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Sampling the large-dimensional energy landscape
of a 2D granular system with the hydra
string method

Katherine A. Newhall

In this work, I improve upon the existing hydra string method [C. Moakler and K. A. Newhall, Granular

Matter, 2021, 24, 24] to systematically sample the energy landscape of a low friction 2D granular system.

This method climbs in random directions out of a minimum energy state, finding unique saddle transition

points and the neighboring minimum energy states only to repeat the process from the newly found

minima. The data is saved as a network with nodes representing the energy-minimizing states and edges

representing transition pathways that are parallel to the gradient of the energy at each point along the path.

I show how the hydra string method is able to produce a better sample of transition pathways between

stable states compared to just randomly sampling the system. The method is also modified to take into

account energy minima that are not points caused by non-mechanically stable individual particles and skip

past entire configurations that are not mechanically stable. The samples reveal that the energy of the states

correlates with the size of the energy barriers between them. Neighboring state energies are also correlated,

with correlations decreasing with distance as measured by path length on the network.

1 Introduction

Many intriguing dynamical properties of systems, such as
metastability or resistance to applied forces, emerge from an
underlying energy landscape.1 For systems that dissipate energy,
like gradient or Langevin models, stable configurations are local
energy minima. Applied forces including thermal fluctuations
can push the system from one energy-minimizing state to
another. Traditional applications of energy landscapes include
finding transition paths between two known stable configura-
tions, such as in chemical reactions,2 or finding a global energy-
minimizing state, such as in protein folding.3 Much like complex
molecules, granular matter consists of pair-wise interactions
between grains, yet energy-based methods have not been tried,
most notably due to the influence of static friction. Recent work
suggests a bridge between frictional jammed packings and
frictionless hard-sphere glassy systems, with friction stabilizing
higher energy configurations.4

Glassy systems are a low friction environment in which
energy landscapes have been explored. Their fractal nature
may explain soft material behavior, such as power-law rheology
and non-diffusive bubble motion in the Ostwald ripening
of bubbles.5 (Although their fractal nature is under question
with different sampling methods giving different results.6)

Landscapes may also prove useful in other relatively slow
dynamics such as quasistatically sheared glassy systems7 or
the slow loading and unloading of frictionless soft particles.8

Unlike the protein energy landscape that has a funnel-like
structure and one or a few energy-minimizing states of interest,
glassy systems are more uniform with deep canyons and
roughness corresponding to large numbers of plausible config-
urations within these basins.9–11 Combined with the fact that
enumeration of all states is possible for only small systems,12,13

methods to sample and explore the energy landscape are
desirable over methods to find global minimizers or completely
map the entire landscape. For this reason, together with Chris
Moakler, I developed the hydra string method to sample a
localized region of an energy landscape, creating a network of
neighboring energy-minimizing states.14

The hydra string method is based on the string-method15

and its saddle-point-finding climbing-string variant.16 These
efficient methods find transition pathways for gradient sys-
tems that are parallel to the gradient of the energy at each
point along the path. The hydra string method sends out
climbing strings, finding a set of unique saddle points on the
edge of the basin of attraction of the starting minima. These
Morse-index one saddle points have only one unstable direc-
tion and thus separate two energy-minimizing configurations.
The network of transition paths between these configurations
is recorded, and the process repeats from the newly found
minima.
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One of the advantages of finding the full transition path is
that the monotonicity of the energy along the path can be
monitored. Nonmonotonicity indicates that the path has left
the basin of attraction of the minimizer, thus I can be reasonably
sure that found saddles are on the edge of the basin of attraction
of the local minimizer. Recent work showed how different
steepest descent algorithms can draw different conclusions
about the basin of attraction a point is assigned to.6 Thus the
presented method has an advantage over other sampling tech-
niques such as metadynamics simulations11,17,18 based on the
autonomous basin climbing algorithm.19

In this work, I further develop the hydra string method for a
soft-sphere granular model for a small 2D test system of 19
bidisperse photoelastic disks that are Teflon wrapped to reduce
friction. One experimental configuration is shown in Fig. 1(a);
the non Teflon wrapped disks are the same as those used in
ref. 20. Applying the hydra string method to this experimental
and less dense system presents additional challenges. One is
that the presence of rattler particles, those that are not mechani-
cally stable, causes the energy minimizing point to become
degenerate due to the degrees of freedom from the rattler
particles. The other is that it is possible for the entire system
to become floppy with no particles being mechanically stable.
This is a highly degenerate state for which the climbing string
method is no longer able to reliably converge to a saddle point in
finite time.

