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Environmental significance

Measurement of gas-phase OH radical oxidation
and film thickness of organic films at the air—water
interface using material extracted from urban,
remote and wood smoke aerosolf

Rosalie H. Shepherd,? Martin D. King, & *® Adrian R. Rennie, © € Andrew D. Ward, ©?2
Markus M. Frey, ©¢ Neil Brough, © ¢ Joshua Eveson,? Sabino Del Vento,?

Adam Milsom, ©f Christian Pfrang, ©f Maximilian W. A. Skoda @ ¢

and Rebecca J. L. Welbourn @ ¢

The presence of an organic film on a cloud droplet or aqueous aerosol particle has the potential to alter the
chemical, optical and physical properties of the droplet or particle. In the study presented, water insoluble
organic materials extracted from urban, remote (Antarctica) and wood burning atmospheric aerosol were
found to have stable, compressible, films at the air—water interface that were typically ~6-18 A thick.
These films are reactive towards gas-phase OH radicals and decay exponentially, with bimolecular rate
constants for reaction with gas-phase OH radicals of typically 0.08-1.5 x 1071° cm?® molecule™ s7%. These
bimolecular rate constants equate to initial OH radical uptake coefficients estimated to be ~0.6-1 except
woodsmoke (~0.05). The film thickness and the neutron scattering length density of the extracted
atmosphere aerosol material (from urban, remote and wood burning) were measured by neutron reflection
as they were exposed to OH radicals. For the first time neutron reflection has been demonstrated as an
excellent technique for studying the thin films formed at air—water interfaces from materials extracted from
atmospheric aerosol samples. Additionally, the kinetics of gas-phase OH radicals with a proxy compound,
the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) was studied displaying significantly different
behaviour, thus demonstrating it is not a good proxy for atmospheric materials that may form films at the
air—water interface. The atmospheric lifetimes, with respect to OH radical oxidation, of the insoluble
organic materials extracted from atmospheric aerosol at the air—water interface were a few hours. Relative
to a possible physical atmospheric lifetime of 4 days, the oxidation of these films is important and needs
inclusion in atmospheric models. The optical properties of these films were previously reported [Shepherd
et al., Atmos. Chem. Phys., 2018, 18, 5235-5252] and there is a significant change in top of the atmosphere
albedo for these thin films on core—shell atmospheric aerosol using the film thickness data and
confirmation of stable film formation at the air—water interface presented here.

Organic films on cloud droplets or aqueous aerosol particles may alter the chemical, optical and physical properties of the droplets or particles.
Measurement of the (I) film thickness formed by typical atmospheric materials is critical for calculation of light scattering by core-shell aerosol and (II)
oxidation lifetime of the film by OH radicals is important for an assessment of atmospheric persistence. Organic film material extracted from atmospheric
aerosol is shown to form stable compressible films at the air-water interface that are ~6-18 A thick and reactive towards atmospheric oxidation by OH
radicals with chemical lifetimes competitive with comparable to aerosol residence times. Film material extracted from urban, Antarctic and wood-burning
was shown be different to a model lipid compound.

“Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton

Laboratory, Oxford, OX11 OFA, UK

*Department of Earth Sciences, Royal Holloway, University of London, Egham,
Surrey, TW20 0EX, UK. E-mail: m.king@rhul.ac.uk
“Department of Chemistry — Angstrom Laboratory, Uppsala University, 75121

Uppsala, Sweden

°ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Oxford,
0X11 0QX, UK

ISchool of Geography, Earth and Environmental Sciences, The University of
Birmingham, Birmingham, B15 2TT, UK

available. See DOIL

T Electronic  supplementary information

10.1039/d2ea00013j

(EST)

“British Antarctic Survey, Natural Environment Research Council, High Cross,
Madingley Road, Cambridge, CB3 OET, UK

574 | Environ. Sci.. Atmos., 2022, 2, 574-590

1 Present address: National Institute of Water and Atmospheric Research,
Wellington, New Zealand.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d2ea00013j&domain=pdf&date_stamp=2022-07-08
http://orcid.org/0000-0002-0089-7693
http://orcid.org/0000-0001-8185-3272
http://orcid.org/0000-0001-6946-2391
http://orcid.org/0000-0003-0535-0416
http://orcid.org/0000-0002-2316-5292
http://orcid.org/0000-0003-3875-9015
http://orcid.org/0000-0001-9023-5281
http://orcid.org/0000-0003-0086-2965
http://orcid.org/0000-0002-4254-5354
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ea00013j
https://pubs.rsc.org/en/journals/journal/EA
https://pubs.rsc.org/en/journals/journal/EA?issueid=EA002004

Open Access Article. Published on 12 April 2022. Downloaded on 16/02/2026 6:54:36 PG.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

1 Introduction

Atmospheric aerosols have a crucial role in global climate” they
contribute directly to global climate by either warming or
cooling the planet by absorption or scattering incoming solar
radiation, and indirectly affect global climate via cloud
condensation effects.»® However, current knowledge of atmo-
spheric aerosols is far from complete.*®

Aqueous aerosol and cloud droplets are susceptible to
organic film formation at the air-water interface.®** The pres-
ence of such a film may change the chemical and physical
properties through (a) reducing the rate of evaporation,'>™* (b)
inhibiting the transport of chemicals from the gas to the liquid
phase,® (c) reducing the scavenging of the droplet or aerosol by
larger cloud and ice particles,*® (d) altering the cloud
condensation nuclei activation potential,"”*® (e) changing the
optical properties of the droplet or aerosol” and (f) altering the
reactive uptake ability.® An organic film at the air-water inter-
face is susceptible to oxidation owing to atmospheric chem-
istry,>*>* a consequence of which is film ageing.**** For the
purpose of atmospheric modelling the aerosol could be
considered to behave as either an uncoated aerosol or a coated
aerosol if the oxidation lifetime of the chemical film is less than
a few seconds or greater than ~10 days,*® respectively. However,
an oxidation lifetime between the extremes would require
oxidation of the film to be considered in atmospheric aerosol
modelling; therefore understanding the chemical oxidation
lifetime of the organic film is paramount. Previously it has been
shown that it is critical to use good proxies for real material
extracted from the atmosphere for such studies.”

Despite vast developments in our knowledge of atmospheric
aerosol, current understanding of the physical and chemical
characteristics is still limited.?”?® The present study broadens
knowledge of organic films on atmospheric aerosols by directly
investigating the oxidation with gas-phase OH radicals of films
from urban atmospheric aerosol sourced at Royal Holloway,
University of London, remote atmospheric aerosol sourced
from Antarctica and wood smoke aerosol. Alongside the remote
atmospheric aerosol, organic extracts from Antarctic seawater
were also collected. The sea-surface micro-layer and sub-surface
layer contain many natural and anthropogenic organic mate-
rials***>?%3% that will enter the atmosphere through bubbles
bursting when waves break or from surface wind generating
aerosol droplets.”***¢ The four samples may be interpreted as
being from polluted urban, biomass burning, remote marine
atmospheric aerosols and seawater. The refractive indices of
these samples have previously been studied and reported.*”

