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Photoinduced iron-catalyzed C—H alkylation of
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Chemically introducing diverse polar groups into polyolefins via carbon—hydrogen bond alkylation with

polar olefins is of substantial value in the synthesis of next-generation lightweight thermoplastics, which
is still underdeveloped. In this work, we report a new approach for efficient carbon-hydrogen bond
alkylation in commodity polyolefins using photoinduced iron catalysis. Various polyolefins could be
functionalized with broad scope. Polar groups could be incorporated in a single step. The controllable
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synthesis of multi-polar functional polyolefins could be achieved by a designed module-assembled

process. Remarkably, even low levels of functionalization could upcycle the polyolefin materials to
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Introduction

Polyolefins, comprising more than half of plastics, are ubiqui-
tous in human daily life, contributing significantly to a large
number of applications such as packaging, food containers,
housing, medicine, automotive parts, and electronic products.*
Most polyolefins possess only inert C-H and C-C bonds; not
surprisingly, the lack of polar functional groups in the back-
bone of these polymers makes the materials highly hydrophobic
and difficult to interface with other materials, drastically
limiting their applications. Incorporating even small amounts
of polar groups into these hydrocarbons would enhance prop-
erties including surface adhesion properties, toughness, solvent
resistance, and miscibility with other polymers, rendering these
materials even more versatile and providing a novel opportunity
for the synthesis of next-generation lightweight
thermoplastics.”

Efficient strategies involved the free-radical or transition
metal catalyzed copolymerization of simple olefin precursors
with polar vinyl monomers.> However, while radical copoly-
merization suffered from a high polydispersity index and a high
degree of branching, the later one had to use precious metal
catalysts. Moreover, different catalytic systems have been typi-
cally developed in order to be feasible for different polar
alkenes.**

Alternatively, the C-H bond functionalization of commodity
polyolefins has drawn chemist's significant attention since it
could install polar groups directly into readily available

School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China. E-mail:
rongzeng@xjtu.edu.cn
DOIL:

T Electronic  supplementary  information available.  See

https://doi.org/10.1039/d3sc03252¢

(ES)

9374 | Chem. Sci,, 2023, 14, 9374-9379

exhibit unusual physical properties, such as enhancement of the transparencies, strains, stresses at break
of the materials, and hydrophilicity.

polyolefins.' This post-polymerization modification would also
render these materials more versatile by forming C-C,*> C-0,*
C-N,* C-S,” and C-X® bonds, providing new opportunities for the
synthesis of next generation lightweight plastics (Scheme 1a).
The radical alkylation of polyolefins with polar olefins is an
ideal protocol since polar groups could be installed atom-
economically by forming robust C-C single bonds from bulk
chemicals. The traditional method involves the use of free
radicals generated by the thermal decomposition of peroxides
(>150 °C).>** Subsequent C-H bond homolysis through
hydrogen atom abstraction and radical trapping with unsatu-
rated units, such as maleic anhydride, leads to functionalized
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polymers. In 2019, the Chen group reported an alternative
method by using 2-chloroanthraquinone as an organic photo-
redox catalyst under UV light to promote the alkylation of
polyethylene and polypropylene with 1,1-bis(phenylsulfonyl)
ethylene.”” However, both the traditional methods and Chen's
protocol suffer from limited polar alkenes, high loading of the
radical promotor/catalyst, and unexpected side reactions
(Scheme 1b), which would hugely limit the following applica-
tions. The development of new catalysis for the radical alkyl-
ation of polyolefins with diverse polar olefins remains
a challenging issue, in particular using low loading of catalysts.”
Recently, we developed iron catalysis for the C-H alkylation of
polyethers, in which degradation could be suppressed signifi-
cantly using a low loading of the catalyst.¥ Herein, as a new
direction, we report efficient iron catalysis for the incorporation
of polar groups into polyolefins (Scheme 1c).* The mild visible
light induced® conditions might facilitate the alkylation of
polyolefins with a series of readily available polyolefins, while
the degradation is not observed significantly. The efficient
access to many (multi)functionalized polyolefins exemplifies
the strategic power of this method.> Furthermore, the prelimi-
nary examination of the physical properties of the prepared
materials exemplifies the untapped potential of this method in
synthetic organic and polymer chemistry.