After detailing the model for the soft-sphere particles in
Section 2, the original hydra string method, together with the
sampling methods explored in this paper and the modifications
to address the issues above are presented in Section 3. Rattler
particles are ignored when determining the unique set of con-
figurations visited, and unjammed configurations are removed
from the list of future minima to explore. I compare sampling
methods and parameters in Section 4. Forming a local network
of neighboring minima has the advantage of finding saddle
points on the edge of the basin of attraction from both paths that
exit the basin as well as enter the basin. I argue this forms a
more representative sample than just exiting the basin alone.
I also compare different computational parameters to argue that a
‘good enough’ sample has been obtained. I also discuss features

of the energy landscape revealed by the hydra string method. In
particular, I find that nearby states have similar energy by
computing the correlation as a function of network path distance.
This suggests the energy landscape is a set of ‘rugged mesas’ in a
sea of floppy unjammed zero energy states.

2 Hertzian contact model

I use a non-dimensional model inspired by the 2D experimental
system of the Daniels’ Lab;21 a sample image is shown in
Fig. 1(a). The model (non-dimensional) granular system has N =
19 circular disks in a unit box with its bottom left corner located at
(0,0); the 8 large disks have a radius of 0.1313 and the 11 small
disks have a radius of 0.0940 (size ratio of about 1.4). Each pair of
overlapping disks contributes to the energy of the system, as well
as any disks that overlap with the walls of the box. In experimental
granular systems, compressed objects have a restoring force
promotional to their compression depth (or overlap in the model
system), F = kdb, according to Hertzian contact mechanics.22 The
proportionality constant depends on material properties while the
exponent depends on the geometry of the object. In the model
system, I choose b = 5/4 to align with experimental data with
cylindrical disks as measured by Owens & Daniels.20

The energy of two overlapping disks, i and j, is therefore
given by

Eij ¼
4

9
kdij9=4 (1)

where k is a constant depending on the material properties that
we set equal to one for the model. For a pair of contacting
particles at positions -

xi = (xi,yi) and -
xj = (xj,yj) with radii Ri and Rj

respectively, the overlap is

dij = Ri + Rj � |-xi �
-
xj|.

The x and y components of the force on particle i due to the
overlap with particle j are given by

~fij ¼ �rEij ¼ �kdij5=4
~xi �~xj
~xi �~xj
�� �� (2)

Fig. 1 (a) Experimental image of Teflon-wrapped ‘‘frictionless’’ birefringent disks showing stresses (unpublished image by Josh Miller & Karen Daniels).
(b) and (c) Example nondimensional energy-minimizing model states found using gradient descent on the energy function in eqn (4); unit box and a
prefactor k = 1. (d) Two minima configurations considered ‘‘the same’’ based on eqn (7). The maximum squared displacement of any particle between the
two configurations is 6.8 � 10�5 o 10�4 which is the set number for defining different configurations.
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For disks that overlap one of the four walls of the box, I retain
the linear force, treating each wall as a cylinder with infinite
radius. The top and bottom walls produce forces in the y-
direction and the side walls produce force in the x-direction.
The resulting forces on particle i are

fi
1 ¼ k Ri � xið Þ if xi oRi

fi
2 ¼ � k Ri � 1� yið Þð Þ if 1� yi oRi

fi
3 ¼ � k Ri � 1� xið Þð Þ if 1� xi oRi

fi
4 ¼ k Ri � yið Þ if yi oRi

(3)

for the left, top, right, and bottom walls, respectively. Together,
the total energy of the system is