Thin films present at air-water interfaces have been studied
by a variety of techniques including X-ray and neutron
studies®***** and laser studies.****” In the present work, neutron
reflectivity was used to study oxidation of thin films extracted
from atmospheric samples at the air-water interface. Oxidation
chemistry of proxy-organic films have been studied previously,
examples include oleic acid,******* pinonic acid,” anthra-
cene,” lipids®*®* and methyl oleate.* The use of OH radicals as
the atmospheric oxidant has additionally featured in a number
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of studies.”>*® The present study extends previous work that
used proxies by investigating the oxidation kinetics of material
extracted from the atmosphere as a thin film at the air-water
interface. Once the film is spread at the air-water interface, the
thickness of the film and neutron scattering length density were
determined by measurement of the neutron reflectivity: the
scattering length density of a material is dependent on its
elemental composition and density, as will be explained in
Section 2.2. In addition, the reaction kinetics for the films when
oxidized by gas-phase OH radicals was determined. The oxida-
tion reaction was followed through continuous collection of
neutron reflectivity profiles that allowed the neutron scattering
length density per unit area of the interfacial layer to be fol-
lowed with time. A bimolecular rate constant for the oxidation
reaction was determined and a kinetic model®” was fitted to the
data and used to estimate the chemical lifetime of the film with
respect to OH radical oxidation in the atmosphere. OH radicals
are a very reactive, lower atmosphere, oxidants present during
the daytime,*®* and at a lower mixing ratio at night. OH radi-
cals react with both saturated and unsaturated organic mate-
rial.®® Lipids are commonly used as proxies for films on
atmospheric aerosols.*>** Hence, through comparing the
reaction kinetics of DSPC with atmospheric aerosol extract
under the same conditions, the validity of using lipids as proxy
aerosols could be probed. The reaction between the deuterated
lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and
gas-phase OH radicals was also studied to determine whether
DSPC could be used as a kinetic proxy compound for organic
films extracted from atmospheric matter and as a model reac-
tion substrate as the materials collected from the atmosphere
are limited.

2 Experimental

The air-water interface was formed in a shallow polytetra-
fluoroethylene (PTFE) trough enclosed in a Tedlar bag; the bag
was sealed to allow the development of the appropriate gaseous
oxidising environment above the film. Film thickness and
neutron scattering length density of the atmospheric aerosol
film and how the film alters upon oxidation with gas-phase OH
radicals was studied with neutron reflection techniques.®®

2.1 Sample collection and extraction of atmospheric aerosol

Urban, remote and wood smoke atmospheric aerosol extracts as
well as remote seawater samples were collected. Urban aerosol
was collected ~15 m above the ground on the campus of Royal
Holloway, University of London; urban aerosol was continu-
ously collected for over a year in ~30 day periods. The aerosols
collected from the sampling point represent aerosols likely to be
found in polluted air from London. Additionally, owing to the
proximity to three major motorways M25, M40 and M4
(approximately 2-7 km away) and the large international airport
Heathrow (approximately 10 km away), the samples were cat-
egorised as urban. Remote aerosol and seawater samples were
collected from coastal Antarctica; two Antarctica aerosol filter
samples were collected at the Halley Clean Air Sector Laboratory
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operated by the British Antarctic Survey during the 2015 and
2016 southern hemisphere summers.®® For each sample,
atmospheric aerosol was continuously sampled for approxi-
mately 60 days. A sample of Antarctic seawater was collected on
a sea ice cruise ship in the Weddell Sea (Antarctica) during the
southern summer of 2014. Wood smoke aerosol was collected
from the chimney of a domestic wood burner; the fire was kept
burning for six hours with seasoned wood (Wild Cherry), aero-
sol being collected continuously. For all samples, analytical
blanks were collected to account for any filter contamination.
To ensure there was an accurate representation of all possible
contamination, the analytical blanks travelled to the sample
sites under identical conditions to the filters used for aerosol
collections.

To collect the urban atmospheric aerosol, air was pulled
through short sections (10 cm x 1/4” OD) of clean stainless-
steel pipelines into a filter holder using an air pump at a flow of
30 L min~" at local ambient temperature and pressure and
caught on pre-combusted 47 mm quartz filters (SKC) encased
within perfluoroalkoxy (PFA) Savillex filter holders. To collect
remote atmospheric aerosol extracts ambient air was sampled
from a half metre length of quarter inch OD perfluoroalkoxy
tubing onto a filter holder using a Staplex low volume air
sampler (Model VM-4) at a flow rate of 20 L min~ " at local
ambient temperature and pressure. A more robust filter holder
was required to collect wood smoke aerosol. These samples
were collected on the same type of filters, but housed in
aluminium and steel filter holders machined at Royal Holloway,
University of London that had the same internal dimensions as
the Savillex commercial filter holder. All instrumentation used
in sample collection was cleaned with ultrapure water (>18 MQ
cm) and chloroform (Sigma-Aldrich, 0.5-1% ethanol as stabi-
lizer) multiple times and were assembled and dissembled in
a clean glove bag. After collection, sample plus filter were stored
in the dark at —18 °C in clean glass Petri dishes until extraction.

To prepare the samples for use in the neutron reflection
experiments, each filter was cut in half in a glove bag to avoid
contamination. One half was for extraction, the other half was
stored in the dark at —18 °C. The filter half was placed in
a sealed glass conical flask with 10 mL of chloroform and 10 mL
of water and very gently sonicated for five minutes and then
filtered through a pre-combusted quartz filter (SKC) to remove
the original filter paper. The chloroform fraction contained any
organic material from the aerosol which could form an insol-
uble film at the air-water interface.” The chloroform was
separated from the water and subsequently evaporated under
nitrogen leaving behind the organic atmospheric aerosol extract
as awax or oily residue, depending on the aerosol source. To the
residue, 2 mL of chloroform was added. The sample was stored
in amber glass bottles at —18 °C in the dark until use on the
beam line. More detailed information on the extraction process
can be found elsewhere.*”

For the Antarctic seawater sample: approximately, 1 L of
remote seawater was pumped from a water depth of ~10 m
using the ship's continuous water sampling. The water was
collected in a prepared PTFE travel jar, which was subsequently
sealed and frozen at —18 °C until analysis in the UK. Detritus
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was separated from the seawater samples by first filtering the
water into a clean glass beaker. The water sample was subse-
quently shaken and extracted with chloroform in the method
applied for atmospheric aerosol. To the resultant residue, again
2 mL of chloroform was added and the sample stored in amber
glass bottles at —18 °C in the dark until use on the beam line. All
glassware was cleaned with ultra-pure water and chloroform
before use and all sample preparation was conducted in a clean
environment and or glove bags. DSPC was purchased from
Avanti Polar Lipids.

2.2 Neutron reflection

Using the neutron reflectometer INTER at ISIS Pulsed Neutron
and Muon Source, Rutherford Appleton Laboratory, Oxford-
shire,’® specular neutron reflectivity as a function of
momentum transfer of thermal neutrons was collected to give
neutron reflectivity profiles. Specular reflectivity is the ratio of
intensity of the reflected neutron beam to that of the incident
neutron beam onto the sample, whilst neutron momentum, Q,
is defined as:**

47t sin(6)

0="= W

where A is the wavelength of a neutron and @ the angle of
incidence (and reflection) of the neutron beam. All neutron
reflection measurements were divided by a transmission data
set, taken through the windows of the reaction chamber.
Transmission corrected sample measurements for the incident
neutron wavelength distribution and window transmission
resulting in a normalised data set, which could be fitted as
described below. To obtain thickness and neutron scattering
length density data, neutron reflection at two angles of inci-
dence were used: 0.8° and 2.3° yielding a total momentum
transfer range of Q = 0.015 to 0.33 A~". For the time resolved
measurements of the oxidation reaction, the single angle 2.3°
was used providing a momentum transfer range of Q = 0.03 to
0.33 A~". For all experiments, reflected neutrons as a function of
momentum transfer were recorded for 15 minute time
intervals.

In the present study, the film thickness and neutron scat-
tering length density of the atmospheric aerosol extract films
were determined.®® The neutron scattering length density, p, is
defined as:*

p= Znib,‘ (2)

where b; is the neutron scattering length of the ith element and
n; is the number density of the ith element. The neutron scat-
tering length is related to the interaction of the neutrons with
the nuclei of the material under study and can be different for
different isotopes of the same element, for example the neutron
scattering length for hydrogen (*H) is —3.74 x 10 ° A and for
deuterium (*H) is 6.67 x 10> A.** A film of atmospheric aerosol
extract was placed at the air-water interface. The sub-phase was
a mixture of water and deuterium oxide (heavy water). Owing to
the differences in neutron scattering length of hydrogen and
deuterium, a 91.9 : 8.1 volume ratio of water and deuterium

© 2022 The Author(s). Published by the Royal Society of Chemistry
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oxide forms a solution with an effective neutron scattering
length density of zero. The solution is called air-contrast-
matched-water and was used as the sub-phase for all
experiments.

