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Accelerating multi-species field-theoretic
simulations using Bayesian optimization

Ritvind Suketana, Andrew Golembeski and Joshua Lequieu *

Field-based simulations can be challenging in multi-component polymer systems and are highly sensitive

to the choice of relaxation coefficients (λ) used in the field update algorithms. Judiciously chosen relaxation

coefficients are critical for both the stability and convergence of field-based simulations, yet their selection

is challenging when the number of unique chemical species in the system is large. In this work, we develop

a new method to automatically and efficiently locate optimal relaxation coefficients in systems with large

numbers of species. We begin by analyzing the effects of relaxation coefficients in two- and three-species

systems and demonstrate that regions of high-performance are both narrow and system-specific. Based

on these findings, we next develop a method based on Bayesian optimization that automatically locates

relaxation coefficients that are stable and exhibit good performance. We demonstrate that our method is

considerably faster than naive search methods and becomes particularly efficient as the system complexity

increases. This work demonstrates that Bayesian optimization can be used to stabilize and accelerate field-

based simulations that contain many different chemical species.

1 Introduction

Simulations based on polymer field theory are widely used to
examine the properties of polymeric materials. In these
methods, a particle-based model is first converted into a
statistical field theory and is subsequently analyzed using
numerical simulation.1–3 The mathematical structure of
statistical field theories are particularly well-suited for the
simulation of polymers and so field-based simulations tend
to become more efficient as the polymers become long and
as the system density increases.1 The mathematical structure
of these methods also enable direct access to the free energy4

and can efficiently handle long-ranged coulombic

interactions without requiring Ewald-based methods.5,6 As a
consequence, field-based simulations can be many orders of
magnitude faster than particle-based simulations, despite
giving identical results.7,8 The two most common variants of
these methods are self-consistent field theory (SCFT), which
invokes a mean-field approximation, and field-theoretic
simulations (FTS), which directly sample the statistical field
theory without any simplifying approximations.

Most prior studies using field-theoretic simulations have
employed models that contain only two species or bead types,
typically denoted by A and B. In the majority of these past
models, these two species interact through a Flory–Huggins
parameter χ and require two auxiliary fields to decouple the
pairwise interactions: a pressure-like field w+ and an
exchange field w−. Field-theoretic simulations of these
models have been extensively used to examine the self-
assembly of homopolymers, block polymers and blends
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Design, System, Application

Field-theoretic simulations (FTS) and self-consistent field theory (SCFT) are powerful tools for probing the phase behavior of multi-component polymer
systems, but their efficiency and stability is highly sensitive to the choice of numerical relaxation coefficients used to evolve the auxiliary fields. In this
work, we introduce a Bayesian optimization framework to systematically identify optimal relaxation coefficients that accelerate convergence and improve
numerical stability. By combining field-based polymer models with surrogate modeling and adaptive parameter tuning, our approach dramatically
reduces simulation cost, even in high-dimensional systems with ten or more distinct components. We demonstrate broad utility across both SCFT and
FTS, including systems with explicit solvents. Our workflow is broadly applicable to polymer physics, biomolecular design, and coarse-grained modeling
efforts where field-based methods are used. Looking forward, this approach enables high-throughput exploration of chemically specific systems and
introduces a general framework for intelligent parameter tuning in field-based simulations of systems that are otherwise challenging or impossible to
simulate.
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thereof.5,9–17 Another commonly employed model instead
permits these two monomers to carry charges and to interact
through coulombic interactions.6,18–20 Field-theoretic
simulations of this model have been used to examine a
variety of polyelectrolytes and polyampholytes and also
require two fields: an auxiliary field w to decouple the
excluded volume interactions and an electrostatic field φ to
decouple the electrostatic interactions.

In recent years, there has been a considerable effort to
extend field-theoretic simulations to systems that contain
more than two species. One of the primary motivations for
these efforts is that multi-species FTS can incorporate more
chemical specificity than traditional two-species FTS. For
example, whereas each species in traditional FTS typically
represents a monomer or collection of monomers, each
species in a multi-species FTS can now represent a collection
of atoms or distinct chemical groups. This allows multi-
species FTS to incorporate more chemical information and
can result in models that are increasingly predictive.
Fredrickson, Shell and co-workers have recently developed a
powerful approach to parameterize molecularly informed
field theories using atomistic particle-based simulations.21,22

Multi-species field-based simulations parameterized using
this approach have been used to examine surfactant phase
behavior,23 the critical micelle concentration of intrinsically
disordered proteins,24 cellulose acetate solubility,25 and block
copolymer solution self-assembly.26 Independent work by Pert
et al. have also used multi-species field-based simulations to
examine the morphologies formed by mRNA encapsulating
nanoparticles.27

One of the major challenges with multi-species field-based
simulations is that they can be difficult to numerically
stabilize. Most existing multi-species field-based simulations
rely on the framework developed by Düchs, Delaney and
Fredrickson28 where the pairwise interaction matrix is
diagonalized to determine the fields that will decouple the
interactions within the model. A challenge with this
approach is that most polymeric models result in a spectrum
of eigenvalues that is very broad, which can lead to numerical
challenges in the resulting simulations. The most common
solution to this problem is to empirically tune the rate at
which different fields are updated so that the fields
associated with different eigenvalues are updated more or
less quickly.28,29 While this empirical tuning can be tolerated
if a small number of species are present, it becomes
increasingly burdensome as the number of species within the
system grows larger. Other strategies for handling these
numerical difficulties are to ignore the effects of fluctuations
by only focusing on SCFT,23–26 or to avoid numerical
simulations altogether and to analyze multi-species field
theories analytically.21,22 As a consequence of these numerical
challenges, past work on fully-fluctuating FTS with many
different species is still relatively rare.8,27

In this paper, our first objective is to explore why multi-
species field-based simulations are difficult to stabilize
numerically. To explore this question, we build on past

work28,29 that focused on tuning the relaxation coefficients of
the different auxiliary fields in order to enhance simulation
performance. We first comprehensively examine a two-
species system to examine the effects of polymer connectivity
(e.g. diblocks vs. homopolymer blends), morphology (e.g.
lamellar vs. gyroid phases), and fluctuations (e.g. SCFT vs.
FTS). Our analysis shows that the qualitative effects of
relaxation coefficients are generally conserved across these
different systems. We next extend our analysis to multi-
species systems and show that the effect of relaxation
coefficients depends strongly on the interactions between the
different species. Notably, we show that even if the
eigenvalues of the interaction matrix are identical, the
underlying effect of relaxation coefficients can still be quite
different.