E ¼
XN
i¼1

XN
j¼1

CijEij �
X4
k¼1

f ki
� �2
2k

" #
(4)

where the contact matrix Cij = 1 if particles i and j overlap, and
zero otherwise, and the net force acting on particle i is given by

Fx
i ¼

X
jai

Cijf
x
ij þ fi

1 þ fi
3

F
y
i ¼

X
jai

Cijf
y
ij þ fi

2 þ fi
4

(5)

for i, j = 1. . .N.
Experimentally observed static configurations of frictionless

particles correspond to energy-minimizing states of the model
system. In order to create an ensemble of such configurations,
the positions of the particles are first randomly chosen inside
the unit box, and then updated by gradient descent dynamics,

numerically integrating the equations

d

dt
~xi ¼ �rE ¼ Fx

i ;F
y
i

� �
(6)

with time step Dt = 0.1, where the energy E is given in eqn (4)
and net forces on particle i, Fx

i and Fy
i , by eqn (5). The numerical

integration was stopped when the absolute values of Fx
i and Fy

i

were less than 10�7 for all i = 1. . .N particles. Fig. 1(b) and (c)
show two energy-minimizing configurations of the model sys-
tem with substantially different energies. Due to this large
range in possible energies, throughout the remainder of the
paper, the log base 10 of the energies will always be presented.

The substantially different energies in fact come from a
bimodal distribution of energies across an ensemble of minima
shown in Fig. 2 explained by the existence of both mechanically
stable jammed states and effectively zero energy unjammed or
floppy states. Numerically, mechanically stable states are iden-
tified by first recursively removing rattler particles with fewer
than three contacts before finding the eigenvalues of the
Hessian matrix for the remaining particles. If these eigenvalues
are larger than 1 � 10�12, (no zero eigenvalues) the configu-
ration is labeled jammed. If no particles remain after recur-
sively removing rattlers, the configuration is labeled floppy.

While the two configurations shown in Fig. 1(b) and (c) are
clearly distinct, the two overlayed configurations in Fig. 1(d) do
not show substantial differences in their contacts or overall
arrangement. In general a tolerance must be set to consider
numerically-found states to be distinct. Here, I take configura-
tions to be distinct if the Euclidean distance between each
numbered particle in the two configurations are all less than
10�2. Specifically, configuration (-xA,-yA) and (-xB,-yB) are unique if

(xA
i � xB

i )2 + (yA
i � yB

i )2 4 10�4 for all i = 1. . .N. (7)

Note that swapping two particles of the same size does result
in a different configuration with this definition. The tolerance
of 10�2 was chosen because it is about 10% of a particle radius.

3 Hydra string method

I review the string method15 and its climbing variant16 for
finding the minimum energy path (MEP) between two mini-
mizers of a gradient system. These are the fundamental pieces
of the hydra string method14 for exploring complex energy
landscapes. This algorithm is also summarized, and the mod-
ifications are discussed to account for rattler particles and
floppy states.

To find the MEP, the string method uses steepest descent
dynamics to evolve a curve f(a,t) parameterized by aA [0,1], the
normalized arc length. For the model granular system of
Section 2, f(a,t) is a 2N-dimensional vector of the particles’
positions. The two ends of the string, f(0,t) and f(1,t), converge
to two energy-minimizing states or can be fixed as these points
from the start. As a numerical method, finding the MEP
amounts to discretizing the string into a sequence of Ns images

of the system, fk
1; . . . ;fk

Ns

n o
where fk

j E f(( j � 1)Da,kDt).

