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High-quality soda ash (Na,COs) is mainly produced using the ammonia—alkaline method, generating
a significant amount of industrial waste called soda residue. In China, the annual production of soda
residue exceeds 10 million tons. The large-scale open-air storage of soda residue not only occupies land
but also causes severe pollution to the surrounding environment. Soda residue displays characteristics
such as strong alkalinity, high reactivity, and a well-developed pore structure, making it a valuable raw
material for producing environmentally functional materials. This article provided an overview and
summary of soda residue, including its sources and hazards, basic properties, applications in
environmental management (wastewater treatment, flue gas desulfurization, and soil remediation), and
associated risks. The limitations of using soda residue in "waste to waste” technologies were also

analyzed. Based on this analysis, the article suggests focusing on simultaneous removal of heavy metal
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dechlorinating soda residue, using soda residue for contaminated soil solidification, stabilization, and
assisted remediation, controlling pollution via green and circular utilization approaches, and assessing
long-term risk.
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27.592 million tons, generating an annual soda residue
emission of 10 million tons.*”®

The increasing discharge of soda residue has raised
concerns about its associated hazards. The main risks of soda

1 Introduction

Soda ash, also known as sodium carbonate, is an essential
basic chemical raw material widely used in various industries,

such as construction materials, chemicals, metallurgy, residue are related to the contamination caused by its filtrate
textiles, food, national defense, and pharmaceuticals, and dust. The primary components of soda residue are CaCOs,
contributing significantly to the national economy."? CaCl,, and NaCl, with a chloride content exceeding the standard

in the filtrate. Due to rapid urban development, the location of
soda residue dumps has gradually become the center of urban

Currently, soda ash is primarily produced via three methods,
namely the combined-soda, the ammonia-soda, and the
natural soda processes. The ammonia-soda process involves
producing ammonium chloride and sodium carbonate, as
shown in Fig. 1. It is one of the main methods for soda ash
production and requires the consumption of large amounts of
industrial salt, limestone (calcium carbonate), and ammonia.
The ammonia-soda process offers advantages such as high
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Fig.1 A schematic diagram of soda ash production via the ammonia-
soda method.
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Fig. 2 Soda residue resource utilization.

areas. Soda residue is often left uncovered and exposed to the
elements, forming a weathered, dry surface layer due to wind,
sunlight, and rain. Soda residue dust typically affects the
atmospheric environmental quality in an area of over 200 000
square kilometers. However, during periods of strong winds,
the soda residue dust is carried into the atmosphere, severely
polluting the environment®’ Additionally, large amounts of
soda residue are piled up or buried in tidal flats, occupying land
resources and encroaching into the sea, forming harmful
“white seas”.® Furthermore, the high Ca**, Mg**, and CI~
concentrations in soda residue can disrupt soil structure,
leading to soil salinization,” posing a serious threat to the
ecological environment.

In recent years, the stringent environmental requirements
set by the government have made efficient soda residue treat-
ment a pressing issue for domestic and international experts
and companies. Several application strategies have been
proposed for the resource utilization of soda residue (Fig. 2),
including potential applications for construction engineering
(such as road construction and building materials), chemicals
(such as rubber, plastics, and papermaking), environmental
engineering (such as wastewater treatment, coal combustion
desulfurization agents, soil passivators, and amendments), and
byproduct development (such as calcium chloride
extraction).'**> However, with a utilization rate below 5%, large-
scale soda residue application has not yet been achieved in
China. Waste-to-waste treatment technology has become an
effective approach for promoting a circular economy. Utilizing
soda residue for pollution control has become a new challenge
in recent years due to its unique chemical composition, struc-
ture, and properties. This article provides an overview of soda
residue applications in environmental protection fields such as
wastewater treatment, flue gas desulfurization, and soil reme-
diation. The analysis of existing problems and application
prospects aims to provide technical references for expanding
the soda residue resource utilization.
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2 Sources and properties of soda
residue
2.1 Sources