The experimentally determined neutron reflectivity profiles
were simulated using an optical formalism® to determine
values of the film thickness, J, and neutron scattering length
density, p. These parameters are related to the surface coverage,
I', by the relationship:

I'b=dp (3)

where I is the number of molecules per unit area in a film at the
air-water interface, with an average scattering length, b. The
neutron scattering length is not known for the mixture of
unknown molecules or cannot a priori be known for reacting
molecules at the air-water interface, especially if molecules may
leave or join the interface during a reaction. Therefore, although
film thickness, ¢ and scattering length density, p, are deter-
mined, in the study presented here the neutron scattering
length per unit area of the interface, i.e. the quantity, dp, will be
followed with time during the oxidation reactions; thus for the
kinetics studied in this work the quantity th—gz is followed as
=00t=0
a function of time, as in previous studies.*®** Abeles formalism
as implemented in the software Motofit,” was used to calculate
reflectivity versus momentum transfer. The films of atmospheric
aerosol extract at the air-water interface were simulated as
a single layer lying between two layers of infinite thickness. The
regions of infinite thickness represent the aqueous sub-phase
below the film, and the air above the film, and the neutron
scattering length density of both of these was held at zero. In
addition, the roughness of each layer was held at 3 A and the
background around 5 to 6 x 10~°.

Neutron reflectivity model profiles, neutron reflectivity
versus momentum transfer, such as will be displayed later in
Fig. 1, were calculated by varying the values of the scattering
length density, p, and the thickness of the film, ¢, at the air-
water interface until an excellent fit to the experimental
neutron reflectivity profile was achieved, across the range of
the momentum transfer measured. The surface coverage of
material at the air-water interface, I', cannot be directly
calculated from the product pé because the identity of the
material at the interface and thus the value of b is unknown.
Thus, for following the kinetics of the material at the air-water
interface, the quantity pd is followed. Although the quantity pd
contains the film thickness, 6, it should be considered as the
scattering length per unit area of the film at the air-water
interface and may only be crudely viewed as a metric for the
amount of materials at the interface, weighted by the neutron
scattering ‘potential’. Note the quantity pé may only be
considered in this manner as the scattering length densities of
the bulk materials above and below (air and water) have
effectively zero scattering length density. Values of the scat-
tering length density, p, and thickness, d, were determined as
a function of the time for the neutron reflectivity profiles for

© 2022 The Author(s). Published by the Royal Society of Chemistry
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structural analysis of the film, but the quantity pé was followed
kinetically.

For the lipid, DSPC, a more ordered structure was simulated
as a two layer system: one layer at the water interface representing
the phosphocholine head groups of the lipid, and a second layer
at the air interface representing the tail (hydrocarbon chains) of
the lipid with different neutron scattering length densities and
film thicknesses.” It was also possible to simulate the neutron
reflectivity profiles as a one layer system at the air-water inter-
face, especially during the reaction with OH radical.

2.3 Experimental procedure

To record the neutron reflectivity profile of the films, two PTFE
troughs were used. The first was a Nima Langmuir trough with an
approximate volume of 350 cm® and PTFE barriers with a surface
pressure sensor. The second trough was custom made to facili-
tate the production of an atmosphere of OH radicals above the
trough and consists of a PTFE trough enclosed in a Tedlar gas bag
with a UV photolysis lamp. The setup had two thin aluminium
windows through which the neutron beam passed. The volume of
the trough was approximately 90 cm?; a small trough was used
due to limited sample. Each trough was cleaned with chloroform
and then filled with air-contrast-matched water to create an air-
water interface. The first trough had a surface area of ~270 cm”
and the second trough a surface area of ~168 cm”.

Between 100 and 400 pL of atmospheric aerosol extract dis-
solved in chloroform was added to the air-water interface using
a Hamilton syringe. The amount of material added was typically
a few microliters less than that which would produce visible
lens formation at the air-water interface as determined by off-
line experiment. After preparing the film, the thickness and
neutron scattering length density of the film were determined
from measurements prior to the OH radical oxidation.

UV lamps were required to create gas-phase OH radicals. The
UV lamps were fluorescent germicidal lamps with an output
wavelength peaking at 254 nm. The lamps were suspended 9 cm
above the trough and provided an even irradiation. The Lang-
muir trough and lamps were enclosed within a Tedlar bag to
create a sealed environment. Gas-phase OH radicals were
generated by the photolysis of gas-phase ozone in the presence of
water vapour.®® An atmosphere of ozone and water vapour was
generated by bubbling oxygen through air-contrast-matched-
water at a flow rate of 1 L min~". The flow was then directed
through an ozonizer (Ultra-Violet Products Ltd) that generated
ozone by photolysis of oxygen with a mercury pen-ray lamp.
Subsequently, the flow passed into the Tedlar bag that had an
approximate volume of 25 L with a gaseous mixing time of ~25

. ( 25 L
minutes, = ————73
1 L minute
bag was efficient. To ensure the relative humidity of the experi-
ment environment was maintained, a water reservoir with an
approximate volume of 50 mL was included within the Tedlar
bag. Measurements of the neutron reflectivity of the filter sample
blanks were made for each film at the air-water interface. Two
experimental blanks (controls) were also performed: one experi-
mental control for each sample was measured with the film

) assuming mixing in the Tedlar
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Fig. 1 Neutron reflectivity profiles for organic films extracted from (a) urban, (b) remote, (c) wood smoke and (d) remote seawater on an air—
water interface (red). Also included are the neutron reflectivity profiles for a bare interface (black), and the analytical filter blanks (blue). The figure
demonstrates the analytical blanks are indistinguishable from the bare air—water interface and the samples extracted from the aerosol filter are
clearly distinguishable from the bare interface and analytical blanks. The remote seawater sample and bare surface (d) were recorded separate
from the aerosol samples and their corresponding bare surfaces (a—c).The uncertainty bars are calculated during the data reduction of the raw

counts as counting statistics.

exposed to just ozone (in the absence of UV radiation). The
second experimental control was a measurement with only
oxygen conducted with the ozoniser switched off, but the UV
lights remaining on. However, oxygen is likely to photolyse in the
presence of UV light forming ozone and then OH radicals (by
photolysis of ozone in the presence of water vapour) and hence
some alteration in the film may be expected in this latter case.

2.4 Estimation of OH radical concentration

To accurately estimate the concentration of the OH radicals
produced requires knowledge of the concentrations of water
vapour and ozone and the photolysis rate coefficient for the
photolysis of ozone. The concentration of ozone in the tedlar
bag was 0.85 ppm as measured by UV-VIS spectrometry of the
ozoniser output in a 10 cm path length glass cell sampled just
before entering the tedlar bag. The photolysis rate coefficient of
ozone, J(O('D)), for the reaction,

578 | Environ. Sci.: Atmos., 2022, 2, 574-590

O; + v — O('D) + 0, (4)

was measured directly by a Metcon radiometer’> normally used
for measuring photolysis rate coefficients in the atmosphere.
The oxygen from which the ozone was produced was saturated
with water vapour; the concentration of water vapour was
calculated from the vapour pressure (2.34 kPa at 20 °C %). The
value of the rate constant used for the photolysis of molecular
oxygen was the value for ozone, scaled by the product of the
absorption cross-sections and the quantum yields. To estimate
the concentration of gas-phase OH radicals in the Tedlar bag,
kinetic modelling was based on a series of first-order differen-
tial equations using a Runge-Kutta algorithm.”*”® Atkinson
et al.”® provide data for the basic HOx and Ox reactions occur-
ring in the photolysis of ozone in the presence of water vapour
in their reactions 1 to 30. A first-order coefficient of wall loss
with regard to OH radicals was added to these reaction using
the method outlined by Dilbeck and Finlayson-Pitts.>* The wall

© 2022 The Author(s). Published by the Royal Society of Chemistry
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loss was calculated to be 2 s™!, assuming the Tedlar bag
maintained a volume of 25 L and surface area of 0.612 m” in the
experimental setup and the reaction probability, v, for OH
radicals on Tedlar was similar to halocarbon wax (y = 6 X
10~%).” Overall, the concentration of OH radicals present in the
Tedlar bag was estimated to be 7 x 10° molecule per cm®. A
sensitivity analysis of the kinetic model demonstrated that it
was approximately equally sensitive to the concentrations of
water vapour and ozone, the values of the photolysis rate coef-
ficient and the wall loss coefficient. Thus the major uncertainty
in the determination of the hydroxyl radical concentration is the
wall-loss rate coefficient for OH radicals on the walls of the
Tedlar bag.