Fig. 2 For a set of minima found by randomly choosing initial positions
for each sphere and then gradient descending to tolerance, a histogram of
energies for those determined to be ‘jammed’ vs. ‘floppy’. Jammed
configurations are determined by first removing ‘rattlers’ (particles with 2
or fewer contacts) and then requiring the eigenvalues of the Hessian
matrix to all be non-zero, within a tolerance of 1 � 10�12. Changing the
zero tolerance to 1 � 10�5 made no difference in the histogram separation
of the states. Note the histogram bars appear as slightly different colors
when they overlap.
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Here, Da = 1/(Ns � 1) and Dt is a chosen time step size. For each
time step, the images are updated independently according to a
gradient descent given by

fk+1
j = fk

j � rV(fk
j )Dt for j = 1. . .Ns. (8)

For the model granular system, �rV is the 2N vector of forces
Fx

i and Fy
i given by eqn (5) for i = 1. . .N. Then, the images are

redistributed along the string using interpolation to keep them
equally spaced in arc length. Note the output path is dependent
on the initial condition of the string in the case that there is
more than one MEP in the energy landscape.

The string method is augmented to be a saddle-point search
method by allowing one end of the string to climb uphill.16

Specifically, the uphill dynamics of the image f(1,t) are given by

qtf(1,t) = �rV(f) + n(rV(f),t̂)t̂ (9)

where (�,�) denotes the inner product, t̂ = qaf/|qaf| is the unit
tangent vector to the string, and the ‘‘climbing speed’’ n is a
parameter chosen to be greater than 1. Thus, this last image
climbs uphill on the energy surface in the direction tangent to
the string, but continues to perform steepest descent in the
directions perpendicular to the string. It therefore converges to
a Morse-index-one saddle point, i.e. one unstable direction.

In implementing this method, for each time step the last

image fk
Ns

is updated by

fkþ1
Ns
¼ fk

Ns
�rV fk

Ns

� �
þ n rV fk

Ns

� �
; t̂k

� �
t̂k (10)

where the unit tangent vector t̂ is approximated by

t̂k ¼ fk
Ns
� fk

Ns�1

� �.
fk
Ns
� fk

Ns�1
�� �� and the remaining images

for j = 1. . .Ns � 1 are updated according to eqn (8). The images
are redistributed after every iteration to keep them equally
spaced in arc length. To ensure that the found saddle point is
on the edge of the basin of attraction of the starting minimum,
the energy along the string is also computed at each time-step,
and the string is truncated if the energy is found to be non-
monotonic. Note that while faster-converging methods than
gradient descent exist for finding critical points, the string
along the minimum energy path is found by gradient
descent so not much computational speed up is expected by
switching to a faster-converging method once the pathway has
converged.

Two methods for sampling the energy landscape are
explored. Both rely on exploring the basin of attraction around
a single minimum with climbing strings searching for saddle
points. This process is described next. The two methods differ
by whether the exploring strings are sent out from distant
randomly-found energy minimizing states, or using the hydra
string method14 to obtain a more accurate and complete
sample by locally sampling the network of pathways connecting
nearby energy-minimizing states.

The method for finding saddle points on the edge of the
basin of attraction of a single minimum is as follows. From an
energy-minimizing state, multiple climbing strings with Ns = 30
images are initialized by linearly interpolating between the
energy minimizing state, and the state in which a particle is
chosen at random and perturbed an amount 0.04 in a random

Fig. 3 Example transition paths found with the climbing string starting from the same energy-minimizing state (solid black circles) followed by
continuation past the saddle point (dashed blue circles) to the energy-minimizing state on the other side of the barrier (dotted green circles). Underneath
is the energy along the string indexed by image number, which are linearly spaced in arc length along the string. Notice the scale of the y-axis: (a) low
energy barrier with minimal particle movement (b) medium energy barrier (c) high energy barrier with significant rearrangement.
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direction. This method of perturbing a single particle is chosen
as it aligns with the idea that saddle points in a granular system
are typically local rearrangements of particles. Eqn (8) and (10)
are iterated a maximum of 5 � 105 times with a step size of Dt =
0.1. Iterations are stopped when the maximum displacement of
the particles in the both the x and y directions are less than 1 �
10�7. Since each climbing string is independent, this process is
done in parallel, collecting only the climbing strings that
converged within the maximum number of iterations.