Soda residue mainly results from the saltwater refining, lime-
stone calcination, and ammonia evaporation processes during
soda ash production via the ammonia-soda method.” (1) Salt-
water refining process: crude salt solutions obtained from salt
mines contain impurities, such as calcium, magnesium, and
sulfate ions, which are removed before the solution enters the
chlorine absorption tower by adding a Ca(OH), solution and
Na,COs;. The specific reactions are shown in eqn (1)-(3). The
insoluble or sparingly soluble substances formed during this
process represent one of the sources of soda residue. (2) Lime-
stone calcination process: since complete CaCO; decomposition
cannot be achieved during limestone calcination in a lime kiln,
some impurities in the resultant lime slurry do not participate in
subsequent reactions. The specific reactions are shown in eqn (4)
and (5). Excess CaCOs;, Ca(OH),, SiO,, and other substances
during this process represent another source of soda residue. (3)
Ammonia evaporation process: the reaction between the lime
slurry and NH,CI during circulation soda ash production gener-
ates NH;. The remaining NaCl and the CaCl, by product formed
during this process contribute to the soda residue chloride
component. The reactions are shown in eqn (6) and (7).

Mg + 20H~ — Mg(OH), (1)
Ca®* + CO5*~ — CaCO; (2)
Ca®* + S04~ — CaSO, (3)

CaCO; — CaO + CO, (4)
CaO + H,0 — Ca(OH), (5)

NaCl + CO, + NH; + H,O — NH,CI + NaHCO;  (6)

NH4C1 + Ca(OH)z - CaC12 + HZO + NH3 (7)

2.2 Properties

Soda residue appears as a white granular material with a pH
between 10 and 12. It is classified as a strong alkaline waste
residue containing elements such as Ca, C, Cl, Mg, Na, Si, and
Al* The soda residue composition varies slightly between
different alkali plants. The primary soda residue chemical
components in some Chinese alkali plants are shown in Table
1. Its phase composition primarily comprises calcium salts,
such as CaCOj3, Ca(OH),, CaCl,, CaSO,, and various other salts
and insoluble materials.”® Studies have shown''¢ that soda
residue has a loose structure and well-developed porosity,
mainly comprising rod-shaped and spindle-shaped CaCO,
nano-aggregates, porous CaCO;, and rod-shaped CaSO,, with
particle sizes ranging between 0.5 um and 70.0 pm. The particle
size distribution was about 60% in the 0.5 um to 10.0 pm range,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Composition of soda residue in various domestic regions (mass fraction, %)“

Place of origin CaO K,O Cl™ SiO, Al,O4 Na,O Fe,0; MgO SO, LOI Ref.
Tangshan 43.2 5.57 23 9.87 3.25 3.93 0.91 9.77 5.57 2.86 11
Guangdong 39.16 0.05 4.42 2.78 2.02 1.15 0.57 7.53 4.22 36.47 18
Tangshan 52.88 0.38 11.9 10.19 3.25 1.84 1.23 8.35 8.87 — 7
Lianyungang 58.73 — — 11.16 3.97 — 4.32 14.25 — — 19
Shandong 51.22 0.31 8.14 8.42 2.18 8.33 1.83 10.24 3.14 — 20
Huai'an 52.25 0.15 18.4 4.06 1.76 2.46 1.17 2.33 16.9 — 21
Shandong 62.81 0.17 0.16 10.2 9.00 0.23 1.31 12.5 0.3 — 22
Huai'an 32.25 0.18 — 0.34 0.06 2.35 0.89 3.57 — 49.03 23

% LOL: loss on ignition.

about 35% in the 10.0 um to 35.0 um, and about 5% in the 35.0
pm to 70.0 pm range."’

3 Soda residue application for
environmental protection
3.1 Wastewater treatment

Soda residue has a large pore volume and specific surface area,
resulting in a strong adsorption capacity.”® Additionally, its
aqueous solution is alkaline and carries a negative charge,
exhibiting colloid properties,* providing a crucial foundation
for its application in environmental management. Previous
studies have demonstrated that soda residue can purify waste-
water by removing heavy metal ions, organic pollutants, and
phosphates from the water. Removing impurities using soda
residue involves multiple mechanisms, including precipitation,
complexation reactions, ion exchange, and adsorption, with
a significant focus on adsorption studies. Extensive research
has investigated the adsorption characteristics of soda residue
via adsorption kinetics and isotherm experiments. The
adsorption properties of soda residue are presented in Table 2.