2.5 Calculation of a bimolecular rate constants and
atmospheric aerosol extract lifetime

To estimate the lifetime of the atmospheric aerosol extracts in
the atmosphere upon exposure to gas-phase OH radicals, the
bimolecular rate constant, ks, was calculated for the following
reaction:

OH + organic film — products (5)

The surface coverage of the aerosol extracts at the air-water
interface is related to time by

dl i
dr

where I'gy, represents the surface coverage of the film, ¢ time
and ks the bimolecular rate constant for reaction 5. Assuming
the production of OH radicals to be continuous and constant
(and therefore [OH] constant), the relative change in the surface
coverage of the film to be given by the relative change in product
of the neutron scattering length density and film thickness (i.e.
the relative change in the scattering length per unit area) and no
product film, the following relationship could be used to model
the neutron reflection profiles:

= k5 [OH]Fﬁ]m (6)

I ,0;5z

_ __ a—ks[OH]t
= =€ 7
Tam™  Probizo @)

A graph of versus time can then be plotted, and subsequently
fitted to an exponential decay of the form e *°M to yield the
bimolecular rate constant, ks. The atmospheric lifetime, 7, of
the film was calculated by extracting the film half-life from the
output of the KM-SUB kinetic model®” described in Section 2.7.
Atmospheric concentrations of OH radicals have been reported
to range between 2 to 4 x 10° molecule per cm?® for a clean
environment,” and 4 to 6 x 10° molecule per cm® for a polluted
environment.” In the present study, a concentration of 1 x 10°
molecule per cm® has been used to estimate the atmospheric
lifetime, 7.

2.6 Estimation of an initial uptake coefficient

Smith et al,** Hanson,* Worsnop et al.®* have demonstrated
that it is possible to estimate a value for the uptake coefficient
for a gas-phase reagent with a surface by studying the changes
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in concentration of the surface species. Using their formalism it
is possible to estimate the initial uptake coefficient, that is the
probability that the OH radical undergoing a gas-kinetic colli-
sion with a surface is actually taken up at the surface.®**>* To
estimate a value for a uptake of OH radicals, v, on a very thin
organic film at the air-water interface, using the conductance
analogy*>®" and the assumption of case 2 in ref. 65 that all
reactive uptake is dominated by reaction at the interface

dr's . .. OHJc
fm ) hormalised to the gas-surface collision rate u

dr film
di ) 4ksTim

= ([OH]E) - e (8)
4

where v is the initial uptake coefficient for OH radicals on the
thin organic film, [OH] is the gas-phase concentration of OH
radicals in the experiment, ks is the bimolecular rate constant
defined in eqn (6), I'sim is the surface coverage of the film, and ¢
is mean molecular speed of a hydroxyl radical, in the gas-phase.
The calculation of the uptake coefficient in eqn (8) assumes the
value of ks is solely for reaction with OH radical. Also, the values,
and their uncertainties, determined for the OH uptake coeffi-
cient do not consider the gas-phase diffusion of the OH radical
and should be used accordingly.

2.7 Kinetic modelling of the film-OH radical reaction

The kinetic model of aerosol surface and bulk chemistry (KM-
SUB) was applied to the kinetic decays presented here.”” The
model resolves surface adsorption and desorption of OH radical
and considers the surface reaction between the film and
adsorbed OH radicals. The insoluble film was modelled as
a monolayer consisting of one species due to the lack of
chemical information associated with these real atmospheric
samples. For an estimate of the initial film surface coverage, the
inverse square of the modelled film thickness was used,
assuming the modelled film thickness is the average length of
a film molecule. The resulting film surface concentrations are
similar to those obtained for monolayers of fatty acids (~10~'®
to 10~"” molecule per m?). The reaction scheme used in the
model is that presented in eqn (5). The model was optimised to
the experimental data using a global optimisation algorithm
(differential evolution)® employed by Milsom et al.* and is
similar to the Monte Carlo Genetic Algorithm (MCGA) approach
of Berkemeier et al.®* Only the surface reaction coefficient (Kgyrr)
was varied with other parameters held constant to physically
meaningful values (the molecular diameter of OH radical was
0.3 nm, the surface desorption lifetime of OH was 1 x 10 s,
the mean thermal velocity of OH radical is 6.1 x 10* cm s,
a temperature of 298 K, and a surface accommodation coeffi-
cient of 1). It is possible to model with an Eley-Rideal or
Langmuir-Hinshelwood mechanism. However, the selected
desorption lifetime of OH assumes the Langmuir-Hinshelwood
surface reaction mechanism, for which there is experimental
and modelling evidence.***>*¢ The constraint was necessary as
the desorption lifetime and the value of kg, are reasonably
correlated.® Additionally, Markov Chain Monte Carlo (MCMC)
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sampling of the parameter space was carried out in order to
quantify the uncertainty in the fitted model parameter.*”** A
description of the model, its optimisation and the MCMC
sampling procedure is presented in the ESI.{

3 Results and discussion

Material extracted from atmospheric aerosol and seawater
successfully formed films at the air-water interface, and the
thickness and neutron scattering length density of the films
were determined by neutron reflection measurements. The
oxidation of the films by gas-phase OH radicals was followed by
continuously measuring neutron reflectivity for known time
periods.

3.1 Atmospheric aerosol films

Typical neutron reflectivity profiles (neutron reflectivity vs.
momentum transfer) for the thin films at an air-water interface
are shown in Fig. 1. The neutron reflection results for the
atmospheric aerosol extracts are distinguishable from the sub-
phase and it can be inferred that films at the air-water inter-
face were successfully formed. The technique of neutron
reflectometry at air-water interfaces typically records signifi-
cantly more reflective neutron reflectivity profiles, by at least an
order of magnitude, as the sample would normally be syn-
thesised as a deuterated isotopologue, which provides greater
contrast. Measurement of environmental samples extracted
from the atmosphere represent a significant achievement in
neutron reflectometry techniques. Included in Fig. 1 is the
neutron reflectivity profile obtained for the remote seawater
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extract. The film thickness and neutron scattering length
density values obtained for the organic content of remote
seawater (and displayed in Table 1) are slightly larger than
values obtained for remote aerosol extracts. The source for
remote aerosol is likely to be marine organic material,*> however
material extracted from the atmosphere has been exposed to
oxidants and hence remote aerosol may differ slightly in
composition to Antarctic seawater organic content. Kieber
et al.*® demonstrated the potential for dissolved oceanic organic
content to photochemically oxidize once in the atmosphere.

From Fig. 1a-d, it can be observed that the analytical blanks
for each sample are indistinguishable from the neutron reflec-
tivity profile of the sub-phase air-contrast-matched-water,
thereby showing that the analytical blanks do not form films
at the air-water interface. The lack of signal demonstrates the
success of collecting atmospheric aerosol by the method
described in the study. The use of pre-combusted quartz filters
and scrupulous clean working conditions contributed to the
lack of contamination in all samples.

