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Olivine is a key constituent of reactive geologic formations and industrial
wastes that are targets for permanent carbon storage via mineralization.
The relative paucity of kinetic parameters for olivine transformation to
magnesite via coupled dissolution and carbonate precipitation hinders
efforts to predict rate and design efficient mineralization strategies. Our
calculations of two new olivine carbonation activation energies help
address these knowledge gaps relevant to natural and engineered envi-
ronmental carbon-management processes.
We present two new activation energies for magnesite precipitation

during forsteritic olivine (Mg2�xFexSiO4; 0.18 # x # 0.26) carbonation

in high-pressure carbon dioxide. These new activation energies of 89

� 6 and 85 � 1 kJ mol�1 are consistent with the literature for

magnesite precipitation in aqueousmedia and extend the temperature

range to encompass 90 �C to 50 �C. These insights will help improve

understanding of mineral transformation kinetics in the subsurface,

including carbon storage in mafic-ultramafic environments, and aid in

the development of carbon dioxide removal (CDR) and net negative-

emissions technologies.
The concept of carbon dioxide removal (CDR) through carbon
capture and sequestration is an integral component of current
climate mitigation strategies and pursuit of net-negative emis-
sions technologies. A promising CDR approach involves injec-
tion of carbon dioxide (CO2) into reactive mac and ultramac
rocks to form stable carbonate minerals, enabling rapid
permanent carbon storage.1–8 In this context, understanding
rates of mineral carbonation is crucial for predicting fate and
transport of subsurface CO2.

Olivine (Mg2�xFexSiO4) is a key reactive component of mac
and ultramac rocks, and its dissolution, hydration, and
carbonation rates have received considerable scrutiny (c.f., ref.
9–13). The recent quantitative kinetics analyses and compila-
tions of Miller et al.11 and Sendula et al.12 t the Avrami model14

and shrinking particle model (SPM),12,15–17 respectively, to the
broad olivine carbonation literature. The more recent and
comprehensive study of Sendula et al.12 provided 35 new
experiments, nearly doubling the amount of available datasets,
and the SPM proved most exible and adaptable for the diverse
olivine carbonation literature. The goal of the present
Communication is to extract carbonation activation energy
parameters from recently compiled olivine carbonation
studies.11,12 To do so we critically reviewed the datasets to
identify two12,18 suitable internally-consistent collections of
irectorate, Pacic Northwest National

.miller@pnnl.gov; todd.schaef@pnnl.gov

–429
reaction rate vs. temperature data for magnesite precipitation
during olivine carbonation. These datasets were suitable as they
included reaction kinetics for at least three distinct
temperatures.

The San Carlos olivine used in Sendula et al.12 has �88–91%
of the divalent metal sites occupied with Mg2+ (Fo88–Fo91;
Mg1.76Fe0.24SiO4 to Mg1.82Fe0.18SiO4),19–23 and the composition
of the Gadikota et al.18 olivine is Fo87. The most rapid olivine
carbonation occurs at �185–200 �C. (c.f., ref. 11 and 12) Indeed,
the high-temperature datapoints of Sendula et al.12 (200 �C) and
Gadikota et al.18 (185 �C) are lower than expected based on the
calculated activation energies, consistent with this 185–200 �C
temperature range being an inection point for rate vs.
temperature.

Plots of the Sendula et al.12 (Se21, 50–150 �C) and Gadikota
et al.18 (Ga14, 90–150 �C) carbonation rates on Arrhenius plots
(Fig. 1a and b) illustrate the linear relationships needed to
calculate apparent activation energies. The linearity of the
Arrhenius plots indicates that temperature is the dominant
control, and other possible variations in chemical affinity and
pressure12 (Fig. 1c) are negligible, at least for these far-from-
equilibrium high-pressure carbonation studies. The olivine to
magnesite activation energy values are “apparent” as they
encompass contributions from all elementary reactions
involved in the complex dissolution–precipitation processes.
The calculations revealed the apparent activation energies of 89
� 6 (Se21) and 85 � 1 (Ga14) kJ mol�1. These newly-determined
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Arrhenius plots using the carbonation rate results of (a) Sendula et al.12 (Se21) and (b) Gadikota et al.18 (Ga14), showing the variation of the
natural logarithm of the olivine to magnesite transformation rates (J, mol m�2 s�1) as a function of 1000 times the reciprocal absolute
temperature (T) of the experiments. Temperature (�C) is labelled on the upper x-axis for reference. The calculated apparent activation energies,
coefficient of determination, and uncertainties are given next to the linear best fits. Red and dark cyan curves denote 95% prediction band and
95% confidence bands, respectively. In panel (c), the Arrhenius trends have both been plotted on the �C vs. ln J plane, while the Sendula et al.12