3.1.1 Heavy metal removal. More extensive metal mining
and smelting activities in China have increased the severity of
surface water contamination by heavy metals, such as Cd, Cu,
Zn, Pb, and As.*” Even low doses of Cd, Pb, and As can be toxic to
humans.*® The common methods currently used to remove
metal ions from water include chemical precipitation, ion
exchange, membrane filtration, coagulation, flocculation,
flotation, electrochemical treatment, and adsorption. Precipi-
tation and adsorption are combined to remove heavy metals
from wastewater using soda residue. On the one hand, heavy
metal ions precipitate continuously in alkaline conditions. On
the other hand, both the precipitate and soda residue particle
surfaces display a certain adsorption capacity for heavy metal
ions. Precipitation plays a vital role during the initial removal
stage, while surface adsorption dominates during the stable
removal stage. The iron-manganese oxide-bound and the
carbonate-bound heavy metal ion forms dominated the soda
residue surface, with a lesser presence of organic forms.****

However, one of the main limitations of the precipitation
approach is the production of significant amounts of metal-
laden sludge.***” Continuous scientific and technological

Table 2 The pollutant adsorption properties of soda residue and its modified materials in water®

Contact Amount of Isotherm
Adsorbate Adsorbent T(°C) ge(mgg™) Co(mgL™) pH time adsorbent Kinetic model model Ref.
cd* Fe;04/SA-AR  — 38.83 325 5 20h 0.3gL' Pseudo-second-order Langmuir 25
Pb** O-HAP 165 1429 — 5-7 145h — Pseudo-second-order Langmuir 26
As™* FeCAR 25 44.4 10 >7 10h — Pseudo-second-order Langmuir 19
As™ MnCAR 25 22.6 10 =7 10h — Pseudo-second-order Langmuir 19
Fe*', Mn**, Cu®*, Natural — — 150 mg L' for — — — Pseudo-second-order Freundlich 27
Zn**, ¢d*" and Pb**  attapulgite + Fe and
soda residue 100 mg L~ for
other metals
Reactive bright red LSWM 20 416.7 100 12 90s 2gL" — Freundlich 28
K-2BP
Reactive light yellow LSWM 20 454.5 100 12 90s 2gL" — Freundlich 28
K-6G
Acid orange II LSWM 20 769.2 100 12 90s 2gL" — Freundlich 28
Direct yellow LSWM 20 2186.4 100 12 90s 2gL7! — Freundlich 28
Acid blue 80 Soda residue 440 300 105 6h — — 29
Emulsified oil LSWM 10 — 1500 12 10min 4g¢g Lt — — 30
Petroleum sulfonate LSWM 30 3798 200 12 60s — Pseudo-second-order Langmuir 31

“ Comment: Fe;0,/SA-AR is a combination of magnetic sodium alginate-soda residue aerogel and Fe;0,, O-HAP refers to the optimization of
hydroxyapatite production from soda residue, FeCAR/MnCAR refers to soda residue modification with FeCl;-6H,O (FeCAR) and MnSO,-H,O

(MnCAR), and LSWM represents the leaching solution of white mud.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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progress has promoted research on safe methods for treating
and recycling metal-laden sludge. First, hydrometallurgical
technology (e.g:, acid leaching and solvent extraction) is used for
the stepwise recovery of valuable metals in sludge. Second,
pyrometallurgical technology is used to simultaneously solidify
heavy metals and prepare decorative materials (e.g., glass
ceramics). Third, the heavy metal oxides in sludge can be
separated and purified to prepare environmentally functional
materials (e.g., NiCr,0,/CuCr,0, catalytic reduction reagents
and CuO/Cu,O oxygen carriers for chemical looping combus-
tion). Fourth, it is used as an additive to produce construction
materials.

Soda residue modification for utilization as an adsorbent has
attracted increasing research attention to enhance its heavy
metal adsorption efficiency in water. One approach is
combining soda residue with sodium alginate and Fe;O,(Fe;0,/
SA-AR) (see Fig. 3 for the preparation process, reactions (8) and
(9)) to remove Cd>* from water. Studies have shown that Cd>*
can be removed via -OH group complexation, Cd*>" and H' ion
exchange in ~-COOH groups, and electrostatic adsorption. The
sodium ions in the long-chain sodium alginate polymer
undergo ion exchange reactions with divalent cations, forming
a cross-linked network structure and a hydrogel. Fe;0, addition
improves the soda residue dispersibility in the solution,
enabling magnetic recovery and reuse. Furthermore, the
modified soda residue exhibits random metal ion charge
distribution, forming a wide range of multi-ion bonds via inter-
and intrachain complexation to enhance the soda residue
adsorption capacity.”® Another method involves immersing the
soda residue in a (NH,),HPO, solution to obtain hydroxyapatite
(O-HAP). This increases the number of hydroxyl groups on the
soda residue surface and modifies the pore structure,
enhancing the adsorption capacity to 12.0- to 45.8-fold higher
than activated carbon.>®