The neutron scattering length density determined by fitting
models to the neutron reflectivity profile for urban and remote
aerosol films lies below 1 x 10~° A2, whilst the wood smoke
films had a higher neutron scattering length density of nearly
1.7 x 10~° A% The neutron scattering length density may be
crudely used to indicate the possible composition of the films
through comparing the experimentally obtained value for a film
of the atmospheric aerosol extracts to those for various pure
compounds, as depicted in Fig. 2. Classes of chemicals tend to
fall into certain ranges, for example — 0.5 x 10~° A~2 for satu-
rated alkanes, 1 x 10~ ® A~ for aromatic groups and (1.5-2) x
107° A2 for polysaccharides. Compounds chosen for the

Table 1 The atmospheric aerosol extract formed films at the air—water interface. The table lists the neutron scattering length density and
thickness of each film studied at the air—water interface, as well as listing the bimolecular rate constant for reaction with OH radicals (reaction 5)
and atmospheric lifetime with respect to oxidation by OH radicals (at an atmospheric concentration of 106 molecule per cm?®). For the calculation
of the bimolecular rate constant the OH radical concentration in the Tedlar bag was 7.0 x 10°® molecule per cm?®

Scattering
length Atmospheric
Film thickness density p/ Bimolecular rate constant ks/ Uptake half-life

Aerosol extract /A 10°A cm®molecule ™ s coefficient 7/hours kourf/em?® s71
Urban® (May 2015) 6.1+ 0.4 0.83 £0.06 — — — —
Urban® (May 2015) 3.6 £0.2 0.68 +0.05 (1.3 +0.11) x 107" ~0.86 ~2.5 (5.0 +2.8) x 107°
Urban” (January 2016) 10.2 £+ 0.3 0.89 £0.05 (1.5 + 0.05) x 107 *° ~0.99 ~2.5 (2.3 £1.5) x 1077
Remote (Antarctic)” 9.0 £ 0.8 0.62 £ 0.05 — — — —
(Summer 2015)
Remote (Antarctic)® 7.6 £0.3 0.67 +0.05 (1.4 +0.14) x 10~ *° ~0.93 ~1.7 (5.0 +£2.0) x 1077
(Summer 2015)
Remote (Antarctic) 10.5 + 0.4 0.67 +0.05 (9.3 +1.3)x 10 " ~0.62 ~5.2 (9.3+3.2) x 1078
(Summer 2016)
Wood smoke? 18.6 + 0.5 1724 0.05 (8.1 4 4.5) x 107 *? ~0.054 ~2.2 (6.24+0.3) x 1078
Remote seawater 11.3 £ 04 0.79 £ 0.06 — — — —

(Summer 2015)

“ The refractive index of this sample is reported* as urban spring. ” The refractive index of this sample is reported®” as urban winter. ¢ The refractive
index of this sample is reported® as remote. ¢ The refractive index, Angstrom coefficient and mass density of this sample is reported®” as

Woodsmoke extract B.
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comparison directly relate to the aerosols studied in the work
presented here: levoglucosan is a common tracer species of
biomass burning aerosol,”* whilst methyl oleate, oleic acid and
linoleic acid are common compounds used as aerosol-
proxies.>*3%61:6492.9 Tt ig necessary to consider that the neutron
scattering length density obtained experimentally for
atmospheric aerosol extracts is (a) probably a mixture of
compounds with a range of individual neutron scattering
length densities and (b) slightly different to the values listed
in Fig. 2 owing to the sample not packing the same way at the
air-water interface as in the pure compound. Fig. 2
demonstrates that the atmospheric aerosol films have
scattering length densities greater than fatty acids, and
indicates that the content of urban and remote aerosol might
be similar in composition to organic compounds containing
a small amount of oxygen, phosphorous or nitrogen atoms.
The composition of wood smoke might be similar to polymers
such as cellulose or levoglucosan (a common pyrolysis
product of cellulose).

Simulating the neutron reflectivity profiles to reproduce the
experimental neutron reflectivity profiles allowed the film
thickness to be determined; aerosol extracts sourced from
urban and remote locations had film thicknesses that did not
exceed 11 A, however the wood smoke extract formed a much
thicker film of approximately 19 A. In the absence of other data
sources, the thickness determined in the study could be used in
atmospheric modelling of core-shell aerosols.

The values of the neutron scattering length density and film
thickness displayed in Table 1 were obtained by comparing
a simulated neutron reflectivity to an experimentally obtained
neutron reflectivity profile. Applying a x> test provided a means
of demonstrating the level of confidence provided by the fitting
procedure,

)

R(Q)! ,
f—Z%() - (9)

2.0 e
Levoglucosan
Wood Smoke
Cellulose
Napthalene
Piperine
Urban Aerosol
(2016) Extarct
— ® Urban Aerosol
= (2015) Extract
'© ® Antarctic Aerosol
Q

(2016) Extract
Glycerol
® Linoleic Acid
Limonene
Y Pinene

Methyl Oleate
Nonanoic Acid
Oleic Acid

0.5

0.0-

Fig. 2 Comparison of the neutron scattering length density for the
films formed with material extracted from the aerosol filters and the
scattering length density of some common pure compounds. The
neutron scattering length density of pure compounds are calculated
from tabulated scattering lengths® and estimated mass densities.
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where R(Q)P™® is the experimental neutron reflectivity, and
R(Q)F™ is the simulated neutron reflectivity, both as a function
of momentum transfer, Q. To execute the x* test the film
thickness of the aerosol extract film was held constant whilst
the neutron scattering length density was varied. Subsequently,
the film thickness was adjusted twice more and process
repeated. Fig. 3 depicts x* as a function of neutron scattering
length density. For each plot a clear minimum is show. Fig. 3
demonstrates that a precision of +£0.05 x 10~° A~> may be
estimated for the scattering length density. The neutron scat-
tering length density and film thickness displayed in Table 1
correspond to the minima in Fig. 3. Fig. 3 also demonstrates
that the film thickness is not particularly sensitive to the value
of the neutron scattering density.

In nature a hydrometeor coated in a thin film may experience
a compression or relaxation of surface pressure as the hydro-
meteor size changes in response to local relative humidity of the
atmosphere. The organic films were further studied by
changing the surface pressure of the air-water interface.
Closing and opening the barriers of the Langmuir trough
compressed and expanded the film at the air-water interface.
Fig. 4 depicts the compression and expansion of an atmo-
spheric aerosol extract film and the data is shown as a function
of surface pressure rather than area per molecule because the

2

Relative y

0.7

0.6 —

05 | | | |
0.75 0.80 0.85 0.90 0.95

1.00

Scattering length density, p / 1O>6A>2

Fig. 3 An example of the uncertainties in the fitting of scattering
length density and film thickness of the material extracted from an
urban RHUL January sample at the air—water interface to a neutron
reflection profile similar to that in Fig. 1. Note less sample was added to
the interface than in Fig. 1. The goodness of fit, x? (eqn (9)) is plotted as
a function of the scattering length density and thickness of the film.
The values of x? have been normalised to the largest value of x?
plotted in the figure.
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sample was composed of an unknown complex mixture of
chemicals and therefore the number of molecules at the inter-
face could not be determined. At each new surface pressure,
a neutron reflectivity profile was collected and the film thick-
ness determined by the method described in the Section 2.2.
Owing to limited sample, the experiment was conducted on just
one material: urban aerosol. An increase in surface pressure
caused an increase in surface thickness as the molecules rear-
ranged at the air-water interface to reduce the area they occu-
pied. Expansion of the barriers caused surface pressure and
surface thickness to reduce. The film thickness was lower than
the thickness measured prior to the compression and expan-
sion of the film, indicating that material may have been lost
from the interface, altered or taking a long time to re-
equilibrate. The material may be tending towards a limit of
~10 A.