Results and discussion

We began our studies by evaluating the reaction using the most
prevalent PE (low-density polyethylene, LDPE) and benzyl
acrylate 6 as starting materials. The use of TBAFeCl, and PhCl at
120 °C under a blue LED for 24 h would result in the desired
alkylation product LDPE-6 successfully. The incorporation of
the functional group in the polymer changed the physical
properties significantly. When LDPE could not be dissolved in
CDCl;, LDPE-6 presented a much better solubility (see the ESI
for detailed imagesf). The product was characterized by
methods that reveal the presence and level of functionalization
(LOF) including the 'H NMR (nuclear magnetic resonance), **C
NMR, heteronuclear multiple bond correlation (HMBC), and
diffusion ordered NMR spectroscopy (DOSY) spectra in CDCls.
And then, the examined M, M,, and P values by GPC indicated
that these transformations presented excellent selectivity for C-
H functionalization since no significant C-C bond degradation
was observed (Scheme 2a). As a comparison, the reaction using
benzoyl peroxide (BPO) as a radical initiator obtained only 2.2
mol% of LOF and observed significant degradation (see the ESI
for more detailst). Moreover, to address the concern of whether
the oligomers of the acrylate were attached to the main chain of
the polymer, the model reactions of cyclohexane or dodecane
with methyl or benzyl acrylate were then conducted. The isola-
tion and characterization of the mono- and di-alkylation prod-
ucts highly suggested the acrylate groups be incorporated into
the main chain individually, although we cannot rule out the
possibility of a dimer or oligomer-grafted process (see the ESI
for more detailst).

The level of functionalization (LOF) could be controlled by
the amounts of the alkenes (Scheme 2b). When less than 12
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Scheme 2 The C-H alkylation of LDPE with 6.

mol% of 6 was used in the 24-hour reactions, the LOFs depen-
ded on the amount of alkene (mol%) in terms of a linear
function y = 0.76x + 0.46 with R* = 0.98. The LOF could reach
a maximum of 11.1% by using 20 mol% of 6. Moreover, the
reaction was monitored by "H NMR. When 20 mol% of 6 was
used initially, the LOFs were 4.2% in 2 h, 6.0% in 6 h, 13.4% in
36 h, and 15.5% in 48 h, respectively (Scheme 2c). A linear
relationship was observed for In(1/[6]) vs. reaction time (Scheme
2d), indicating a first order dependence of the reaction rate with
alkene 6.

We next investigated the scope of electron-deficient alkenes
with different polar functional groups by modifying the C-H
bonds in LDPE based on the optimal conditions (Table 1). A
series of polar alkenes could be converted via iron catalysis.
Polar groups, such as ester (5-6) and sulfonyl groups (7), were
able to be incorporated into the LDPE matrix. When 20 mol% of
the starting alkene was used, the level of functionalization
could reach up to 11.1%. Maleimide and its derivatives are able
to graft LDPE successfully (8-10), which might provide a new
reactive site for the additional functional group transformation.
For example, the maleimide derivative 9 with a properly reactive
site for nucleophilic substitution was converted to obtain the
corresponding product LDPE-9 with 10.0 mol% LOF, while the
terminal bromo group was remained. Pleasantly, the maleic
anhydride 10, well known as a bulk chemical as well as
a significant intermediate, is also a good substrate for C(sp®)-H
bond functionalization of LDPE, albeit observing B-scission in
the GPC test. The difunctional groups containing olefins, such
as 11-13, are tolerated well to afford the corresponding polar
polyolefins with 4.1-8.2% LOFs. Notably, no chlorination
product is observed as determined using NMR spectra.?
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Table 1 Electron-deficient alkene and polyolefin scope®
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CN
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R/\(EWG CO,Et S CN COMe
T EWG 1 12 13
LOF: 4.2 mol% 4.1 mol% 8.2 mol%
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LLDPE LLDPE-5° PP PP-6
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LOF: 1.9 mol% - 3.3 mol%
Mn: 130.7 kDa 129.0 kDa 2.4kDa 35kDa
M. 265.7 kDa 249.6 kDa 12.8 kDa 5.4kDa
B 203 1.93 5.11 153

“ All levels of functionalization (LOFs) (given as a percentage) are
determined by 'H NMR. ” Experiments were typically run with
a polyolefin (2.0 mmol monomer), polar alkene (20 mol%), iron
catalyst (0.2 mol%) and PhCl (3 mL) in a 35 mL sealed tube with 390
nm LED photo-irradiation at 120 °C for 24 h. “ LLDPE (100.0 mmol
monomer), 5 (5 mol%), iron catalyst (0.1 mol%) and PhCl (40 mL) in
a 100 mL sealed tube with 390 nm LED photo-irradiation at 120 °C
for 24 h. ¢ At rt.