H* + H,O + AR > M"" + Ca** + H* (8)

M"" + Ca®* + 2NaAlg — Ca(Alg), + 2Na™ + M(Alg), (9)

Research has shown®® that the adsorption process for
a multi-metal system containing various heavy metals is
considerably more complex than single-metal adsorption. This
can be ascribed to the synergistic or antagonistic effect between
different ions when multiple heavy metals are involved in the
adsorption process, influencing the adsorption performance of
individual metals. Cao et al.** investigated the surface adsorp-
tion behavior of soda residue in the presence of Cd**, Cu**, and
Zn** as competing ions. The results indicated that the
competitive adsorption coefficient between Cd>* and Zn**
exhibited an upward trend as the concentration and pH

1% Nano-Fe;04 NaHCO;. HCI

\ + Stir evenly

3% Alginate

—-’ Gel solution ’Lﬂ'ﬂ Forming ‘
dry

Fig. 3 The FesO4/SA-AR preparation process.
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increased, while that of Cu®" declined. However, the competi-
tive adsorption coefficient between Cd>" and Zn** decreased at
a higher temperature, while that of Cu®" increased.

3.1.2 Organic pollutant removal from wastewater. Organic
pollutants in wastewater mainly originate from the processes
used in the textile, leather, paper, and printing industries and
include oily organic pollutants generated during industrial
production. Wastewater containing organic pollutants is char-
acterized by high chemical oxygen demand (COD), low
biochemical oxygen demand (BOD), and intense coloration.
Many dyes and their degradation products in wastewater pose
significant risks to aquatic organisms and human health.*®
Traditional methods often do not remove organic pollutants
due to their complex aromatic structures, hydrophobic nature,
and poor biodegradability.** However, the high specific surface
area and large surface energy of soda residue allow for organic
pollutant adsorption.

Current research involving organic substance removal using
soda residue mainly focuses on removing anionic and cationic
dyes and oily organic pollutants. Soda residue has been employed
for the adsorption-precipitation removal of reactive bright red K-
2BP, reactive light yellow K-6G, acid orange II, direct yellow R,*®
and Acid Blue 80 (ref. 29) from wastewater. The mechanism
involves the fine-particle precipitation of hydroxides with large
surface areas and high surface free energy in highly alkaline
solutions, which adsorb anionic dyes.*” However, the soda
residue adsorption capacity is significantly influenced by the pH
of the solution. At lower initial pH values, only Fe*" and AI’*
precipitates form, resulting in limited adsorption capacity due to
the low Fe*" and AI** content in the residue (Table 1). Conversely,
a significant number of Mg(OH), and Ca(OH), crystals form at
higher pH values, while the production of intermediate products
during crystal formation increases the positive surface charge,
consequently enhancing anionic dye adsorption via charge
neutralization (reaction (10)). Furthermore, during precipitation,
the newly formed three-dimensional network structure of
hydroxides can capture and adsorb dyes, significantly improving
dye removal efficiency. Surfactant-modified soda residue can
mitigate the pH effect.”*** For example, sodium dodecyl sulfate
surfactant can maintain a negative surface charge within a wide
pH range (pH 3-11), consequently exhibiting excellent adsorption
performance for cationic dyes when the residue is modified.*
Surface-modified soda residue with surfactants also exhibits
hydrophobic properties, displaying strong adsorption affinity for
hydrophobic organic pollutants, facilitating their efficient
removal from wastewater.

Furthermore, research was also conducted on the removal of
oil-containing organic compounds, such as emulsified oil,** oil
emulsions,*® and petroleum sulfonate** from wastewater, with
promising adsorption results (Table 2). Studies have shown that
soda residue and hydroxide particles formed in highly alkaline
conditions restrict oil droplet migration via electrostatic
attraction, hydrogen bonding, and particle surface adhesion,
leading to the adsorption and encapsulation of oil droplets or
organic components in the hydroxide crystals to effectively
remove organic pollutants.”’