From these findings, we then turn to our second objective
where we seek an automated strategy that can optimize the
stability and performance of multi-species SCFT and FTS. We
demonstrate that Bayesian optimization (BayesOpt) is
particularly well-suited for this task and can be used to
efficiently locate both stable and high-performing relaxation
coefficients for SCFT and FTS. A key finding from our
analysis is that tuning our BayesOpt implementation is
critical for achieving good performance: the choices of
surrogate model initialization, kernel, acquisition function
and objective function all have a significant impact on overall
performance. Nonetheless if these subtleties are accounted
for, BayesOpt can lead to orders of magnitude improvements
in multi-species SCFT and FTS performance. In summary, the
strategy that we have presented here can both stabilize and
accelerate multi-species SCFT and FTS and is envisioned to
be useful as field-based methods are extended to systems
with increased chemical specificity.

2 Methods
2.1 Multi-species exchange model

To perform field-based simulations, we use a slightly
modified version of the multi-species exchange model of
Düchs, Delaney and Fredrickson28 that includes both
Gaussian regularization30,31 and discrete polymer chains. Our
model involves n total polymer molecules in a volume V at
temperature T. Each polymer molecule of type m has nm
indistinguishable copies and each polymer molecule is
composed of Nm covalently bonded beads. Each bead is
chosen from a total of S species types (or bead types) within
the system. In addition to bonded interactions, beads of type
i and j interact through a Flory–Huggins interaction
parameter χij, and a Helfand compressibility parameter ζ.

One key difference between our model and the multi-species
exchange model of Düchs, Delaney and Fredrickson28 is that we
regularize our model using a Gaussian smearing function.30,31

Formally, this approach involves a convolution of the density of
each species K with a Gaussian distribution function, ΓK(r) =
(2πa2K)

−3/2exp[−r2/(2a2K)], in order to convert the microscopic
species density K(r) into a smeared microscopic species density
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ρ̆K rð Þ ¼Ðdr′ΓK r − r′ð ÞK r′ð Þ ¼ ΓK*K , where K = {1, …, S} and *
denotes a spatial convolution. Once these smeared densities
have been defined, the non-bonded energy within the system
becomes

βUnb ¼ 1
2ρ0

XS
i; j¼1

ð
V
d3rρ̆i rð Þχij ρ̆j rð Þþ ζ

2ρ0

ð
V
d3r

XS
j¼1

ρ̆j rð Þ − ρ0
 !2

(1)

where β = 1/kbT, kb is the Boltzmann constant and

ρ0 ¼
PM
m
nmNm=V is the total density of the system. Bonded

interactions are represented using harmonic bonds so that the
total bonded energy of the system is

βUb ¼
XM
m¼1

Xnm
i¼1

XNm−1

j¼1

3
2b

r m;ið Þ
j;jþ1

� �2
(2)

where r(m,i)
j,j+1 is the spatial separation between the j and j + 1 bead

of the ith copy of molecule type m and b is the statistical
segment length corresponding to that bond.

By following the approach described in ref. 28, this model
can exactly be converted into a field theory,

(3)

where μ = {μ1, μ2, …, μS} contains S newly introduced
auxiliary fields and the prefactor is slightly modified from
the expression in ref. 28 to account for our use of discrete
Gaussian chains.3,8 H[μ] is a field-theoretic Hamiltonian
given by

H μ½ � ¼ C −
XS
i¼1

ζNð Þ− 1
2

2Λi

ð
V ̃
d3rμi

2 rð Þ
"

(4)

−
XS
i; j¼1

Oji

Λi ζNð Þ−1
2
×
ð
V ̃
d3rμi rð Þ −V ̃

XM
m¼1

m

αm
lnQm Ω½ �

#

where C = ρ0Rg
3/N is a reduced chain density, Ṽ = V/Rg

3 is a
reduced volume, m = nmNmV/ρ0 is the volume fraction of
molecule m, αm = Nm/N is a normalized chain length, and Rg =
b((N − 1)/6)1/2 is the unperturbed radius of gyration of a chain
consisting of N beads and statistical segment length b. In this
equation, Λi are eigenvalues of the S × S matrix

X ¼ χN ζNð Þ − 1
2 þ ζNð Þ121

� �
where 1 is an S × S matrix with all

entries equal to 1. The eigenvalues of X are contained in the
columns of the S × S matrix O with elements Oij and correspond
to the linear transformation from the exchange fields μ to the
species fields Ω. In this work, we only consider matrices X where
all eigenvalues are non-zero and non-degenerate. For zero-valued
or degenerate eigenvalues, extra considerations are required.3,8,28

The final term to be specified in eqn (4) is Qm, the single-
chain partition function of molecule m. Qm is a functional of
the species fields Ω = {Ω1, Ω2, …, ΩS}

ΩK rð Þ ¼ ΓK*
XS
j¼1

OKjμj rð Þ

for K = 1, …, S and is defined as

Qm Ω½ � ¼ 1
V ̃

ð
V ̃
d3rqm;Nm

r; Ω½ �ð Þ:

In this expression, qm,j(r) is the propagator corresponding to
the statistical weight for a molecule m at bead index j at
position r for fields Ω and is calculated from a Chapman–
Kolmogorov equation as described elsewhere.1,3

To sample the field-based partition function in FTS, field
configurations for each exchange field μi(r) are evolved in
fictitious time t using complex Langevin32,33 (CL) dynamics,

∂μi r; tð Þ
∂t ¼ −λiγ2i

δH μ½ �
δμi r; tð Þ þ γiηi r; tð Þ

where

γi ¼
1; Λi < 0ffiffiffiffiffiffiffi
− 1

p
; Λi > 0

�

and ηi(r, t) is Gaussian white noise with moments 〈ηi(r, t)〉 = 0

and 〈ηi(r, t)ηi(r′, t′)〉 = 2λiδ(r − r′)δ(t − t′). Eqn (7) can also be
used to locate mean-field configurations (i.e. SCFT) by setting
ηi = 0. The parameter λi in eqn (7) corresponds to the real
relaxation coefficient of the ith field.

An important aspect of eqn (7) to emphasize is that the
CL dynamics are not physical and simply correspond to a
numeric scheme to sample field configurations μ according
to the weights exp(−H[μ]). As a consequence, the relaxation
coefficients λ = {λ1, λ2, …, λS} are not constrained to any
specific physical values and can instead be tuned to obtain
optimal sampling performance. One of the central objectives
of this work is to develop tools that can automatically tune
these relaxation coefficients for systems with many
components. This approach will be discussed extensively in
section 3.

In order to numerically integrate eqn (7) we use a
Euler–Maruyama predictor–corrector (EMPEC) algorithm
which has second order accuracy in fictitious time. The
EMPEC algorithm first conducts a predictor step which
calculates a preliminary guess for the update field at time
t̃. This is followed by a corrector step which refines the
field update by averaging the forces evaluated at the
current step and the predicted step. The same noise ηi(t)
is used in both steps28,29

μi r; t ̃
� � ¼ μi r; tð Þ − λiΔtγ2i

δH μ½ �
δμi r; tð Þ þ γiηi r; tð Þ

μi r; tþ Δtð Þ ¼ μi r; tð Þ − λiΔtγ2i
2

δH μ½ �
δμi r; tð Þ þ

δH μ½ �
δμi r; t ̃
� �

 !
þ γiηi r; tð Þ

where Δt is the timestep. In this expression, the product
λiΔt governs the rate at which exchange field μi is

(7)

(8)

(9)

(6)

(5)
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updated. In our convention, we have chosen a constant
timestep Δt for all fields, and have varied the λi for each
field individually.