Neutron reflection techniques for study at the air-water
interface tend to use deuterated surfactants to generate
a strong contrast with air and air-contrasted matched water.
The work presented here demonstrates the technique can be
used to study non-deuterated natural samples collected from
the atmosphere with reflectivity much closer to the experi-
mental background. It would be difficult to accurately
determine with confidence if oxidation of the atmospheric
films produces a product film. A product film from the
deuterated DSPC may be determined if produced in sufficient
yield. Thus, the assumption for the kinetics that there is no
product film (for the atmospheric samples) appears plausible
for the work presented here, but other techniques may be
needed to demonstrate unequivocally if there is a product
film or not.

Film Thickness / A

2 | 1 | l
0 5 10 15 20 25

Film Surface Pressure / mN m "

Fig. 4 Film thickness as a function of film surface pressure for the
urban aerosol extract. The uncertainty in film thickness was estimated
from fitting neutron reflectivity profiles. Surface pressure greater than
20 mN m~ were not recorded owing to limited sample. The dashed
horizontal line represents a film thickness of 10 A and may be indicative
of a typical compressed film thickness.
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3.2 Kinetics of atmospheric aerosol oxidation

Oxidation kinetics of proxy aerosol samples have been well
studied,” commonly using ozone,>***® OH radicals®*¢**7%
photosensitization®»'**'** or nitrate radicals'®'” as the
oxidants. In the study presented here, films of aerosol extract
formed at the air-water interface were oxidized through expo-
P¢Ot

Pe=0Ot=0
a function of time is shown in Fig. 5-7. The resultant decay of

sure to gas-phase OH radicals. The alteration in as

£ POt

Pr=00t=0
the interface was changing to look more like water, and may

the relative quantity o as a function of time suggests

indicate that either the surface material is becoming more
hydrated or material is being lost from the interface. The error
in % was estimated by calculating the propagation of
erroéf"% tagd fitting simulated neutron reflection profiles to
experimental neutron reflection profiles.

The decay profiles could be fitted to exponential curves
described by eqn (7). Fig. 5 depicts the decay for the two urban
aerosol extracts, the rate constants for the two urban aerosol
extracts (extracted during the months of May and January) are
the same within error, suggesting that the reactivity of the
aerosol material sourced from the urban site with OH radicals
may not be seasonally dependent, although further study is
P for the remote aerosol extract
Pt=00t=0
collected in 2015 and 2016 are shown in Fig. 6 and overlap

needed. The decay rate of

within error suggesting the same rate constants for reaction 5
may be used to describe the reaction of OH radicals with both
Antarctic atmospheric aerosols for multiple years. Fig. 5(a) and
6(a) both show a much slower decay of the films when the films
are exposed to oxygen, rather than ozone with the UV lamps,
owing to a lower ozone concentration present under these
conditions, produced by molecular oxygen photolysis, reducing
the concentration of OH radicals, and thus slowing the rate of
reaction. Importantly, the decrease in decay illustrates the film
is not decaying solely from UV photolysis. Neither the urban nor
the remote aerosol extracts demonstrated a reaction with ozone.

Water insoluble wood smoke aerosol extracts have a decay
similar to the urban and remote aerosol extract (Fig. 7),
demonstrating a similar reactivity towards the OH radical. In
contrast to all the other samples, the wood smoke aerosol
extract decays when exposed to ozone only. The extract was
collected directly from the smoke plume and therefore had not
been atmospherically processed and may contain unsaturated
material.”® Goncalves et al.’® and Zhou et al.'*° have investigated
the oxidation kinetics of natural sea-surface material when
exposed to gas-phase ozone, and observed a decrease in
coverage. The decrease in coverage was attributed to unsatu-
rated compounds present in the layer reacting with the ozone
and products leaving the air-water interface. Water insoluble
surface-active extracts sourced from urban and remote loca-
tions did not react with ozone. For approximately 10 000
seconds the neutron scattering length density per unit area of
the material did not change, demonstrating the stability of the
urban and remote aerosol extracts at the air-water interface.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Decay kinetics for the oxidation of a film of material extracted from urban aerosol collected during (a) May 2015 and (b) January 2016 at
the air—water interface. The plot is the relative change in neutron scattering length per unit area (i.e. amount of material at the interface) versus
time. The vertical dashed line represents the time when the UV lamp was switched on to generate gas-phase OH radicals. The film was exposed
to just ozone (blue circles), just oxygen and UV lamp (red triangles) and ozone and UV lamp (black squares). The film is shown to be resistant to
oxidation by ozone relative to OH radicals — no significant decay with the blue squares. The film reacts readily with gas-phase OH radicals as
demonstrated by the decay of the black squares. The film also decays readily in the presence of oxygen and the UV lamp as the UV lamp
generates ozone and subsequently OH radicals. Exponential decays are (egn (7)) are solid lines. The error bars are the propagation of uncer-
tainties from those of the neutron scattering length and film thickness.

unsaturated content of the extract had been removed by atmo-
spheric processing before collection. The latter suggestion is
usually applied to extracts sourced from urban locations.*

The extracts may not have decayed with ozone either because
they originally contain a small mass ratio of unsaturated
organic compounds to saturated material or because the

(2) | T T T T 1 (®) T T T T T
I 1
. 3 3
- s 3 O [OH]=7.0x10 moleculecm ™ -run 1
8 [OH]=7.0x10 nz)olecule om 5 & [OH1=7.0 x10° molecule cm” - run 2
A [OH]<<7.0x10 mole}:cule cm ©—[OH] =0 molecule em”
14 —O—[OH]=0 molecule cm” 1 L4 I 1
< 12 | — 1.2+
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T | ©
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< < 0.8
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. 3
Time /10° s Time /10° s

Fig. 6 Decay kinetics for the oxidation of a film of material extracted from remote aerosol collected during (a) 2015 and (b) 2016 at the air—water
interface. The plot is the relative change in neutron scattering length per unit area (i.e. amount of material at the interface) versus time. The
horizontal dashed line represents the time when the UV lamp may have been switched on to generate gas-phase OH radicals. The film was
exposed to just ozone (blue circles), just oxygen and UV lamp (red triangles) and ozone and UV lamp (black squares). The film is shown to be
resistant to oxidation by ozone relative to OH radicals — no significant decay with the blue squares. The film reacts readily with gas-phase OH
radicals as demonstrated by the decay of the black squares. The film also decays readily in the presence of oxygen and the UV lamp as the UV
lamp generates ozone and subsequently OH radicals. Exponential decays are fitted (egn (7)) are fitted to decays as solid lines. The error bars are
the propagation of uncertainties of the determination of the value of neutron scattering length and film thickness.
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Fig. 7 Decay kinetics for the oxidation of a film of material extracted
from wood smoke at the air—water interface. The plot is the relative
change in neutron scattering length per unit area (i.e. amount of
material at the interface) versus time. The vertical dashed line repre-
sents the time when the UV lamp was switched on to generate gas-
phase OH radicals. The film was exposed to just ozone (blue circles),
and hydroxyl radicals — ozone and UV lamp (black squares). The film is
not resistant to oxidation by ozone relative to OH radicals — with
a slight decay with the blue squares. The film reacts readily with gas-
phase OH radicals as demonstrated by the decay of the black squares.
Exponential decays (eqn (7) are fitted to decays as solid lines. The error
bars are the propagation of uncertainties of the determination of the
value of neutron scattering length and film thickness.

Results obtained from the study demonstrate a need for
research that focuses on the ageing of saturated aerosol films;
a number of studies have focused on the oxidation of films at
the air-water interface,**** however the studies predominantly
concentrated on the oxidation kinetics of films containing
unsaturated functional groups.