© 2023 The Author(s). Published by the Royal Society of Chemistry
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2 +OH™ ++OH 0
Mg 2 MgOH"™ 2 Mg(OH),(s)

(10)
+H* +H*

3.1.3 Application in eutrophication water control. Phos-
phorus plays a significant role in water body eutrophication.*®
Some studies have shown that soda residue can be used to
effectively remove phosphorus from water. Yan et al.** modified
soda residue using NaOH and HCI and tested their ability to
remove phosphate from water. The maximum adsorption
capacity values of the alkali- and acid-modified residues were
211.9 mg ¢ ' and 2.2 mg g}, respectively, indicating that alkali
modification significantly enhanced the phosphorus removal
performance of soda residue, while acid modification exhibited
a suppressive effect. The phosphorus removal mechanism of
alkali-modified residue involves two main parts: the formation
of Ca-P precipitation via the reaction between Ca** and H,PO,~
and HPO,>~ in the solution system (reactions (11)-(13)) and the
formation of phosphorus-containing precipitate due to the Mg,
Al, and Fe ions (leached from the soda residue) reaction with
H,PO,~ and PO,’" (reactions (14)-(16)).° Wang et al.** synthe-
sized soda residue-based polymer adsorbents by combining 4 : 1
soda residue with kaolin and sodium silicate activators to
remove phosphate from water. The amorphous calcium-
aluminum-silicate formed during geopolymerization released
hydroxide ions, facilitating insoluble calcium hydrogen phos-
phate (CaHPO,-2H,0) formation via the reaction between Ca**
and phosphate ions to remove the phosphorus. The theoretical
maximum adsorption capacity was 56.45 mg g~ .

Ca’" + HPO,* + 2H,0 — CaHPO,-2H,0 (11)
Ca?* + 2H,PO,~ + H,0 — Ca(H,POs),-H,0O" (12)
5Ca** + 3HPO,*>~ + 4OH™ — Cas(PO,);0H + 3H,0 (13)
Mg®* + 2H,PO4~ — Mg(H,POy),’ (14)

AP* + PO~ — AIPO, (15)

Fe** + PO,>~ — FePO, (16)

3.2 Flue gas desulfurization

China is the largest global coal producer. Approximately 0.014 ton
of SO, is produced as a byproduct for every ton of standard coal
burned.”* SO, stimulates respiratory diseases in humans and
contributes to acid rain formation, which can damage the envi-
ronment. The current desulfurization methods in China mainly
include dry, semi-dry, and wet desulfurization.*® The basic prin-
ciple of desulfurization involves gas-liquid/gas-solid acid-base
neutralization. Although limestone/lime wet flue gas desulfur-
ization (FGD) technology is widely used, large-scale limestone
mining can lead to ecological destruction and resource depletion.
Using soda residue as a substitute for limestone or lime can
facilitate the development of new desulfurizing agents. This

approach reduces desulfurization costs and improves

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The process flow chart of liquid desulfurizer preparation from
soda residue.

desulfurization efficiency while producing gypsum as a desulfur-
ization byproduct, which can satisfy solid waste resource utili-
zation requirements. As shown in Fig. 4, the process involves the
removal of sand and stone from the soda residue via sedimen-
tation, followed by concentration to obtain soda residue sludge
with a settling rate of around 85%. By replacing the chloride ions
with wash water, a chlorine-removing desulfurizing agent is ob-
tained for flue gas desulfurization.>*

The high alkalinity of soda residue (pH 12.0-12.4) ensures an
alkaline environment in the slurry of the desulfurization tower,
promoting economical, efficient desulfurization with costs
40-60% lower than when using the limestone/lime method, and
a desulfurization efficiency of 99%, resulting in SO, concen-
tration in flue gas as low as 20 mg m>.%* Additionally, the
physical properties and chemical composition of the soda
residue byproducts are similar to those produced via limestone
desulfurization, making them suitable for application in
construction products and cement retarders. Soda residue can
also be combined with other solid waste for desulfurization. For
example, mixing soda residue with carbide slag during flue gas
desulfurization experiments showed that the particle sizes of
the soda residue, the soda residue to carbide slag ratio, organic
acid addition, and pH values impacted the soda residue
desulfurization efficiency. The highest soda residue desulfur-
ization rate (95%) was achieved at a pH exceeding 5, a particle
size below 60 um, a soda residue to carbide slag ratio of 1:1,
and an addition of a certain amount of binary organic acid.*®
Wet soda residue desulfurization occurs in three stages.>” The
first involves the rapid reaction of OH™, Mg>*, and Ca** with SO,
in the slurry, leading to CaSO; and MgSO; formation, with some
of the products oxidizing to sulfates (reactions (17) and (18)).
The second stage involves the absorption of SO, by HCO;™
(reaction (19)). The third includes two types of reactions: one is
the secondary reaction of Mg**, Ca®>*, and OH~ (dissolved and
ionized from Mg(OH),, CaCOj;, and CaO) with SO, (reactions
(20) and (21)), while the other involves the secondary reaction of
CaSO; and MgSO; with SO, (reaction (22)).