For all simulation in this work we use ζN = 100, smearing
length a = 0.15Rg, reference chain length N = 100, chain
number density C = 10, and statistical segment length b = 1.
The timestep Δt is held fixed at 1.0 for SCFT and at 0.02 for
FTS. All SCFT and FTS were performed using an in-house
software called OpenFTS.

2.2 Quantification of SCFT/FTS performance

Throughout this work, one of our central objectives is to
quantify the performance of SCFT and FTS and how this
performance can be optimized by tuning the relaxation
coefficients λ. In SCFT, performance is quantified by the
number of timesteps required to converge the field
configuration to a saddle point within an error of δH[μ]/δμi <
10−5 for i = {1, …, S}. Since the dynamic evolution of the
fields in SCFT is typically unimportant, optimal performance
in SCFT is achieved by locating a saddle point in as few
timesteps as possible.

In FTS, the objective of the simulation is to instead
stochastically sample field configurations so that time
averages of field-based operators converge to their
equilibrium values. Since field-based operators at
subsequent timesteps will typically be correlated, optimal
performance in FTS is achieved by minimizing the
number of timesteps required to obtain decorrelated
samples of different field-based operators. Throughout this
work, we quantify the performance of FTS by measuring
the autocorrelation time of the excess chemical potential
operator (Fig. S2). Shorter values of the correlation time
in FTS correspond to better simulation performance. In
the discussion of our results below, we denote both the
performance of SCFT (i.e. timesteps to converge to a
saddle point) and the performance of FTS (i.e.
autocorrelation time) as P(λ), where the dependence of
simulation performance on the relaxation coefficients λ is
explicit.

In both SCFT and FTS, the performance will depend on
the field configurations used to initialize the simulation. For
SCFT, we use initial field configurations from a converged
simulation at slightly different interaction parameters χ. For
consistency throughout the many systems considered in this
work, we evaluate SCFT performance using interactions
parameters χN that are multiples of five using initial field
configurations obtained using interaction parameters that
are multiples of four. For example, when evaluating the
performance of a simulation at χN = {5, 15, 20} we initialize
these simulation using converged fields for χN = {4, 12, 16}.
When initializing FTS, we first converge fields using SCFT for
the given interaction parameters and then perform FTS on
those fields until all operators reach their equilibrium values.
Once equilibrium is reached, we then calculate the
correlation time.

All SCFT calculations, excluding those for the double
gyroid, are performed in a one-dimensional (1D) box with a
length of 6Rg and 64 plane waves (M). The double gyroid
simulations are run in a three-dimensional (3D) cubic box
with length 9.6Rg and M = 64.3 SCFT is run until the
summation of field forces over all fields is below 10−5 or for a
maximum of 1 500 000 time steps—1.5 times the steps
required for the slowest relaxation coefficients to converge.
FTS is run in a 3D cubic box with a length of 6Rg and M =
48.3 Only macrophase separating homopolymer blend
systems are explored using FTS. When evaluating different
relaxation coefficients, each λi is selected from 30
logarithmically spaced points ranging from 0.001 to 100.
Further details are provided in the SI.

2.3 Bayesian optimization

We use Bayesian optimization (BayesOpt) to automatically
tune the relaxation coefficients λ in order to achieve optimal
SCFT and FTS performance. In our BayesOpt
implementation, we use a Gaussian process regression
surrogate model and an expected improvement acquisition
function.34,35 Our objective function is defined as (P(λ))−1 and
is normalized to the range of zero to unity using the
minimum and maximum measured values of (P(λ))−1. Since
optimal performance of SCFT/FTS corresponds to small
values of P(λ), we seek to maximize this objective function.

While BayesOpt is a widely applied method, our specific
application of BayesOpt led to some challenges that warrant
additional discussion. The first challenge is that many values
of the relaxation coefficients, λ, result in simulations that are
divergent or that do not converge (see Fig. 1 and 2). Since a
nonconvergent simulation corresponds to performance P(λ)
≈ ∞, the objective function is rugged and contains many
sharp features. We find that it can be challenging to
approximate these sharp features with a Gaussian process
surrogate model. A related challenge is that the optimal
relaxation coefficients λ* are often in the immediate vicinity
of these non-convergent regions and so the incorporation of
these sharp features into the surrogate model are critical for
good BayesOpt performance. By empirically varying many
aspects of our BayesOpt implementation, we find that both
these challenges could be addressed by using a suitably
tuned Matern kernel,36 an acquisition function that favored
exploitation,37 and a dynamically adjusted penalty associated
with nonconvergent trajectories (see SI).

We also faced challenges with our BayesOpt
implementation when we extended it to systems containing
large numbers of species. In our BayesOpt implementation,
the memory required to evaluate the acquisition function
scales exponentially with the number of species in the
system. As the number of species becomes large, this scaling
can result in memory requirements exceeding 100 GB that
preclude the use of our typical computational hardware. In
order to overcome the memory requirements of these
systems, we use an adaptive BayesOpt scheme where the
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range of the surrogate model is dynamically updated as the
optimization proceeds (see SI). We find that our adaptive
BayesOpt performs similarly to our original BayesOpt
implementation despite using a fraction of the required
memory (Fig. S7). Throughout this work, we use our
adaptive BayesOpt for systems containing more than five
species.

We also find that the relaxation coefficients λ used to
initialize the surrogate model are extremely important for
BayesOpt performance. Notably, the performance of
BayesOpt suffered when it was initialized with conventional
schemes such as randomly selected or space-filling
relaxation coefficients. After trying numerous initialization
schemes, we found that choosing relaxation coefficients that
were proportional to the square root of the absolute value of
that field's eigenvalue tended to give the best BayesOpt
performance. Specifically, the initial relaxation coefficients
are λi = α|Λi|

1/2, where Λi is the eigenvalue defined in eqn
(4) and α is a randomly selected proportionality constant
that is the same for all fields i. One of the primary
advantages of this approach is that the initial relaxation
coefficients are chosen along a one-dimensional line, even if
the overall dimension of the search space for λ is much
larger. By initializing our surrogate model in this way, we
are able to efficiently locate convergent relaxation
coefficients that can be subsequently refined using
BayesOpt. Additional details of our BayesOpt
implementation are provided in the SI.