Furthermore, various polyolefins could be tolerated (Table
1b). A 2.8 gram-scale reaction of LLDPE with 5.0 mol% of 5 was
able to obtain the corresponding product with a good LOF (4.7
mol%). The readily available atactic polypropylene (PP) was
efficiently incorporated with an ester group with 5.7 mol% of
LOF under these conditions without observing significant
degradation. Polystyrene (PS) presented a better solubility and
such a reaction was able to undergo at room temperature with 5
to obtain the corresponding product, albeit with lower efficiency
(1.9 mol% of LOF). Moreover, the C-H bond functionalization of
PIB also proceeded with benzyl acrylate 6 in moderate efficiency
(3.3 mol% of LOF). The regioselectivity over the C-H function-
alization of PP, PS, and PIB could be determined as a mixture of
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1°, 2°, and 3° C-H alkylation by the model reactions and the
corresponding "H-"H COSY spectra (see the ESI{).

The polyolefin waste from our daily life was then investigated
to demonstrate the utility of the protocol, which could also
convert the polymer waste into new valuable materials (Scheme
3). First, a plastic bag from market waste, made of HDPE, was
able to react with 6 smoothly to obtain the desired product in
excellent LOF (11.0 mol%). A PP-made disposable container and
PS-made package foam were also modified successfully with 6
and 5, producing polar products with 6.0 mol% and 0.2 mol%
LOF, respectively.

The broad scope of this protocol then drove us to conduct
the modular incorporation of multiple polar groups into the
polyolefins. We chose prevalent LLDPE as the starting material
and various electron deficient olefins as modules. First, the
LOFs of the polar groups are readily controllable (Table 2).
When LLDPE was stepwise reacted with 2 mol% of 5, 2 mol% of
14, and 2 mol% of 9, a triple functionalized product was able to
be obtained and the LOFs for each polar group were 1.9%, 1.6%,
and 1.7%, respectively (entry 1). Notably, the multiple polar
alkenes could also react with the polyolefin in one-pot, and
similar efficiencies were obtained (entry 1 vs. entry 2). When 5
mol% of each alkene was used, the LOFs in the obtained
product were 4.7%, 3.7%, and 4.6%, respectively (entry 3). In
addition, products with diverse LOFs could be readily obtained
by further controlling the ratio of each alkene. When 5 mol% of
5, 1 mol% of 14, and 2 mol% of 9 were used in the reaction
sequence, products with 4.7%, 1.0%, and 1.4% LOFs could be
obtained successfully (entry 4). The stepwise incorporation of
the polar groups could be evidenced by determining the reso-
nance signals of OMe, Ph, and methylene groups in the "H NMR
(proton nuclear magnetic resonance) spectra in CDCl; (see the
ESIt). Furthermore, LLDPE can react with four different alkenes
in one pot successfully to obtain the desired multi-polar
product (entries 5-7).

The quantum yield was determined to be 0.131, ruling out
the potential radical chain processing mechanism.

Based on our previous studies and the known literature,®
a plausible mechanism is proposed in Scheme 4. Excitation of the

O 6 20.0 mol%
"08n
TBAFeCl, (0.2 mol%)

3 PhCI, LED, Ny, 24 h, 130 °C

plastic bag
HDPE

TBAFeCl, (0.2 mol%)
PhCI, LED, N, 24 h, 130 °C

disposable container
PP

o
5 20.0 mol%
SAome
TBAFeCl, (0.2 mol%)
PhCI, LED, Ny, 24 h, rt

foam box
PS

LOF = 0.2 mol%

Scheme 3 Conversion of the plastic waste.
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Table 2 LOF-controllable modular multi-installation of polar groups
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6 2.0 mol% 2.0 mol% 2.0 mol% — 2.0 mol% — 1.1/1.7/1.6/0.3 One-pot
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Scheme 4 The proposed mechanism.

A

photo-sensitive Fe(ur) catalyst is known to generate a Cl-radical
and Fe(u).® This Cl-radical is a strong hydrogen abstraction agent
and should readily abstract a hydrogen atom from polyolefin 1 to
produce HCI and the polyolefin radical 2. This species would
then undergo subsequent radical addition to the electron-with-
drawing olefin to generate alkyl radical 3, which couples with HCI
in the presence of Fe(u) to simultaneously complete the catalytic
cycle by regenerating the Fe(m) catalyst and producing the alky-
lated polyolefin 4. The polar groups could be incorporated when
polar vinyl precursors are used.