and Gadikota et al.18 rates used to construct the Arrhenius plots are shown in the context of pressure and temperature conditions. The reference
drop lines from the points to the P–T plane help clarify the 3D perspective.
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activation energies are consistent with the literature for
magnesite precipitation in aqueous media (Table 1). This
present analysis extended the temperature range of the Table 1
dataset down from 90 �C to 50 �C. Although the studies
compiled in Table 1 span a range of aqueous-mediated
processes, including olivine carbonation, hydromagnesite
transformation, and step advancement on magnesite, all values
are presented given the paucity of literature data. Our group at
Pacic Northwest National Laboratory has also studied the
inuence of adsorbed water nanolm thickness on the activa-
tion energy of forsterite to magnesite carbonation, demon-
strating a linear relationship between reported monolayer H2O
thickness and activation energy, from�34 to�130 kJ mol�1.24–26
Table 1 Compiled apparent activation energies for magnesite precipitat

Magnesite (MgCO3) precipitation apparent activation energies

Activation energy (kJ mol�1) Temperature (�C)

Present communication
89 � 6 50–150

85 � 1 90–150

Literature values
159 � 17 90–100
122.6 � 20a 120–180
100a 110–200
93.3 � 3.3a 120–180
85.1 � 7.7 100–146
81a 110–200
80.2 100–200
92.9 � 3.8b 15–35b

a Based on the solution-mediated transformation reaction of hydromagnes
are due to different uid compositions, and multiple values for Di Lorenzo
andMackenzie46 used the approach of Lippmann47 in conjunction with the
calculate their magnesite precipitation activation energy.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Given the occurrence of multiphase CO2–H2O uids, it is vital to
understand the barriers to magnesite precipitation in aqueous
media to predict and interpret experiments conducted in non-
aqueous regimes (e.g., water lms).

In summary, this Communication presents two new robust
activation energies for the olivine to magnesite carbonation
reaction. These types of monomineralic studies are important
for delineating controlling reaction mechanisms and kinetic
interpretation of mac-ultramac rock carbonation studies (e.g.
ref. 22, 27–35). Further insights from dynamic kinetic model36

and reactive force-eld37,49 development, along with additional
carbonation kinetics studies,12,16,38–40 are vital for clarifying the
multiscale mechanisms and rates of silicate carbonation
ion in aqueous media

Ref.

This study, based on olivine carbonation kinetics
reported by Sendula et al.12

This study, based on Sendula et al.12 calculation of
Gadikota et al.18 olivine to magnesite carbonation rates

Saldi et al. 2009 (ref. 41)
Di Lorenzo et al. 2014 (ref. 42)
Zhang et al. 2000 (ref. 43)
Di Lorenzo et al. 2014 (ref. 42)
Gautier et al. 2016 (ref. 44)
Zhang et al. 2000 (ref. 43)
Saldi et al. 2012 (ref. 45)
Arvidson and Mackenzie 2000 (ref. 46)

ite [(Mg5(CO3)4(OH)2$4H2O)] to magnesite. Multiple Zhang et al.43 values
et al.42 were due to their use of two different kinetic models. b Arvidson
39.3 kJ mol�1 calcite (CaCO3) activation energy of Kazmierczak et al.48 to
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transformations. Our analysis provides a basis for focusing
future work on key mechanistic and kinetic unknowns that
could improve understanding of mineral transformation
kinetics in the subsurface, including carbon storage in mac–
ultramac rocks, and aid in the development of carbon dioxide
removal and net negative-emissions technologies.
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