Collecting all the climbing strings that converged to a saddle
point, only a unique list of saddle points is kept by ensuring the
Euclidean distance between each numbered particle in the two
configurations are all less than 10�2, as in eqn (7). The full
pathway to the energy minimizing state on the other side of the
saddle point is found by extending the climbing string past the
saddle point in the direction tangent to the string, t̂, and then
following the dynamics of eqn (8) for each image along the
string. A maximum of 1 � 105 iterations with step size Dt = 0.1
are taken, stopping when the maximum displacement of the
particles in both the x and y directions are less than 1 � 10�7.
To avoid losing resolution, the number of images along the
string is doubled for this part. As each saddle must be com-
pared to a running list of unique saddles, and the gradient
descent dynamics are found to converge faster than the climb-
ing string, this part is done in serial.

Fig. 3 depicts three different transitions found using the
above-described method from the same minimum (black solid
line) to the saddle point (blue dashed line) to the new energy-
minimizing state (green dotted line). The evolution of the
energy along each path is shown underneath. Note the change
in scale of the y-axis; each of these transition paths starts from
the same minimum, therefore at the same (non-zero) energy as
computed with eqn (4).

There are multiple ways to quantify the distance between
states in this system. The most natural mathematical distance
would be Euclidean distance in N2 space, but this lacks physical
information about how far individual particles move. One
could look at the maximum distance any particle is displaced,
or the summed distances all the particles are displaced. How-
ever, the underlying assumption of an energy-landscaped-based
description of the system is that the energy barrier, not the
physical distance, between states impedes travel. Therefore in
this work, I find it natural to discuss nearby states based on the
number of barriers that must be crossed, which is path length
in the network representation.

The first method for exploring the energy landscape consists
of repeating the above-described procedure of finding transi-
tion paths for multiple randomly found energy-minimizing
states that are found completely independently as described
at the end of Section 2. The second method for exploring the
energy landscape, as we will see obtains a more accurate and
complete sample by locally sampling the network of pathways
connecting nearby energy-minimizing states. The hydra string
method14 starts as described above, finding unique saddle
points around an energy minimum. It then repeats the process
not from independent minima, but from the newly-found

minima, keeping a running list of the unique minima and
unique saddle points found, as well as the network of MEPs
connecting these points. Each MEP network edge connecting
two minima contains exactly one saddle on it since only Morse-
index one saddle points are found. Thus a growing network of
transition paths is found spreading out from the starting
minimum.

The resulting network from the hydra string method is
depicted in Fig. 4 when 150 minima are explored. Each node
is an explored minimum and each edge is a transition path
through a unique saddle; multiple edges between nodes indi-
cate multiple unique saddles along different transition paths.
Starting from the center node, the next ring of nodes represents
the uniquely found minima under the first iteration of the
algorithm. The third ring of nodes are new minima found when
each of the second-ring nodes are explored. Note that a few self
loops are present, and may be a result of how ‘‘the same’’ is
determined in the algorithm.

The hydra string method while developed for a model
granular system, is applicable to any gradient system. Here, I
also consider a modification to the hydra string method
specific to granular systems. One feature of granular systems
is the existence of ‘‘rattler’’ particles that have fewer than 3
contacts and thus have lateral translational degrees of freedom
leading to degenerate minimum states. If the rattler particle(s)
are in different locations, the hydra string method would
consider these different states, while really they should be
considered the same. Additionally, if all particles have fewer
than 3 contacts, then the entire system is in a zero-energy state
and is considered ‘‘unjammed’’. In both cases, the hydra string
method would spend a large time exploring and enumerating
essentially the same state over and over again. For example, the
large number of low-energy minima connected to the low-
energy (blue) minimum in the second ring in Fig. 4 could be