The bimolecular rate constant, ks, reported in Table 1, for
reaction 5 is attributed to reaction with the OH radical. The
value of this rate constant could be considered an upper limit as
reactions with ozone (woodsmoke samples only) and direct
photolysis by the lamps may require consideration. The reac-
tion between ozone and woodsmoke results in a pseudo-first-
order rate constant of ~1.5 s ' relative to a considerably
larger value of ~21 s~ ' in the presence of gas-phase ozone and
the photolysis lamps. Thus, the contribution of the reactions of
ozone with woodsmoke films is considered not important. The
decay of organic material at the air-water interface in the
presence of molecular oxygen, water vapour and the photolysis
lamps has been attributed to a reaction with gas-phase OH
radical at a smaller, unknown, concentration when gas-phase
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ozone is present. The photolysis lamps produce a small
concentration of gas-phase ozone from the photolysis of
molecular oxygen. The decay in the organic materials at the air-
water interface may also be attributed to direct photolysis and
unfortunately direct photolysis was not tested in the presence of
an oxygen-free atmosphere as oxygen impurities remained.
Thus, the values of the bimolecular rate constant, ks, reported in
Table 1 are considered to be owing to reaction with OH radicals,
but may also be considered as upper limits to a cautious reader.

3.3 Comparison of uptake coefficient with literature

The uptake of OH radicals on several different surfaces has been
previously measured and presented in Table 3. It is useful to
compare the uptake coefficients estimated from the work pre-
sented here with measurements on other organic surfaces. As
can be seen by from Table 3 the uptake coefficients in this work
are broadly comparable to those in the literature with the
exception of fresh woodsmoke.

3.4 Kinetic modelling of the film-OH radical reaction

Kinetic modelling of the experimental data obtained from these
samples returned a similar trend in kg, to the trend observed
in bimolecular rate constants, ks, (Table 1). Values of kgt Ob-
tained from this modelling are consistent with kinetic multi-
layer model fits to data from particles of biomass burning
markers. In particular, the optimised values of kg, for the wood
smoke film ((6.2 & 0.3) x 10~% cm® s™') is in agreement with the
range reported by Arangio et al. (~10""* to 10°° em® s~ ") for
levoglucosan particles.'** Note that the value of the atmospheric
half life is calculated from the model output does not neces-
sarily follow the trend in the value of ks owing to the different
initial surface coverages used for each film estimated from their
thicknesses (Table 1). The model was particularly sensitive to
the value of kg, It was assumed that the value of a;, = 1. By
definition, «; has to be larger than the uptake coefficient (see
Table 1)."** It is possible to use both the quantities oo and ks
as fitting parameters. Optimising the model with a5 and kgur
as varying parameters returned values of «; o ~ 1 and kgy,s Within
the uncertainty quoted in Table 1. Therefore, there is confi-
dence that reactive uptake is dominated by the surface reaction,
justifying the use of eqn (8) to calculate the uptake coefficient
and the use of kg, as the fitting parameter.

3.5 Oxidation kinetics of a proxy atmospheric aerosol

A film of DSPC, a phosphocholine lipid with saturated hydro-
carbon tails, was formed at the air-water interface and oxidised
by gas-phase OH radicals as a test proxy aerosol material. The
effect of the OH radicals on both the head and tail region of the
lipid DSPC as a test proxy aerosol material.could be estimated
from the neutron data individually, however to understand the
decay process undergone by DSPC films the value of P of

Pt=00t=0
the head and tail layer regions were combined by adding

weighted values. An example of this decay as a function of time
is shown in Fig. 8. Three different films of DSPC at the air-
water interface were exposed to gas-phase OH radicals, and all

© 2022 The Author(s). Published by the Royal Society of Chemistry
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showed similar decay profiles. The thin films of DSPC at the
air-water interface displayed a decay that was characteristic of
a step-wise degradation mechanism when exposed to gas-
phase OH radicals,”® whereas the atmospheric-aerosol
extracts demonstrated an exponential decay. A simulated fit
0,

for the decay of Pl

Pt=09t=0
a kinetic model based on a differential equation solved by

a Runge-Kutta algorithm. The product of neutron scattering
length density and film thickness of the DSPC film at the air-
water interface taken as a weighted sum of the products A to J.
The algorithm used a weighting in each step (A to J in eqn (10))
of the reaction to ensure an accurate fit between the experi-
mental and simulated data. The first product was weighted as
0.75, and each further product as 0.05 less, representing a loss
of 5 percent of the molecules at the interface for each subse-
quent attack by the OH radicals until the film was no longer
surface active. The degradation mechanism could be modelled
accurately using ten overlapping kinetic steps, with the
product of the first nine steps remaining at the air-water
interface. The kinetic steps are:

versus time was found by using

OH OH OH

DSPC 2% A 9 g O ¢ O 1% (10)

where A to I represent the surface-active products of the first
nine reaction steps and J a gaseous or water soluble species that
is lost from the interface. Table 2 lists the rate for each of the ten
kinetic steps for three DSPC films which are broadly similar.

A series of checks were carried out to ensure that the
weighting and number of steps in the degradation mechanism
represented the method of decay for DSPC thin films at the air-

l 2 T I T T T | T | T | T T
—— Modelled
® Experimental
ol —— p&(DSPC) / pd=o(DSPC)| _|
—— p3(A) / pdi=o(A)
p&(B) / pdt=o(B)
p&(C) / pdt=0(C)
p8(D) / pdt=o(D)
08— PS(E) / pdio(E) -
p&i(F) / pdreo(F)
s —— p&(G) / pdr=o(G)
Q — p&(H) / pde=o(H)
& 0.6 - — p&(1) / pde=o(l) -
~
<
<L
0.4 — —
02— —
0.0 L— ——
-2000 0 2000 4000 6000 8000 10000 12000 14000

Time /s

Fig. 8 Experimental (black circles) and modelled (black line) reaction
profiles for the lipid DSPC being oxidised by OH radical at the air—
water interface.The coloured lines represent the individual reaction
profiles for the species DSPC, A, B, C, ..., H, |, J at the air—water
interface for reaction 10. The sum of these coloured profiles is equal to
the modelled reaction profile represented by the black line.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Environmental Science: Atmospheres

Table 2 Bimolecular rate constants for ten-step oxidation of the lipid
DSPC at the air—water interface with a gas-phase OH radicals at
a concentration of 7 x 10% molecule cm®. The uncertainty was
determined by varying the value of rate constants individually. Three
films of DSPC were oxidised, I, Il and IlI

Rate constant/10~*° em® molecule ™ s7*

Film I Film II Film III
ky 1.7 £ 0.43 1.0 £ 0.40 1.6 £ 0.49
ky 0.93 £ 0.21 1.0 £ 0.40 1.6 £ 0.49
k3 0.93 £ 0.21 1.0 £ 0.40 1.6 £ 0.49
ks 0.93 +£ 0.21 2.1 £ 0.42 1.6 £ 0.49
ks 2.9 + 0.70 2.1 & 0.42 1.6 £ 0.49
ke 2.9 +£0.70 2.1 + 0.42 1.4 £ 0.57
ky 2.9 + 0.26 2.9 + 0.57 1.4 £0.57
ks 2.9 £ 0.26 2.9 £ 0.57 1.4 £ 0.57
ko 2.9 + 0.26 2.9 +£ 0.57 1.4 £0.57
kio 2.9 £ 0.26 2.9 £ 0.57 1.4 £ 0.57

water interface. First, the weighting of each kinetic step was
adjusted and the change in quality of fit quantitatively deter-
mined. For the first three kinetic steps, the weighting contri-
bution could be varied by 5 percent whilst maintaining
a reasonable fit, whereas for the following kinetic steps a varia-
tion of 15 percent in the weighting of the contribution main-
tained an adequate fit. The result from analysing the weight
contribution demonstrates the importance of the first few
kinetic steps in determining an accurate fit to the decay. Addi-
tionally, the number of kinetic steps was determined iteratively
by altering the number of steps, manually adjusting the rate
constants to allow a reasonable fit and then determining the
quality of the fit with a x test,

X =)

t

experimental simulated\ 2
(p 6r —p 61 )