The properties of the polar functionalized polyethylene were
next examined. First, the thermal transitions and thermal
stabilities were evaluated by differential scanning calorimetry
(DSC) and using a thermogravimetric analyzer (TGA) (see the
ESI for more detailst). Taking LLDPE-5, LLDPE-8, and LLDPE-9
as typical examples, while the decomposition onset tempera-
tures (T4) of such materials remain high (above 300 °C), the
incorporation of the functional group was proven to be
responsive to the changing of the melting temperatures. The
melting temperatures of such materials are 108, 102, and 98 °C,
respectively, which are much lower than that of LLDPE (122 °C).
These relationships are consistent with the fact that the exis-
tence of larger functional groups causes them to impart

© 2023 The Author(s). Published by the Royal Society of Chemistry

enthalpic penalties when incorporated into crystalline domains
of polyethylenes.

Covalent incorporation of ionized units as pendant groups
into polyolefin backbones is an efficient tool to increase the
toughness of the overall system including coatings, adhesives,
impact modification, and thermoplastics."” One of the best
known examples among these ionomers is the Surlyn resin.®
Two high-value polyethylene ionomers were then synthesized
(Scheme 5a). While treating the prepared polar polyolefin
LLDPE-16 with ‘BuOK produced the ionomers ion-LLDPE-16,
and the reaction of LLDPE-9 with 1-methylimidazole afforded
the organic ionomers ion-LLDPE-9 successfully. The introduc-
tion of the ionic site significantly enhanced the transparencies,
strains, and stresses at break of the materials. The tensile tests
indicated that the strains at break (ep,) of the ionomers were

a: The polyolefin ionomers

0L0® tensile test
% 35
ion-LLDPE-16 304

mimic to Surlyn
from LLDPE-9 with KO'Bu
(\NrMe

AN
o) /‘/BO

N r
R
I k
ion-LLDPE-9-0.7 mol%

ion-LLDPE-9-2.4 mol% 0

T T T T T
from LLDPE-9 with imidazole o 200 400 600 800 1000
strain (%)

N
&
L

)
S
L

stress (MPa)

=3
L

——LLDPE
—— ion-LLDPE-16

—— ion-LLDPE-9-0.7 mol%
—— ion-LLDPE-9-2.4 mol%

b: The hydrophilic polyolefin

| T hydrophilia
LOF = 2.8 mol%
LLDPE-17

LLDPE: 92.1° LLDPE-17-2.8 mol%: 66.7°

Scheme 5 The properties of the polar functionalized polyethylene.
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more than >550% and the stresses at break (o},) of ionomers
were >20 MPa, which are over tenfold and almost treble
compared with those of LLDPE, respectively. The &, and o}, of
ion-LLDPE-9 - 2.4 mol% even reached 963% and 36 MPa,
respectively, which are comparable with those of the Surlyn
resin (Scheme 5a).°

Finally, hydrophobic LLDPE was modified with acrylate 17
containing a hydrophilic PEG (polyethylene glycol) chain to
obtain LLDPE-17. After incorporating 2.8 mol% of the hydro-
philic group, the water contact angles decreased significantly
from 92.1° to 66.7°, which is comparable with that of
commercial PVA (polyvinyl alcohol) (66°),'* presenting excellent
potential in synthesis of novel polymers (Scheme 5b).

Conclusions

In summary, utilizing a low-cost photoinduced iron-catalytic
system, we have achieved the efficient C-H bond modification
of commodity polyolefins with broad deficient alkenes. A series
of polar functional groups could be installed into various
polyolefins, such as LLDPE, PP, PVC, PS, PIB, even PVDF, etc. via
this broad reaction platform. Plastic waste including a pack-
aging LDPE bag, disposable PP container, and PS foam box
could be used as raw materials to undergo such a modification
directly. The powerful iron catalysis with tolerance towards
various functional groups further pointed us toward the
concept that multi-polar polyolefins could be synthesized
through modularly polar group assembly through C-H bond
modification. And the concept was validated successfully by the
stepwise or one-pot multiple installations of the functional
groups. Moreover, the polyolefin wastes could be upcycled by
introducing even low levels of polar functionalization. The
ionomers, which are comparable with Surlyn resin, and
a hydrophilic material could be prepared readily from the
commodity polyethylene, demonstrating the great potential in
the construction of novel materials.
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