Fig. 4 The hydra string script is run to explore 150 minima total (taking
roughly 4.3 days on 32 cores). The resulting graph shows distinct minima
as nodes with connecting edges representing energy barriers found. The
starting-node for the algorithm is the middle node, with found connected
minima in the next ring, and so on. Connections to minima not explored
were removed for better visual clarity. The minima are colored by the log
base 10 value of their energy indicated by the colorbar.
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an example of the latter case. To account for both these cases,
the hydra string method is modified to (1) only compare non-
rattler particles to determine if states are the same and (2) only
add a new state to the list of states to be explored if it is jammed
(no zero eigenvalues of the Hessian matrix after recursively
removing rattler particles). The detailed algorithm is:
� In parallel, climb strings to first order saddle points

truncating the string if it becomes non-monotonic (leaves the
basin of attraction of the minimum). Check for convergence
and one negative eigenvalue over the entire system. Rattler
particles are included because the climbing string does not
ignore rattlers; rattlers may transition back into the jammed
backbones of the system.
� In serial, process saddle points.
– Recursively remove rattlers (fewer than 3 contacts) and

compare remaining particle locations to list of found saddles. If
configuration is unique, proceed. If not, continue to next
saddle.

– Extend the end of the string a short way past the saddle, in
the direction tangent to the end of the string. Evolve the string
with gradient descent until convergence.

– Check that the string contains only one transition. If not,
truncate and evolve again to convergence.

– Recursively remove rattlers and compare the end point
(minimum reached) to the list of found minima.

– If the configuration is unique, add minimum to list of
found minimum and if the configuration is jammed (no zero
eigenvalues of the Hessian matrix of non-rattler particles) add
to the list of minima to be explored.

– Add the edge to the list of edges and proceed to the next
saddle.
� Once all saddle points have been processed, proceed to

exploring the next minimum on the to-be-explored list.
Code is available on GitHub.23

4 Results

With any sampling technique, one would want to know if a
reasonably representative sample has been obtained. I first
present a comparison between randomly sampling distinct
minima and the hydra string network sampling technique to
argue that the hydra string method does a better job. Then, I
will discuss specific features of the granular system discovered
using the hydra string sampling method.

4.1 Random sampling vs. hydra string sampling

Fig. 5(a) shows a histogram of the energies of the minimum
states found using both random samples and with the hydra
string method. While not identical, both show the bimodal
distribution of energies expected. The hydra string method
allows for an additional check on the accuracy of the numerical
method as the same energy-minimizing state can be re-found.
In Fig. 5(b) I compare the found minima energies on the end of
the string with the starting minima energy at the start of a
different string. These points deviate significantly from the line
y = x below about 10�8, indicating these energies are not
properly resolved. This is consistent with the positions of the
particles not being resolved below 10�7 as the error in the
energy is on the order of dij

5/4e where e is the error in the
positional difference, xi � xj, and dij is typically small. The fact
that the starting end minimum is lower in energy is consistent
with the fact that it has undergone considerably more iterations
of gradient descent than the ending end minimum. Returning
to Fig. 5(a), the discrepancy between the histograms below
about 10�8 is likely due to these numerical resolution issues
rather than the sampling technique. It appears both methods
adequately sample possible minima in the system.

I proceed to investigate the sampled saddle points around
one minimum. For any high-dimensional energy landscape,
computational cost will likely prohibit finding all saddles and
transition paths. Rather I investigate if a reasonable sample of
available transition paths has been found. Fig. 6(a) shows the
number of unique saddles found surrounding different
minima with their energy plotted on the x-axis for different
parameter values. As expected, sending out 256 climbing
strings from each of the 25 independent minima (red triangles)

Fig. 5 (a) Histogram of the log 10 of the energy of the minima found
either by randomly selecting initial points for the particles and then
gradient descending until tolerance is reached or using the hydra string
method from one randomly selected minimum. (b) Comparison of the
energy of the same minimum when it appears at the start of a string vs. the
end of a string, showing energies below about 10�8 are not accurately
resolved.
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finds more unique saddle points than sending out 128 climb-
ing strings (blue circles), especially for lower-energy minima.
For comparison, 128 strings with a slower climbing speed n =
1.5 are also included (yellow plus signs) with limited effect on
the number of saddles found. I argue that a reasonable sample
means the energy barrier heights to saddle points have been
well sampled, rather than converging in the number of saddle
found. Fig. 6(b) shows that although more unique saddles are
found, the average energy barrier seen is not significantly
changed. Therefore, 128 climbing strings are sufficient to
sample available transition paths from a minimum.