(11)

simulated
PO,

pgxperimental jg the experimentally determined scattering

where p

length per unit area as a function of time, ¢, and posimulated 4 the
simulated scattering length per unit area as a function of time.
As the number of fitting variables was changing a reduced x>
was also calculated by dividing x> by the number of degrees of
freedom. Fig. 9 demonstrates that at least four to six reaction
steps are required. The analysis is not exhaustive, but the
important point of comparison between the reaction of OH
radical with DPSC and the real atmospheres samples is the very
different decay profiles. In addition, two experimental blanks
were carried out. DSPC films at the air-water interface were
exposed to ozone only or UV light with oxygen. The DSPC films
did not show a change when exposed to ozone only, however the
chain region of the film did show a gradual decay when exposed
to UV light in the presence of oxygen while the head region did
not alter. From comparing the decay of a film of DSPC at the air-
water interface to films composed of atmospheric aerosol
extract, it can be inferred that a phospholipid on its own may
not be a good representation of atmospheric aerosols owing to
the difference in kinetic decay profiles. The abstraction of
hydrogen or deuterium by OH radicals would be subject to
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Table 3 Uptake coefficients estimated in the work presented here in Table 1 and with values from the literature. Note that these values of the
uptake coefficient may be described as phenomenological, reactive, effective or initial values

Aerosol composition Technique Uptake coefficient Reference
Aerosol extract - urban Neutron reflection v = (0.86-0.99) This work
Aerosol extract — Antarctic v = (0.62-0.93) This work
Aerosol extract - wood smoke v = ~0.054 This work
Bis(2-ethylhexyl) sebacate Aerosol flow tube y=(1.3+0.4) 117
7= (1815) 118
Hexacosane Smog chamber v =(1.04 £ 0.21) 119
Squalane Aerosol flow tube v = (0.3 £ 0.07) 120
v = (0.49 £ 0.04) 86
Stirred flow reactor v = (0.51 £ 0.10) 121
Squalene Flow tube v =(2.34 £ 0.07) 122
Palmitic acid Flow reactor v = (0.8-1)
Flow tube v = (0.14-1) 99
Oxidised resorcinol (Brown carbon proxy) Chamber y~1 123
B-p-Glucopyranoside Flow reactor v = (0.92-1.9) 124
Aqueous 2-methylglutaric acid Aerosol flow tube v = (1.9-2.6) 125
Citric acid Chamber v =(1.61 £ 0.16)-(1.35 £ 0.14) 126
Oleic acid Chamber v =(1.72 £ 0.08) 64
Linoleic acid Flow reactor v =(3.75 £ 0.18) 122
Linolenic acid Flow reactor v = (5.73 £ 0.14) 64
Paraffin wax Flow tube v =0.34 77
Packed flow tube vy = 0.03-1 127
v>02 128
Octadecyltrichlorosilane Flow reactor v>0.2 128
Methyl terminated monolayer Flow tube v =0.29 77
Vinyl terminated monolayer Flow tube v = 0.60 77
Stearic-palmitic acid Flow tube v =0.34 77
Erythritol Flow reactor v =0.77 £ 0.10 129
Levoglucosan Flow reactor v =0.91 £ 0.08 129
Flow tube v = (0.12-1) 99
Tartaric acid Flow reactor v = (0.40 £ 0.13) 130
Citric acid Flow reactor v =(0.37 £ 0.08) 130
Glutaric acid Packed flow reactor v = (0.03-1) 127
1,2,3,4-Butanetetra-carboxylic acid Flow reactor v =(0.51 £ 0.19) 130

2

2
® X
B Reduced )(2

Relative y

0.2

0.0 '

Number of reaction steps

Fig.9 Demonstration of the improvement in the quality of fit between
experimental and modelled DSPC reaction profiles similar to that
shown in Fig. 8 by increasing the number of reaction steps in egn. (11)).
The values of XZ have been normalised to the largest value of XZ
plotted in the figure.
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a maximum kinetic isotope effect'** of ~7. The kinetic isotope
effect is not large enough to explain the difference between
kinetics of the reaction of OH radicals with DSPC and material
extracted from atmospheric aerosol.

3.6 Atmospheric implications

Neutron reflectivity profiles of the aerosol films at the air-water
interface allowed an estimate of the film thickness and
confirmed that the materials formed stable thin films at the air-
water interface. Use of a film thickness from this work in light
scattering calculations will aid the accurate modelling of aero-
sol scenarios in the atmosphere. Shepherd et al®*” presented
calculations in the change in top of atmosphere albedo for core-
organic shell aerosol with increasing thickness of films based
on measurement of the optical properties of the same film
samples as are described here. Thus with the data of Shepherd
et al® it has been demonstrated that materials found in
atmospheric aerosol can form stable thin films at the air-water
interface of approximately 10 A with known optical properties.
The work described here also allows an estimation of the
persistence of these thin films. The oxidation kinetics of the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Film half-life versus atmospheric OH radical concentration for
KM-SUB models optimised to organic film kinetic decay data in
Table 1.

atmospheric film when exposed to OH radicals demonstrated
an exponential decay. The atmospheric lifetime, , of each film
was estimated from the half-life of the kinetic model outputs at
a representative atmospheric OH concentration (1 x 10° mole-
cule per cm®) and presented in Table 1.

Studies using proxy aerosol material have found the lifetime to
vary from minutes* to hours®*****>"¢ and even to days;® the range
in aerosol lifetime is likely caused by the phase and composition
of the aerosol.* An aerosol film lifetime as determined in the
study is similar to literature values, and hence would be relevant
for short term or long-term atmospheric studies.

Lifetimes calculated from the optimised kinetic models
described in Section 2.7 range from minutes to hours to days
depending on the atmospheric concentration of OH radical
used, Fig. 10. These models were run with a range of atmo-
spherically relevant OH radical concentrations (10 to 10°
molecule per cm?®) using the mean value of k¢ from the MCMC
sampling procedure for each separate film type in Table 1. The
film half-life was calculated for each model run over OH radical
concentration range from 10* to 10° molecule per cm®, the half-
life for all films ranges from minutes (~10 minutes at ~2 x 10’
molecule per cm?®) to a day (~1 day at 1.5 x 10° molecule per
cm?). Extension to even lower OH radical concentrations, (<1 x
10° molecule per cm?®), show a half-life increase up to ~7—10
days. This large range of film half-lives with respect to the OH
radical highlights the potential for real organic films to persist
over an atmospherically relevant timescale and for the need of
oxidation kinetics to be included in atmospheric modelling of
core-organic shell aerosol.

4 Conclusions

Insoluble material extracted from atmospheric aerosol forms
films at the air-water interface, from which the neutron

© 2022 The Author(s). Published by the Royal Society of Chemistry
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scattering length density and thickness of the film can be
resolved, demonstrating that neutron reflectivity is a useful
technique for the study of aerosol extract films at the air-water
interface. Urban and remote water insoluble surface active
material extracted from aerosol formed films at the air-water
interface with a neutron scattering length density value between
0.6 to 0.8 x 10°° A=2 and a film thickness between 3 and 11 A,
whilst wood smoke aerosol films were thicker (approximately 18
A) and had higher neutron scattering length density (1.7
x 107° A™?). Neutron reflectivity measurement allowed the
thickness of interfacial films to be determined and it permitted
observation of the decay of the organic film when subjected to
oxidizing conditions. The gas-phase oxidation demonstrated an
exponential decay and not a step-wise degradation mechanism
for all the aerosol films. The bimolecular rate constant obtained
from the decay ranged from 5.2 to 10.0 x 10" em® molecule ™
s~'. The lifetime of the atmospheric aerosol extracts is on the
timescale of hours, and is comparable in terms of aerosol
residence times in the atmosphere. It is therefore essential that
the presence of a film and its change with time is considered in
atmospheric modelling studies. The potential atmospheric
aerosol proxy DSPC demonstrated different kinetics to samples
extracted from the atmosphere, and thus should not be used as
a proxy in future atmospheric experiments.
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