When HCI gas is present in the flue gas, the absorption
efficiency of SO, increases rather than decreases, and the
enhancement effect is mainly observed during the later desul-
furization stage. This is because HCI first reacts with the CaO in
the desulfurizing agent to form calcium chloride hydroxide
(CaClOH), which then reacts further with SO, to achieve
desulfurization. This indicates that modified soda residue can
be wused for simultaneous flue gas desulfurization and
dechlorination.”®

Therefore, utilizing soda residue as a flue gas desulfurizing
agent in coal-fired power plants addresses the issue of soda
residue disposal in the soda industry and helps control

RSC Adv, 2023, 13, 28975-28983 | 28979
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pollution emissions, facilitating a rational, effective circular
economy.

Ca®* + Mg?* + 40H™ + 280, — CaSO; + MgS0; + 2H,0(17)

H,0 + CO5*™ + SO, — HCO;™ + HSO3;~ (18)
HCO;™ + SO, — HSO5™ + CO, (19)
Mg>" + 20H™ + SO, — MgSO; + H,O (20)
Ca’* + 20H™ + SO, — CaSO0; + H,0 (21)

CaSO; + MgSO; + 2H,0 + 280, — Ca(HSOs),
+ Mg(HSO3),  (22)

3.3 Soil remediation

Soil contamination with toxic metals, pesticides, and organic
pollutants remains a growing global concern. While the presence
of pollutants in the soil is a natural consequence of rock weath-
ering, elevated levels are mainly attributed to human activi-
ties.>**® Many studies have shown that fully utilizing soda residue
characteristics can condition the soil and stabilize the heavy
metals in contaminated soil. On the one hand, soda residue is
alkaline, with a high salt content (13%), and contains a signifi-
cant amount of activated calcium ions and various trace elements
essential for crop growth (such as Ca, Mg, Si, K, and P). Therefore,
soda residue can be used to adjust acidic soil, produce compound
plant fertilizers, supplement soil with trace elements, and
promote organic matter decomposition.®* For example, Li®* et al.
used soda residue to improve the acidity of tea plantation soil and
alleviate aluminum toxicity. The results showed that adding soda
residue increased the soil pH, effectively addressing soil

Table 3 The effect of ammonia soda residue on soil remediation

View Article Online

Review

acidification issues. Additionally, soda residue reduces the total
soluble aluminum, exchangeable aluminum, and organically
bound aluminum by forming and retaining hydroxyl aluminum
polymers, increases exchangeable Ca, Mg, K, and Na, and
enhances the effective cation exchange capacity to improve soil
fertility. Huang® et al. processed soda residue into calcium-
magnesium compound fertilizers using a specific technique for
agricultural production. The results indicated that this fertilizer
increased crop yields and improved soil quality.

On the other hand, soda residue effectively immobilizes
heavy metals in the soil, as shown in Table 3.

Yan et al.®® used soda residue, calcined soda residue,
phosphorus-containing residue, calcined
phosphorus-containing soda residue to remediate Pb-
contaminated soil. The results indicated that phosphorus-
and calcined phosphorus-containing soda residues achieved Pb
passivation efficiencies exceeding 60% and 90%, respectively.
Treatment significantly decreased the bioavailability and bio-
accessible fraction of Pb. Moreover, phosphorus-containing
soda residue moderately increased phosphorus nutrients in
the soil without significantly affecting its physicochemical
properties. Liu et al.*® used a soda residue cement composite
solidification agent to treat Zn-contaminated soil and discussed

soda and

the effect of the curing time, binder ratio, and Zn”>* concentra-
tion on its unconfined compressive strength. The results
showed that a higher Zn** concentration led to Zn(OH),
formation during the solidification process, consequently
reducing the unconfined compressive strength of the soil.

In addition, studies have also examined the simultaneous
passivation and remediation of heavy metals co-contaminated
soils using soda residue. Wei et al.®* employed soda residue-
modified biochar for the simultaneous remediation of Cd and
Pb co-contaminated soil. The results indicated that the yield of
maize grown in the co-contaminated soil increased by

Passivation materials Pollution  Type of soil

Type of experiment

Effect Ref.