3 Results and discussion
3.1 Effect of relaxation coefficients on SCFT/FTS performance

To demonstrate the importance of the relaxation coefficients
λ on simulation performance, we first examine several simple
two species systems consisting of either neat diblock
copolymers or homopolymer blends. We begin with these
simple systems because the simulations are very efficient and
enable us to exhaustively examine the role of relaxation
coefficients λ on SCFT/FTS performance. We will consider
systems of higher complexity in subsequent sections.

We begin by examining the number of timesteps required
by SCFT to converge a diblock copolymer double gyroid
phase for different relaxation coefficients λ = {λ1, λ2} (Fig. 1A).
In these calculations, the A block fraction fA = 0.34, the
segregation strength χN = 30, number of plane waves M = 643

and the initial fields are obtained from a converged unit cell
at χN = 20 and fA = 0.37. From these calculations, we observe
a wide variation in timesteps to convergence with respect to
the relaxation coefficients λ (Fig. 1A). The performance of
SCFT ranges from poorly performing relaxation coefficients
that require greater than 106 timesteps to the best
performing relaxation coefficients λ* = {14.2, 14.2} that
converge in 140 timesteps. Moreover, many relaxation
coefficients never yield a converged SCFT solution, either due
to numeric instabilities (i.e. divergent trajectories) or the
inability to reduce field errors beneath the prescribed
threshold of 10−5. It is also noteworthy that the optimal

Fig. 1 Effect of relaxation coefficients λ = {λ1, λ2} on SCFT and FTS performance for various two-species systems. (A) SCFT performance for a
gyroid-forming diblock copolymer melt. (B) Comparison of SCFT performance for different polymer architectures (i.e. diblock vs. homopolymer
blends) and microphases (i.e. lamellar vs. gyroid). (C) FTS performance for a homopolymer blend. Detailed trajectories for two values of λ (red X
markers) are given in Fig. S2. (D) Stability boundaries of SCFT and FTS for a homopolymer blend. Dotted lines correspond to λ1 = λ2.
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relaxation coefficients λ* that give the best SCFT performance
are immediately adjacent to these non-convergent relaxation
coefficients.

In order to understand whether our findings in Fig. 1A
generalize to other systems and conditions, we also examine
the influence of relaxation coefficients on SCFT performance
for a lamellar-forming diblock copolymer melt ( fA = 0.5, χN =
30) and a symmetric two component homopolymer blend
with  = 0.5 and χN = 30 (Fig. 1B). These calculations are
initialized from converged SCFT simulations at χN = 20 and
fA = 0.5 for the diblock, and at χN = 20 and A = 0.5 for the
homopolymer blend.

In general, our observations for the gyroid phase are very
similar to our observations for the lamellar phase and the
homopolymer blend: the optimal relaxation coefficients λ*
are many orders of magnitude faster than the poorly
performing relaxation coefficients and the optimal relaxation

coefficients λ* are adjacent to non-convergent relaxation
coefficients. Furthermore, the general shape of the region
containing convergent relaxation coefficients is essentially
unchanged across these three different systems (Fig. 1B). It is
also noteworthy that the general shape of these convergent
regions is minimally affected by the convergence tolerance
used in SCFT (Fig. S9).

We are also interested in how the choice of relaxation
coefficients affect the performance of FTS (Fig. 1C). In our
analysis, we consider a homopolymer blend with A = 0.5, χN
= 30 and quantify the performance of FTS using the
correlation time of the chemical potential operator (see
Methods). In order to obtain accurate correlation time
measurements when the relaxation coefficients λi are small,
all simulations are run for 320 000 timesteps. Additionally, to
account for the stochastic nature of FTS, three independent
replicas are performed for every combination of relaxation

Fig. 2 Effect of relaxation coefficients λ = {λ1, λ2, λ3} on SCFT performance for a three-species homopolymer blend. (A) Complete three-
dimensional representation of SCFT performance for interaction parameters χABN = 15, χBCN = 20 and χACN = 15. Two different orientations of the
performance space are presented. The dotted black line denotes points where λ1 = λ2 = λ3. (B) Representative two-dimensional slices of SCFT
performance for fixed values of λ2Δt. Note that the colors of the cross-sections correspond to the marker colors in the complete representation.
The white star denotes points where λ1 = λ2 = λ3. (C) For different interaction parameters χABN = 5, χACN = 10 and χBCN = 15, the three-dimensional
representation of SCFT performance (left) and corresponding two-dimensional slices of SCFT performance for fixed values of λ2Δt. Changes to the
interaction parameters affect the performance of relaxation coefficients λ and therefore the location of their optimal value λ*.
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coefficients and the mean correlation time is reported. If one
or more replicas diverge before completing the total number
of timesteps, then the corresponding relaxation coefficients
are classified as non-convergent.

The performance of FTS is qualitatively similar to our
results for SCFT in Fig. 1A and B. A notable difference
between SCFT and FTS is that FTS requires values of λΔt that
are approximately 50 times smaller than for SCFT (Δt = 0.02
for FTS, 1.0 for SCFT). Another difference is the less
pronounced optimal region for FTS whereas SCFT has a
sharply peaked region of optimal performance. Both of these
differences associated with FTS are not surprising given the
numeric challenges associated with integrating the stochastic
CL dynamics in FTS, which require smaller timesteps and
lead to broader optimal parameter regions due to the
increased sensitivity to stochastic fluctuations as the
relaxation coefficients increase. Nonetheless, if the different
timesteps required by SCFT and FTS are accounted for, then
the effects of λ on the stability of SCFT and FTS are largely in
agreement (Fig. 1D).

A more subtle difference between SCFT and FTS is that
equal-valued relaxation coefficients λ1 = λ2 are generally
convergent in SCFT (Fig. 1A) but are unstable in FTS
(Fig. 1C). It is also noteworthy that the optimal relaxation
coefficients generally occur when λ1 ≈ λ2 in SCFT, but for λ1
≠ λ2 in FTS. This observation underscores the difficulty of
running efficient FTS compared to SCFT and is reasonable
given the presence of fluctuations in FTS.

Taken together, our results in Fig. 1 demonstrate that
tuning the relaxation coefficients λ is critical for both SCFT
and FTS performance and that the choice of optimal
relaxation coefficients λ* can lead to simulations that are
orders of magnitude faster. We also demonstrate that the
general effects of relaxation coefficients on simulation
performance are qualitatively similar across different systems
and simulation techniques. This overarching similarity
suggests that an approach to optimize the relaxation
coefficients in one context will likely be applicable to other
contexts as well. In particular, it motivates a general-purpose
strategy for optimizing the relaxation coefficients in SCFT/
FTS. The goal of this paper is to describe such a strategy that
can efficiently locate these optimal relaxation coefficients λ*.
However, before we do this, it is useful to consider how the
optimal relaxation coefficients λ* change as the number of
species in the system increase beyond two.