Another way to assess if a reasonable sample of the energy
landscape has been obtained is to ensure there is no bias to the
energy barriers found. That is, looking at the statistics of the
outgoing energy barriers from a given minimum should be the
same as the statistics of the incoming barriers if the collection
of pathways from multiple independent minima are to represent
typical pathways across the entire landscape. Fig. 7(a) immedi-
ately shows bias in the climbing string method, as it tends to
find pathways leading to higher energy states; the outgoing
energy barrier is higher than the incoming energy barrier. This

suggests that perhaps the string is climbing too fast, preferring
higher-energy barriers. However, a reduction in the climbing
speed from n = 2 (blue circles: fully inverting the gradient in the
climbing direction) to n = 1.5 (yellow stars: half inverting the
gradient in the climbing direction, as 1 is no climbing at all)
does not noticeably change the distribution of pathways found.
This is further confirmed in Fig. 7(b) that depicts the distances
of each point in Fig. 7(a) from the line y = x, showing all three
parameter sets produce the same mean off-set indicated by the
black dotted lines that are indistinguishable. This is in sharp
contrast to the sample produced by the hydra string method
(Fig. 7c–f) that show significantly less bias. The difference is that
the hydra string sampling allows for finding pathways back to
minima that were already explored with out-going climbing
strings. As the hydra string method only samples a small local
region of the energy-landscape, many minima remain that have
only been found as end-points on pathways. Removing these
periphery minima, and only considering pathways that either
start or end at the 150 explored minima returns a non-biased
sample of pathways (Fig. 7e and f).

Overall, the hydra string method is creating a reasonable
picture of the minima and available pathways in the network by

Fig. 6 For the same 25 minima, climbing strings are sent out to compare
different parameters. (a) Scatter plot of the number of unique saddles
found vs. energy of the minimum with climbing parameters 2.0 and 1.5
(128 strings) and increasing the number of strings sent out to 256 (climbing
parameter 2.0). (b) Average energy barrier vs. energy of the minimum when
both 128 and 256 strings are sent out (climbing parameter 2.0). Error is
Monte Carlo error, std/sqrt(n).

Fig. 7 (a) and (b) For the same 25 minima, climbing strings are sent out
with three sets of parameters changing climbing parameter n and number
of strings. (a) For each transition, the outgoing and incoming energy barrier
is compared. (b) Histogram of the distance from the line y = x is plotted,
where negative indicates below the line. The solid line at 0 is shown for
reference to the dashed line at the mean distance from the line y = x. (c)
and (d) Same, but for all hydra string found energy barriers. (e) and (f) Same,
but only considering energy barriers from the hydra string method that
start or end at the 150 explored minima.
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performing a detailed sampling of one region, as opposed to
independently sampling pathways around one minimum but
picking minima from different areas on the energy landscape.

4.2 Granular energy landscape

Having established a method for sampling minima and transi-
tion pathways, I now show some features of the simple granular
system’s energy landscape. First, I switch to using the aspects of
the hydra string method developed specifically for granular
systems. Notably removing rattler particles before determining
if states are the same and further testing if the system is
jammed. Due to the degeneracy of minima for floppy unjammed
states, only minima that are jammed are further explored with
the hydra string method. The resulting network of explored
minima is shown in Fig. 8, with floppy states shown as triangular
nodes and jammed states as circular nodes.

One feature of the energy landscape revealed in Fig. 7(c) and
(e) is that neighboring minima must have similar magnitudes
of energies, as the incoming and outgoing energy barriers are
clustered around the line y = x. The minima on both sides of a
pathway must have comparable energies, as their difference

corresponds to the difference between the forward and back-
ward energy barriers (provided the barriers are not too much
larger than the energies, which is validated next). To quantify
this similarity, I take the correlation of the minima energies
separated by the same path length in the network. The path
length is the smallest number of edges that must be traversed
to transit between two nodes. This correlation is plotted in
Fig. 9 and shows the correlation remains until about path length
4. Note that the larger path lengths 8 and 9 appear less
frequently in the sampled network and are subject to sampling
error. This suggested the energy landscape might have some
structure, like ‘islands’ of jammed states at higher energies
surrounded by a ‘sea’ of floppy states at numerically zero energy.