Soda residue Pb Artificially polluted soil

Soda residue Pb Artificially polluted soil

Cement-soda residue Zn Artificially polluted soil

Fly ash + soda residue Pb Artificially polluted soil

P-containing soda residue  Pb Shooting range soil

Biochar + soda residues Cd, Pb Pyrite mining area

28980 | RSC Adv, 2023, 13, 28975-28983

Laboratory experiment

Laboratory experiment

Laboratory experiment

Laboratory experiment

After 28 days of curing, the lead content 22
in the leachate is reduced to about 30%

The maximum adsorption amount of the 67
tested specimen is 34 mg g~ ', which is
significantly higher than those of other

clay materials

Under freeze-thaw cycles, the initial Zn 62
content increasing from 500 to 10 000 mg

kg ', the cumulative fraction of leached

Zn*" increased more than 5 times

The soil strength increases significantly 68
and is more suitable for the removal of

lead from contaminated soil stains at low

concentrations

Pot experiment More than 60% of soil-Pb was 61
transformed to residual fraction

Field experiment Decreased the Cd/Pb contents of maize 66

grains by 0.16-0.21 mg kg ™' (Cd) and
0.05-0.51 mg kg™" (Pb) over the 3 year
period

© 2023 The Author(s). Published by the Royal Society of Chemistry
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approximately 10 tons per hectare over three years, while the Cd
and Pb content in the maize grains met the Chinese feed
additive standards. Furthermore, soda residue-modified bio-
char application significantly increased the soil pH and reduced
the heavy metal reactivity. Hydration, precipitation, and
adsorption represent the main mechanisms for immobilizing
soil pollution using soda residue. Hydration refers to the
primary reaction that occurs when alkali residue is introduced
into the soil and persists throughout the soil remediation
process.®® Complex chemical reactions take place between the
soil and alkali residue components, such as CaCO;, Ca(OH),,
SiO,, and Al,0;, generating several hydration products,* as
shown in eqn (23)-(28). The formation of various hydration
products contributes to soil compaction, improves the leaching
characteristics, and enhances the adsorption and encapsulation
of the hydration products.
CaCOj; + Ca(OH), — CaCOj;-Ca(OH), (23)
CaCOj; + 2CaO + SiO,
+ (n + 1)H,O — CaSiO;-CaCO;-Ca(OH),-nH,O (24)

Si0, + Ca(OH), + nH,0 — Ca0-SiO,-(n + HH,0  (25)
Al,O; + Ca(OH), + nH,0 — Ca0-ALO;-(n + DH,0  (26)
Ca(OH), + SiO, + nH,O — CaO-SiO,-(n + HH,0  (27)

2Ca(OH), + CaCO; + SiO,
+ nH,O — CaSiO;-CaCO;-Ca(OH),-(n + HH,O  (28)

Furthermore, soda residue provides alkalinity to acidic,
contaminated soils and generates insoluble precipitates, which
serve as the primary immobilization and stabilization products
for heavy metals. Studies have shown that heavy metals in acidic
soils exhibit high reactivity.””* Soda residue addition signifi-
cantly increases the soil alkalinity and the number of
exchangeable cations.®® For instance, Pb and Zn in soil react
with OH™ and CO;>~ to form precipitates.®®” The reactions are
represented by eqn (29)-(32). The forms of the precipitates are
influenced by pH, as shown in eqn (33). The Zn precipitate types
vary as the pH level increases.”” However, high heavy metal
concentrations in the soil can facilitate the rapid formation of
substantial precipitates, which, to some extent, hinder the
hydration process.”™

Pb** + 20H™ — Pb(OH), (29)
Pb** + CO;*>~ — PbCO; (30)
2Pb*" + 20H™ + CO5>~ — Pb,y(OH),CO; (31)
Zn** + 20H™ — Zn(OH), (32)
[Zn(OH,)e*" — [Zn(OH)]" — [Zn(OH),]’
— [Zn(OH);]” — [Zn(OH)y*~  (33)

In addition, soda residue application increases the soil pH
and promotes calcium zeolite formation during the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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solidification process, consequently enhancing heavy metal
adsorption.” This is because higher alkalinity can neutralize
a significant number of H' ions in acidic soils, providing more
heavy metal ion adsorption sites. The generated calcium zeolite
presents a larger surface area. The abundant anions on the soda
residue surface can adsorb more metal cations to achieve
charge balance.*>”®

4 The risks and challenges of soda
residue in environmental applications

Although soda residue displays considerable potential for
environmental protection, the ecological and environmental
risks associated with its use should not be overlooked.