3.2 Challenges in systems with many species

Now that we have established the importance of the
relaxation coefficients λ in two-species systems, we turn to
more complex systems that contain additional species. As we
will demonstrate, for systems that contain three or more
species, there are several additional complexities that make it
more challenging to locate the optimal relaxation coefficients
λ*. In the analysis and discussion that follows, we will focus
on systems that contain three species but our findings are

anticipated to be generally applicable to any systems whose
total number of species exceeds two.

One of the most obvious complexities that emerges from a
three-species system is that three distinct exchange fields are
now necessary to decouple the non-bonded interactions in
the model. This now results in three relaxation coefficients λ

= {λ1, λ2, λ3} and thus a higher dimensional space to search
over in order to locate the optimal relaxation coefficients λ*.
A more subtle, but nonetheless important, consequence of
moving to three-species systems is that the mapping from
the exchange fields μ to species fields Ω now depends on the
interaction matrix χ. In order to illustrate this dependence, it
is helpful to first consider a two species system where χ = χ12.
For this two species system, the X matrix becomes

X ¼ ζNð Þ1=2 ζNð Þ1=2 þ χN ζNð Þ− 1=2

ζNð Þ1=2 þ χN ζNð Þ− 1=2 ζNð Þ1=2

 !
(10)

whose eigenvectors are the columns of O where

O ¼ 1ffiffiffi
2

p − 1 1

1 1

� 	
:

A noteworthy feature of this two species system is that the
eigenvectors contained in O are independent of interaction
parameters χ. Since O corresponds to the linear transform
between the exchange fields μ and the species fields Ω, this
independence means that the definition of the species fields
in a two species system is always the same, independent of
how the different species interact. This is one reason why the
effects of the relaxation coefficients λ on system performance
for the two species system are largely independent of
interaction parameters (Fig. 1).

For systems with three or more species, this independence
is lost and the mapping between the exchange fields μ and
the species fields Ω will now depend on the interaction
parameters χ. As a direct consequence of this
interdependence, the relaxation coefficients λ will now
depend on the interaction parameters χ. This means that it is
generally more challenging to identify stable relaxation
coefficients λ in systems with three or more species than in
systems that contain only two.

In order to illustrate these challenges, we first examine a
three component homopolymer blend consisting of polymers
A, B and C, with volume fractions A = B = 0.33, C = 0.34,
and interaction parameters χABN = 15, χBCN = 20 and χACN =
15. To keep calculations computationally tractable, our
analysis will focus on SCFT, however, we expect qualitatively
similar results if the analysis were instead performed using
FTS (cf. Fig. 1D). In order to visualize the impact of relaxation
coefficients λ for this system, we plot two different
orientations of the complete three-dimensional data (Fig. 2A)
and several two-dimensional slices at fixed values of λ2Δt
(Fig. 2B). At least qualitatively, the effect of relaxation
coefficients λ for this three species system is similar to our
results for two species systems discussed above (Fig. 1). As
with the two species systems, the performance of SCFT varies
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widely with respect to λ, with poor performing λ requiring
close to 106 timesteps for convergence, while the optimal λ*
= {9.2, 13.7, 32.3} converges in just 80 timesteps. The region
of stable λ also narrows as λi values increase, resulting in a
small region of optimal performance with the optimal
relaxation coefficients λ* located immediately adjacent to
non-convergent regions. It is also noteworthy that most λ fail
to yield a converged SCFT solution.

Yet beyond these qualitative similarities to the two species
systems, this three species system also contains additional
complexities that make it more challenging to identify
efficient relaxation coefficients λ. For example, in contrast to
the two species system discussed in Fig. 1, this three species
system does not converge if all relaxation coefficients are
equal such that λ1 = λ2 = λ3 (Fig. 2A, dotted black line). This
suggests that the tuning of relaxation coefficients for
different exchange fields is essential for achieving stable
SCFT/FTS of systems with more than two species. Another
complexity is that the region of optimal relaxation
coefficients is much narrower (Fig. 2B) and only exists for a
small range of relaxation coefficients λ. This narrow region of
optimal performance can result in over an order of
magnitude increase in performance (e.g. Fig. 2B, λ2Δt = 0.08
versus λ2Δt = 13.7) and so there is a considerable
computational benefit if this narrow region can be found.

Lastly, and perhaps most significantly, the performance of
different relaxation coefficients in this three species system
now depends on the interaction parameters χ. To illustrate
this dependence, we have recomputed the performance of
SCFT for this same three species system with slightly
different interaction parameters χABN = 5, χACN = 10 and χBCN
= 15 (Fig. 2C). This change in interaction parameters has a
significant effect on the role of different relaxation
coefficients and where the optimal relaxation coefficients
might be found.

These results and the others presented in Fig. 2
collectively demonstrate the challenges of locating stable and
high-performing relaxation coefficients in systems that
contain three (or more) unique chemical species. In our
treatment so far, we were able to locate these optimal
relaxation coefficients through brute force sampling: we
discretized the range of relaxation coefficients, explicitly
performed simulations at each of these different relaxation
coefficient values and then quantified the simulation
performance. Since the overall search space increases
exponentially with the number of species, this brute force
approach quickly becomes intractable as the number of
species increases beyond three. It is therefore of great
interest to develop methods that can locate these optimal
relaxation coefficients without brute force sampling.

One particularly attractive strategy would be to use a
closed-form expression to determine the optimal relaxation
coefficients from the interaction parameters χ. For example,
Düchs, Delaney and Fredrickson28 previously suggested that
the eigenvalue magnitude |Λi| might be related to the
optimal relaxation coefficient λ*i of that field. Yet, Düchs,

Delaney and Fredrickson28 also demonstrated that non-linear
couplings between different fields through the lnQm term in
eqn (4) makes this scheme too simplistic to yield optimal
relaxation coefficients in practice. We also examined the
possibility of closed-form predictions of the optimal
relaxation coefficients but were unable to identify any general
purpose approach that reliably worked for multi-species
systems. In our analysis, we found that the closed-form
prediction of relaxation coefficients is complicated by the fact
that the optimal relaxation coefficients can vary for systems
with different interaction parameters χ but equivalent
eigenvalues Λ (Fig. S5), and for systems with equivalent
interaction parameters χ, but different molecular
architectures (Fig. 1B). Our conclusion is thus consistent with
Düchs, Delaney and Fredrickson28 that numeric schemes are
needed to determine the optimal relaxation coefficients λ*.
In the following section, we demonstrate that Bayesian
optimization is particularly well-suited for locating optimal
relaxation coefficients in complex polymeric systems
containing many chemical species.

3.3 Bayesian optimization for relaxation coefficient selection

Bayesian optimization (BayesOpt) is a method for maximizing
objective functions that are both expensive to evaluate and
whose derivatives are not known.34 The two key components
of BayesOpt are (1) a probabilistic surrogate model that is
used to approximate the objective function and (2) an
acquisition function that leverages this surrogate model to
decide the next point to sample. A particularly advantageous
feature of BayesOpt is that the method can be used to
maximize virtually any objective function, even if the
underlying functional form is not known or does not exist.
BayesOpt is also well-suited for objective functions that are
expensive to evaluate since the objective function is only
evaluated for points that the surrogate model predicts to be
most useful.