Not only are the energies of neighboring minima correlated, but
the energy barrier heights are correlated to the energy of the
minimum. In Fig. 10 each histogram of energy barrier heights is
formed from outgoing transition paths from minima with energy
within the bin whose center is given by the text in the panel. There
is a decrease and also spreading of energy barrier heights as the
energy of the minima decreases. In fact, the mode of the histogram
appears to be about equal to the minimum energy bin. Since this is
a log 10 scale, this is similarity in order of magnitude. Perhaps one
expects that a more tightly packed system (higher minimum
energy) would require changes on that same order of magnitude
to make small rearrangements of the particles to new states.

5 Conclusions

I have demonstrated that sampling the space of possible
transitions for a high-dimensional energy landscape is better
accomplished with a detailed sampling of a local area, forming
a network of minima connected by minimum energy paths with
the hydra string method. Bias towards higher-energy barriers
potentially introduced by the climbing string method is
removed with this method allowing for the discovery of new
transition paths that arrive at previously-explored minima. This
also provides a network representation of the energy landscape,
with the energy-minimizing states as nodes and the minimum
energy transition pathways between states as edges.

I demonstrated how this method reveals new features of an
experimentally-based 19-particle granular system. Energy bar-
riers between neighboring states appear correlated to the
energies of the states themselves, leading to correlations
between state energies that decay as a function of path length
on the network. Unjammed states have zero energy, and
surround the ‘rugged mesas’ of higher energy jammed states.

The computational costs will increase as the number of
particles increases, as will the number of unique saddles
surrounding a given minimum. The latter is likely to add little
additional computational cost, as the method seeks to sample
the distribution that these saddles form rather than exhaus-
tively enumerate them. However, this does rely on the assump-
tion that extremely rare saddles or pathways are not the driving
mechanism behind the physical behavior of a granular
material.

Fig. 8 Hydra string method, comparing non-rattler particles to determine
‘‘same’’ and only exploring mechanically jammed states. Triangles indicate
floppy states. The colorbar indicates the log of the energy of the state.

Fig. 9 The correlation of the log 10 of the energy of nodes in the network
as a function of their shortest path-length separation.
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Even with the 19-particle system studied here, there are
many features of the energy landscape that can still be
explored. For example, the transitions shown in Fig. 3 seem
to indicate that higher energy barriers between states involve

more particles moving. One could build on this by looking for
pathways between states that minimize either particle move-
ment or summed energy barrier crossings, rather than mini-
mizing the number of barriers crossed (path length). This could

Fig. 10 For the energy barriers found using the hydra string method resulting in the network depicted in Fig. 8, histograms of the energy barrier sizes are
created after grouping the starting states’ energy into bins with centers indicated by the text in each plot. The y-axis indicates the frequency of energy
barriers given that the starting minima fell into the given plot’s range.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ac
 2

02
5.

 D
ow

nl
oa

de
d 

on
 4

/0
2/

20
26

 8
:2

0:
41

 P
T

G
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sm01337a


4848 |  Soft Matter, 2025, 21, 4839–4848 This journal is © The Royal Society of Chemistry 2025

allow for an exploration of how ‘close’ any given state is to a
failure event, which in the small model system considered here
is a transition to an unjammed state. As the disk sizes increase,
one might expect a given state to become farther from an
unjammed state until no unjammed states are possible. Thus
studying the energy landscape could be a way to examine how
far a system is from the jamming point, together with some
notion of distance be it Euclidean distance, transition path
length, or something else.

Data availability

The code is publicly available on GitHub, as indicated in the
manuscript.
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