ponent in the variable density case was found to be close to 0.4,
while it ranged from 0.25 to 0.4 in the closed system (increasing
with molecular weight in both cases). This larger insensitivity
of shear thinning exponents under fixed load conditions agrees
with our observations in simulations presenting viscous heating
mentioned in Sec. 9.

More recently, very similar papers106,107 studied the rheology
and dynamics108 of star polymers with different functionalities
in solution. These groups find that the contribution of the stars
to the sheared solution viscosity scales like Wi−0.4 which is quite
close to the shear thinning exponents we find here for the melt.
According to these simulations106,107, the first normal stress co-
efficient scales like Ψ1 ∼ Wi−1 in solution, although the authors
claim an exponent of −4/3 at very high shear rate Wi > 100. In
melt, we observe the −4/3 power law at smaller shear rates. The
second normal coefficient seems also to scale slightly differently
in solution Ψ2 ∼Wi−4/3 than in melt Ψ2 ∼Wi−1. The strong sim-
ilarities in solution and melt indicate that rheological properties
are mainly ruled by conformational changes of the chains and
maybe also that the hydrodynamic effects in melt are somewhat
similar to those in a liquid solvent. Finally, it is interesting to note
that the range of values for βη and βΨ1 for stars, dendrimers and
hyperbranched molecules are consistent with the theoretical cal-
culation of Kroger88 based on the Fokker-Planck equation for the
bond vector distribution of multibead linear chains having slow
rotational diffusion (compared with the entanglement relaxation)
and a finite deformation energy88. These two features are ideed
consistent with the nature of short-armed stars, dendrimers and
hyperbranched molecules with internal excluded volume interac-
tions.

The number of experimental work on rheology of sheared star
polymers is not abundant either, but it is growing fast due to
the foreseen technological applications52,53. Most of these works
consider long armed stars which present entanglements. How-
ever, the shear thinning exponent we found for the tangential fric-
tion case βη = 0.5 is quite close to the star case of the experiments
by Tezel et al.109 (4 arms stars with Ma = 140kg/mol; the low-
est molecular weight considered in these experiments). Although
entanglements in star polymers are not yet fully understood in
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the non-Newtonian regime52, they should be responsible for the
substantially increase in shear thinning (exponents close to 0.8)
observed in the recent experiments with star molecule melts of
Snijkers et al.52. Shear thinning exponents found in melts of lin-
ear chains are around βη = 1 (predicted by reptation theory). An
open question is why star molecules significantly reduce the shear
thinning52.

The analysis presented in Sec. 6 based on the (exact) balance
of the pressure coming from the different contributions (kinetic,
intramolecular, intermolecular and bonds) provides some clues
which can be useful in a broader study. These type of analy-
sis were performed by Baig et al.2,3, Matin43 and Tschopp45.
However these balances were based on the energy budget which
has less direct rheological consequences than the stress. Also,
surprisingly, the kinetic contribution was not considered (lead-
ing to unbalanced analyses). The sole exception we found is
the work of Kroger89 for linear FENE chains which, like ours,
is based on the exact stress budget. In elongational flow of lin-
ear chain melts, Kroger89 found that viscous effects came mainly
from intramolecular collisions (he called it “simple fluid” stress
offset). Here, we find that in star molecules the kinetic pres-
sure can be the dominant viscous contribution to the melt rhe-
ology at large shear rates (a possibility in fact recognized by
Kroger in his book4). The kinetic pressure is however reduced
with the tangential friction and this warns about the need of dy-
namic coarse-graining9 to represent a realistic model. While lin-
ear chains tumble in shear flow110, star molecules perform a quite
different motion called tank-threading102,105 (whereby arms ro-
tate around the molecule’s center). One can speculate that the
reduction of shear thinning observed in star melts is due to an
enhanced kinetic pressure related to the tank-threading. Above
Wi > 10 we do observe the tank-threading motion in our melt
which, with monomer angular momentum growing much faster
(ω ∼ γ̇0.6 from preliminary results) than it does in stars in solution
(where ω is constant102,111). Concering intermolecular interac-
tions, quite often neglected in the literature (see e.g. Ref.87), we
find that these are key to transfer the externally imposed stress
into molecular strain and elastic stress. This observation agrees
with Kroger’s picture89. Intermolecular friction is the sole pos-
sible mechanism if entanglements are not relevant (like in our
short arm star molecules).

11 Conclusions
We have conducted OBMD simulations of the melt of star poly-
mers (73 monomers, 12 arms of 6 monomers per arm) using a
relatively new modelling technique which combines the adap-
tive resolution and open-MD (respectively, introduced in Refs.22

and46 and used in many other studies). From a technical point
of view, this work substantially enlarges the size of molecules ex-
changed between the open system and the reservoir13. In this
work, we however focus on what happens if a melt is sheared
under a constant normal load instead of a constant volume. The
constant load is in fact the condition in many experiments (see
Refs.40,44) although the simulation literature on the subject is not
abundant. We have also presented some conclusions on how the
tangential and normal monomer-monomer frictions affect these

CG molecular models.

The OBMD permits to perform several new features in a molec-
ular simulation. At equilibrium, the OBMD correctly represents
the mass fluctuations of the grand canonical ensemble and in-
terestingly, it could permit to study how fluctuations and sound
velocity are altered under non-equilibrium (e.g. sheared) states.
OBMD also allows to impose the external shear stress Pext

12 as re-
quired for (flux based) hybrid continuum-MD simulations15,66. It
could also enable the validation of theories like Extended Ther-
modynamics47 predicting different outcomes for the “conjugate”
constant-stress and constant shear rate γ̇ non-equilibrium ensem-
bles.

Concerning the present study, we observe that under a con-
stant normal pressure, the melt expands when sheared (shear di-
latancy) leading to substantial depressurization and slightly de-
creasing the shear viscosity. This behaviour was observed in most
previous simulations on sheared melts, but surprisingly it is still
unclear if it is the general (universal) trend (e.g. see40). This
study provides new information on the rheology of sheared melts:
notably, we see that the type of monomer’s friction is a key aspect
for the system’s rheology. From a theoretical standpoint9, friction
between monomer (or rather “polymer blobs”) arises as soon as
one consider a CG view of the complex molecule (which is the
standard case in polymer science). The pressure balance analy-
sis reveals that in absence of tangential friction, the monomer’s
kinetic stress becomes significant at large shear rates, increasing
the system viscosity (reducing the shear thinning exponent) and
diminishing its elastic response (e.g. normal stress difference,
stress recovery). We also observed viscous heating in some sim-
ulations (e.g. using the sdpdshort and sdpdlong thermostat) re-
vealing a viscosity jump (shear thickening) in closed systems. By
contrast, the viscosity of the heated (and less dense) open samples
did not changed in trend (shear thinning) under a constant load.
This indicates that the melt’s viscosity is controlled by the normal
pressure, at least for the present type of molecules with purely
repulsive interactions and no significant entanglements. We ex-
pect the OBMD to become useful in other studies, such as adding
the energy transfer63 or extending the incompressible coupling
in Ref.10 to perform hybrid simulations of compressible melts in-
cluding the transfer of dissipated heat through/across system’s
boundaries. Thus the properties related to heat conduction could
be investigated112.
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Shearing polymer melts at constant normal pressure
produces different rheology than shearing at constant vol-
ume, as revealed by AdResS-enabled open boundary MD
simulations of star polymer melts.
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