In order to explore whether BayesOpt could be used to
optimize the performance of SCFT and FTS, we now return to
the simple two species homopolymer blend previously
considered in section 3.1. In particular, we are interested in
whether BayesOpt can automatically locate the optimal
relaxation coefficients λ* that we previously located using brute
force sampling. Fig. 3A shows a representative evolution of a
BayesOpt-driven search. We find that BayesOpt quickly locates
the region of optimal performance in approximately 10
iterations and then samples this region until the globally
optimal relaxation coefficients λ* are found. In order to quantify
the performance of BayesOpt, we compare the best performing
λ found by BayesOpt to those obtained using random sampling
(Fig. 3B). We see that BayesOpt reliably locates high-performing
relaxation coefficients λ* in 20 evaluations and results in SCFT
simulations that are 30 times faster than λ chosen at random.

While the performance achieved using BayesOpt is quite
impressive, it is important to emphasize that the choice of
hyperparameters can have a significant effect on BayesOpt
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performance. In general, we found that the performance of
naive BayesOpt implementations were quite poor and that
good performance required the careful tuning of the
surrogate model kernel, the acquisition function and the
objective function. The details of our specific BayesOpt
implementation are described in section 2.3 and in the SI. It
is also important to note that there are many strategies that
could be used to generate relaxation coefficients in addition
to BayesOpt and random sampling. We have chosen to
compare these two methods in order to give a baseline
measure of performance and not an exhaustive comparison
of different methods.

3.4 Bayesian optimization in systems with many species

Based on these promising initial results for BayesOpt in a two-
species system, we next analyze whether BayesOpt can be used
to optimize relaxation coefficients in systems with many
species. Specifically, we consider homopolymer blends
containing two, three, four and five unique chemical species
and examine how BayesOpt selects their relaxation coefficients
in SCFT (Fig. 4). Even though this is a relatively simple system
only capable of macrophase separation, we expect that our
results will generalize to other systems of higher complexity
where microphase separation is present (cf. Fig. 1B). The
specific interaction parameters χ for these systems are given in
the SI. In order to quantify the performance of BayesOpt for
these different systems, we once again examine the best
performing λ found by BayesOpt relative to random at each
SCFT evaluation (Fig. 4A–D). For each of these systems, the
relaxation coefficients optimized by BayesOpt converge
considerably faster than those obtained with random sampling.
In general, we find that the advantages of BayesOpt tend to
increase with the number of species, with a 190-fold
performance improvement of BayesOpt relative to random for
the five-species system. This result indicates that BayesOpt can
efficiently navigate the complexities of systems that contain

many species and that it can continue to locate relaxation
coefficients with good SCFT performance.

Another metric that we use to quantify BayesOpt's
performance is the fraction of total SCFT simulations that
are non-convergent. As demonstrated in Fig. 1 and 2, it is
common for the vast majority of relaxation coefficients λ to
not yield a convergent SCFT solution. Thus in addition to
finding λ that have good SCFT performance (Fig. 4A–D),
BayesOpt quickly finds λ that are able to converge. While
random sampling tends to find λ of which >75% are non-
convergent, BayesOpt is able to focus its sampling on λ of
which <30% are non-convergent on average (Fig. 4E–H). It is
also noteworthy that the fraction of nonconvergent
simulations tends to decrease throughout the course of a
BayesOpt-driven search, resulting in simulations where only
≈10% are non-convergent for a five-species homopolymer
blend. Thus, in addition to finding relaxation coefficients
with good performance, BayesOpt is also able to focus its
sampling on those relaxation coefficients that yield
convergent SCFT solutions.

We next examine whether BayesOpt can be used to
optimize the relaxation coefficients λ in FTS for systems with
many species (Fig. 5). As we observed for SCFT, BayesOpt
performs well for two- to five-species systems and results in
7- to 21-fold performance improvements relative to random
sampling (Fig. 5A–D). BayesOpt also similarly locates
convergent relaxation coefficients much more efficiently than
random, with non-convergent fractions of ≈40% in BayesOpt
on average versus >85% for random (Fig. 5E–H).

It is also illustrative to compare the performance of
BayesOpt between SCFT (Fig. 4) and FTS (Fig. 5). In general,
BayesOpt leads to more significant performance gains
relative to random in SCFT than in FTS. One reason for this
difference is a superficial artifact from how we have defined
the correlation time of non-convergent trajectories in FTS.
Since these three-dimensional FTS are considerably more
expensive than these one-dimensional SCFT, we set the

Fig. 3 Selection of relaxation coefficients λ = {λ1, λ2} using Bayesian optimization (BayesOpt) for SCFT of a two-species homopolymer blend. (A)
BayesOpt rapidly identifies optimal regions of relaxation coefficients λ in fewer than 10 iterations and subsequently focuses its sampling in this
region to locate the best performing λ. (B) Comparison of BayesOpt and random sampling. BayesOpt locates relaxation coefficients that are
considerably faster than those found with random sampling. The shaded regions are 95% confidence intervals.
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maximum number of timesteps to be considerably lower in
FTS than in SCFT (5 × 104 versus 1.5 × 106). One direct
consequence of this choice is that the maximum stable
correlation time possible in our FTS is 1250 timesteps and
non-convergent FTS trajectories are therefore assigned a
correlation time of 1250 timesteps (see section 2 and SI).
Furthermore, for computational efficiency, relaxation
coefficients with correlation times exceeding this threshold
are labeled as non-convergent. This choice limits the amount
of information that BayesOpt can gain from each evaluation
of FTS, and also sets a ceiling for the maximum correlation
time which leads to more modest improvements in FTS (e.g.
7–21×) than in SCFT (e.g. 30–190×) relative to random. While
we could increase the maximum number of timesteps in FTS,
we feel that our choice is computationally prudent because it
avoids wasting resources on relaxation coefficients with
exceedingly large correlation times. In summary, our choice
to truncate inefficient relaxation coefficients improves the
absolute performance (i.e. walltime) of BayesOpt FTS at the
expense of penalizing the relative performance of BayesOpt
FTS compared to random.

Another important difference between BayesOpt in SCFT
and FTS is the role of stochasticity in the evaluation of

simulation performance. In SCFT, simulation performance is
quantified by the number of timesteps to convergence, which
is a deterministic quantity. In contrast, simulation
performance in FTS is quantified using correlation time
which is a stochastic quantity that will depend on the
realization of the random noise described in eqn (7). We
anticipate that accounting for this noise in our BayesOpt
implementation could improve performance,34,35 but for
simplicity we do not pursue these improvements here.