(1) A large amount of sludge is generated: during alkaline
sludge wastewater treatment, the metal ions or organic
substances in the wastewater form sludge or sediment after
precipitation, neutralization, and other treatments. The treat-
ment and disposal of alkaline heavy metal-containing sludge
remain a global challenge, causing severe water and soil
pollution when not treated correctly.””

(2) Dechlorination and desulfurization wastewater genera-
tion: to reduce equipment corrosion by chlorine, the soda
residue solution requires dechlorination treatment, inevitably
producing concentrated and harmful chlorinated wastewater.
Moreover, soda residue desulfurization wastewater is charac-
terized by high pH, which is toxic to organisms, disrupting their
living environment and physiological functions, and inhibiting
gymnosperm growth.”®

(3)Application limitations: using soda residue as an adsor-
bent or precipitant to remove pollutants from water often
requires strict control of the operational conditions and certain
modifications. This increases adsorbent cost and causes this
approach to remain experimental, restricting application for
large-scale wastewater treatment.

(4) Enhanced absorption and accumulation of harmful
elements in crops: in addition to the main Ca, Na, Si, and Al
components, soda residue also contains small amounts of
harmful elements, such as Hg, Cd, Cu, F, Cl, As, Pb, and Ni.
Using soda residue as a passivating agent for soil amendment
during soil pollution remediation poses significant ecological
risks.””® Wang et al.”” reported that these elements in soda
residue were harmful during heavy metal-contaminated soil
remediation. For example, adding soda residue to soil planted
with Brassica plants can increase cadmium bioavailability and
uptake by plant roots. Soda residue application can also
significantly increase the water-soluble fluoride in the soil,
leading to fluoride accumulation in crops.

(5) Soil salinization and alkalization: soda residues contain
about 4% sodium chloride and several soluble salts, of which
CaCO; is a highly viscous inert salt. Therefore, soda residue lead
to salt accumulation, soil crusting, plant water uptake inhibi-
tion, physiological plant activity interference, and soil chem-
istry alteration. This initiates and exacerbates soil salinization,
further promoting land degradation and reducing arable land
productivity.®-

RSC Adv, 2023, 13, 28975-28983 | 28981
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5 Conclusion and prospects

Due to its small particle size, large specific surface area, high
pH, charged nature, and solubility, soda residue exhibits strong
adsorption capacity. Furthermore, its surface area can be
increased via appropriate modification to enhance its adsorp-
tion performance. Although soda residue and its modified
forms show considerable potential in various environmental
protection applications, such as wastewater treatment, flue gas
desulfurization, and soil remediation, several technical and
research challenges remain that must be addressed to improve
utilization. The following are research challenges in the envi-
ronmental application of soda residue:

(1) Current research mainly focuses on removing individual
heavy metals using soda residue, while surface water pollution
often involves the coexistence of multiple heavy metals. Each
metal ion has an optimal pH for removal, which varies among
different metal ions. Therefore, it is important to examine the
appropriate conditions, removal efficiency, and mechanisms to
simultaneously remove multiple metal ions using soda residue
to efficiently purify wastewater containing multiple metals.
Additionally, since current research primarily concentrates on
Cd, Cu, Zn, Pb, and As, it is necessary to investigate a broader
heavy metal range.

(2) Although a mature methodological approach is available
for treating and disposing of ordinary sludge, removing heavy
metals from the alkaline sludge produced by soda residue is
more challenging. This impedes the industrial application of
soda residue, necessitating the development and exploration of
new treatment and removal techniques.

(3) The compositions of soda residue generated by different
processes vary. Using a large quantity of chlorine- and salt-
containing soda residue as a flue gas desulfurization agent
can damage equipment. Therefore, research should focus on
improving the soda residue dechlorination and desalination
processes.

(4) The high alkalinity of soda residue and the presence of
trace Hg, Cd, Cu, F, Cl, As, Pb, Ni, and other pollutants can
cause soil salinization and groundwater pollution when applied
in large quantities. Therefore, a long-term tracking risk evalu-
ation is necessary before using soda residue in soil.
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