As an additional test for our BayesOpt implementation we
consider two different systems. These systems represent the
most complex systems we have examined thus far and serve
to rigorously test whether BayesOpt can optimize relaxation
coefficients under increased system complexity. For the first
system, we choose a five-component mixture containing
homopolymer chains with 100 or 150 discrete beads in an
explicit solvent (details in SI). The asymmetric chain lengths
coupled with the explicit solvent make it very difficult to
obtain convergent FTS relaxation coefficients.

As before, we compare BayesOpt to random sampling over
many independent replicas (Fig. 6A). Whereas the
performance of randomly sampled relaxation coefficients is
relatively constant near the maximum correlation time of

Fig. 4 BayesOpt enhances SCFT performance in multi-species homopolymer blends. (A) Comparison of BayesOpt and random sampling for two-
species, (B) three-species, (C) four-species and (D) five-species homopolymer blends. BayesOpt substantially outperforms random sampling and
achieves a 190-fold improvement for the five-species homopolymer blend. This improvement is calculated at the first evaluation where BayesOpt
is within 10% of its best value. Cartoons above each panel depict the molecular composition of the corresponding systems. (E) Fraction of non-
convergent relaxation coefficients λ as a function of SCFT evaluation for two-species (F) three-species, (G) four-species and (H) five-species
homopolymer blends. BayesOpt reduces the sampling of non-convergent λ across all systems. In contrast, random sampling frequently samples
non-convergent regions, especially as the number of species increase. The shaded regions are 95% confidence intervals.
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1250 timesteps, BayesOpt identifies relaxation coefficients
with correlation times <100 timesteps after only 10 FTS
evaluations. On average, this corresponds to a 33-fold
performance improvement relative to random. It is also
noteworthy that convergent relaxation coefficients are very
difficult to locate for this system as >95% of relaxation
coefficients sampled randomly are non-convergent (Fig. 6C).
In contrast, we find that BayesOpt is able to focus its
sampling towards more stable relaxation coefficients,
typically achieving nonconvergent rates of ≈50% after its first
10 evaluations. Thus, whereas randomly sampled relaxation
coefficients are completely ineffective at generating stable
FTS for this system, BayesOpt is able to robustly locate stable
relaxation coefficients with good performance.

For the second system, we examine a ten-component SCFT
homopolymer blend in which each species is present at equal
volume fraction and each homopolymer consists of 100
discrete beads. This system represents the highest
dimensional search space considered in this study and poses
a significant challenge for our optimization method due to

the rapid increase in possible λ as the number of species
increases. As the number of species increases beyond five,
the computational and memory demands of BayesOpt
become prohibitive due to our Gaussian process regression
surrogate model. This is because the number of potential
relaxation coefficients λ that BayesOpt needs to estimate
grows exponentially with the number of species. Without a
more efficient strategy for navigating the increasingly large
search space, BayesOpt is computationally intractable for this
system due to both time and memory constraints. To address
these constraints, we develop a modified BayesOpt workflow,
referred to as adaptive BayesOpt, where the resolution is
lowered but the range of the search space is dynamically
updated as BayesOpt samples λ (see section 2 and SI).

We apply adaptive BayesOpt to this system and compare
its performance to random sampling (Fig. 6B). As in the
previous examples, we track the best performing λ found
after each evaluation. For random sampling, performance
remains relatively poor as new λ are evaluated, with the best
performing λ yielding only modest improvements in SCFT

Fig. 5 BayesOpt enhances FTS performance in multi-species homopolymer blends. (A) Comparison of BayesOpt and random sampling for two-
species, (B) three-species, (C) four-species and (D) five-species homopolymer blends. BayesOpt significantly reduces correlation times compared
to random sampling, despite the inherent stochastic noise present in FTS. Cartoons above each panel depict the molecular composition of the
systems. (E) Fraction of non-convergent relaxation coefficients λ as a function of FTS evaluation for two-species (F) three-species, (G) four-species
and (H) five-species homopolymer blends. BayesOpt decreases the likelihood of evaluating non-convergent λ, while random sampling frequently
evaluates unstable regions, especially as the number of species increase. The shaded regions are 95% confidence intervals.
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performance. In contrast, adaptive BayesOpt quickly
identifies λ with substantially better performance. Adaptive
BayesOpt then refines and improves performance over
subsequent evaluations and ultimately locates λ with a 125-
fold improvement in simulation performance relative to
random. As with the five-component system, this
improvement is not only due to BayesOpt finding better
performing relaxation coefficients, but also due to a
reduction in the fraction of non-convergent evaluations. As
shown in Fig. 6D, random sampling continues to produce a
high proportion of non-convergent λ (>80%), whereas
adaptive BayesOpt instead prioritizes sampling in convergent
regions of the search space (<10%). Taken together, these
results demonstrate that even in multispecies settings where
the search space becomes prohibitively large, BayesOpt can
still efficiently identify high-performing and stable relaxation
coefficients.

3.5 Transferability of relaxation coefficients

Another useful test for the relaxation coefficients obtained using
BayesOpt is to examine how these relaxation coefficients
perform for different systems and conditions. For example,
when performing SCFT or FTS, it is typically of interest to
perform simulations for many different interactions parameters
χ not just a single value of χ as we have examined so far in this
work. Moreover, the benefits of our BayesOpt approach would
be significantly diminished if a new BayesOpt-driven search was
required for every new set of interaction parameters or system
conditions. Thus it is useful to examine how the relaxation
coefficients obtained using BayesOpt for a single χ perform for
interaction parameters that are different.

To investigate the transferability of our BayesOpt relaxation
coefficients, we focus on the five-species homopolymer blend
examined previously in Fig. 4D, H, 5D and H. The original

Fig. 6 BayesOpt performance in systems of increased complexity. (A) Comparison of BayesOpt and random sampling of FTS for a five-component
system with homopolymer chains of varying length in explicit solvent. (B) Comparison of adaptive BayesOpt and random sampling of SCFT for a
ten-component homopolymer blend. Cartoons above each panel depict the molecular composition of the systems. Even for these complex multi-
species systems, BayesOpt effectively identifies high-performing relaxation coefficients λ. (C) Fraction of non-convergent relaxation coefficients
for the five-component system, evaluated with FTS. BayesOpt reduces the likelihood of sampling non-convergent relaxation parameters compared
to random sampling, which maintains a consistently high failure rate close to 100% across all evaluations. (D) Fraction of non-convergent
relaxation coefficients for the ten-component homopolymer blend, evaluated with SCFT. Adaptive BayesOpt reaches a negligible non-convergent
fraction while random sampling continues to frequently evaluate unstable relaxation coefficients throughout the optimization process.
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interaction parameters for this system used with BayesOpt are
denoted by χ0N and are given in Table S5. In order to calculate
the transferability of the optimal λ* found by BayesOpt, we first
define a perturbation magnitude ε that parameterizes the
deviation of the new interaction parameters N, relative to their
original values χ0N. Specifically, N is obtained by multiplying
each element of χ0N by a random factor between 1 − ε and 1 + ε.
When examining a range of different ε, we select values of N
that are unique to a specific value of ε and that cannot be
generated using other values. In order to obtain statistics for
different values of ε, we choose five different values of λ*
obtained from independent BayesOpt searches and generate 40
random realizations of N per ε.

We first examine whether the optimal λ* yield convergent
SCFT simulations for different values of ε (Fig. 7A). The
fraction of non-convergent trajectories is observed to increase
with ε and suggests a rather poor transferability of λ*,
especially when ε is large. We hypothesize that this low
transferability emerges because the optimal relaxation
coefficients located by BayesOpt are deep inside the narrow
optimal performance region discussed previously for two-
and three-species systems in Fig. 2A and 3A, respectively.
Though this optimal performance region results in
exceptional performance for χ0N (Fig. 4D), it leads to poor
transferability to the new values of N.

One natural solution to this problem is to instead modify
λ* to slightly decrease performance in order to improve

transferability. A simple approach to achieve this goal is to
project λ* onto the vector given by the square root of
eigenvalue magnitudes |Λi|

1/2 for the unperturbed χ0N,
compute the norm of this projection, and multiply the unit
vector corresponding to |Λi|

1/2 for the perturbed N by half
this norm. This procedure to obtain a projected λ* effectively
uses the original λ* to obtain a proportionality constant that
is then used to set the relaxation coefficients for the new N.
We observe that these projected λ* exhibit excellent
transferability and result in stable SCFT simulations even for
ε = 1. The performance of the projected λ* are also
comparable to the performance obtained if the original λ*
are used (Fig. 7B). These results indicate that our simple
projection strategy is very effective at producing relaxation
coefficients for SCFT that are both high-performing and
convergent for a wide range of different interaction
parameters.

We next examine how the FTS performance of the λ*
obtained using BayesOpt transfer to different values of N. In
contrast to SCFT, we observe that the optimal λ* result in a
low fraction of non-convergent FTS across all values of ε

(Fig. 7C). Moreover, the correlation time in FTS only
increases slightly with respect to ε and still yields relatively
low correlation times even when ε is large (Fig. 7D). We
attribute the excellent transferability of λ* in FTS to the
relatively broad region of optimal performance in FTS,
especially relative to SCFT (cf. Fig. 1A and C). Thus, even
though BayesOpt leads to more modest performance gains in
FTS relative to SCFT (Fig. 4 and 5), the transferability of λ* to
different interaction parameters is quite good.

Taken together, the results presented in Fig. 7
demonstrate that the relaxation coefficients obtained using
BayesOpt can result in convergent and high-performing SCFT
and FTS calculations at different values of interaction
parameters. We have also examined the transferability of
relaxation coefficients to different polymer volume fractions
and observe similar results (Fig. S8). These results
demonstrate that a single BayesOpt calculation can be used
to obtain relaxation coefficients that are broadly useful across
a range of different systems and conditions.

Conclusions

This work introduces a general framework for optimizing
relaxation coefficients (λ) in SCFT and FTS of multi-species
polymer systems. We show that simulation performance is
highly sensitive to relaxation coefficients, with optimal
choices yielding orders of magnitude improvements in
performance. We also observe that the effects of relaxation
coefficients can be system-specific and that they are difficult
to anticipate or predict, especially as the number of species
increases.

To address these challenges, we develop a Bayesian
optimization (BayesOpt) workflow tailored to optimize SCFT
and FTS. Our results demonstrate that BayesOpt consistently
outperforms random sampling and rapidly identifies high-

Fig. 7 Transferability of optimal BayesOpt relaxation coefficients λ* to
different interaction parameters. (A) Fraction of non-convergent SCFT
simulations for different magnitudes of χN perturbation and (B)
corresponding SCFT simulation performance. (C) Fraction of non-
convergent FTS for different magnitudes of χN perturbation and (D)
corresponding FTS performance. The definition of ε and the procedure
used to obtain the projected λ* are described in the text.
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performing relaxation coefficients while avoiding non-
convergent regions of the search space. We show that our
approach can optimize over high-dimensional systems with
ten or more species that would otherwise be intractable. We
also show that the relaxation coefficients obtained using
BayesOpt transfer reasonably well to different systems and
conditions. Furthermore, our approach is easily extended to
other field update algorithms,29 alternative theoretical
frameworks for performing multi-species FTS38 and is
compatible with other recent numerical strategies for
stabilizing FTS.39

Though our study has focused on BayesOpt, there are
numerous other optimization algorithms that could also be
used to identify relaxation coefficients. While we have not
examined alternatives to BayesOpt in this work, there are
several general criteria that should be satisfied in order for
an algorithm to be suitable for relaxation coefficient
optimization. The first and most important criteria is for the
algorithm to minimize the number of required evaluations,
especially for FTS where each evaluation can be very
computationally expensive. Another criteria is for the
algorithm to be able to locate the optimal relaxation
coefficients despite their proximity to large non-convergent
regions. These two criteria suggest that any successful
algorithm should exhibit a multi-scale character: it should
first make large changes to the relaxation coefficients in
order to locate the optimal region and then it should focus
on sampling this region despite the occurrence of non-
convergent simulations. Our BayesOpt implementation is
able to achieve this (cf. Fig. 3A) and we expect that other
successful algorithms for relaxation coefficient optimization
will do the same.

It is also important to note that there are numerous
methods to locate the SCFT field configurations other than
solving the fictitious dynamics (i.e. eqn (7) with ηi = 0) used
throughout out this work. One prominent and powerful
example is Anderson mixing40–42 which is implemented in
the open-source PSCF code.43,44 Vigil, Delaney and
Fredrickson recently compared the performance of SCFT
using either fictitious dynamics or Anderson mixing and
observed that both methods had similar performance so long
as each method was properly tuned.29 Since this past work
only considered two-species systems, it would be very
interesting to compare how the performance of our optimal
relaxation coefficients compare to Anderson mixing when the
number of species becomes large.

Another interesting extension of our work would be to
perform BayesOpt using a relatively loose convergence tolerance
in SCFT. Since our initial results suggest that the relative
performance of different relaxation coefficients is largely
independent of convergence tolerance (Fig. S9), it could be
possible to identify λ* more quickly by first performing
BayesOpt using a loose tolerance and then performing
production SCFT simulations with a tolerance that is tighter.
This could dramatically accelerate the 10–100 SCFT evaluations
typically required for BayesOpt to find the optimal relaxation

coefficients, especially if three-dimensional SCFT simulations
are required.

Taken together, our work represents an advance in the
automation and acceleration of field-based simulations,
especially when many species are present. By reducing the
need for manual tuning, our BayesOpt method broadens the
practical scope of SCFT and FTS and paves the way for high-
throughput and chemically specific simulations in soft
matter and biomolecular physics.
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