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enantiomorphic crystallization of
achiral fullerene derivatives in thin films†

Chao Wang, Hua Hao, Daisuke Hashizume and Keisuke Tajima *

The chirality of organic semiconductors is important for various applications in optoelectronics and

spintronics. Here, we propose a new strategy to induce structural chirality in achiral organic

semiconductors in thin films. Enantiomeric fullerene derivatives (S)-pSi and (R)-pSi, which have

oligo(dimethylsiloxane) as a low-surface-energy moiety, were synthesized and used as surface-

segregated monolayers (SSMs) in spin-coated films of several achiral fullerene derivatives. Upon thermal

annealing, the presence of the chiral SSMs led to the crystallization of the fullerenes in the films as an

SSM-induced crystal phase at lower temperatures. The crystallized films showed circular dichroism

ascribed to the fullerene absorption, the sign and the intensity of which depended on the handedness of

the SSM molecules and the film thickness, respectively. These results indicate that the achiral fullerene

derivatives in the films were induced by the SSMs to crystallize into enantiomorphic crystals. Our

approach to inducing chirality in organic thin films is compatible with many device applications.
Introduction

Chirality is a basic property in nature and is observed across all
length scales, from elemental particles to macroscopic objects.1

Chiral molecules with le- and right-handed chemical struc-
tures linked by mirror symmetry (enantiomers) are of funda-
mental importance in the life sciences and medicine.2–5 In
addition, in assemblies of molecules, the symmetry of the
packing structure is the key to expressing the chirality of bulk
materials as a whole and enantiomeric structures can even be
formed from achiral molecules. Chiral materials are useful for
advanced applications in nonlinear optics,6,7 stereospecic
chemistry,8–11 and spintronics12–15 owing to their interactions
with electromagnetic waves, molecules, and electronic spin,
respectively. For example, chiral lms can be used in opto-
electronic devices that emit or detect circularly polarized light.16

Chiral induction, where an assembly of achiral species
acquires structural chirality by interacting with a chiral species,
provides a way to create chirality in condensed matter.17,18

Chiral induction has been reported in self-assembled structures
in solution,19–21 crystallization from solution,22–25 and liquid
crystals.26–29 For thin lm form of thematerials which is relevant
to the applications, chiral dopants can induce structural
chirality in lms of achiral semiconducting polymers.30–32

However, the mixing of the dopants affects the lm structure
and interferes with the properties of the organic
(CEMS), 2-1 Hirosawa, Wako, Saitama

ken.jp
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semiconductors. The application of chiral stimuli to the mate-
rials, such as irradiation with circularly polarized light, can also
induce enantiomorphic structures,33–35 but the enantiomorphic
effects are generally weak. To our knowledge, chiral induction
during crystallization has not been reported for thin-lm
organic semiconductors.

Thin-lm organic semiconductors with high structural order
are critical components in organic electronic devices. We have
been developing surface-segregated monolayers (SSMs) for
modifying the surface of organic semiconductor lms and
controlling lm structures.36–42 SSMs can be prepared using
a blend solution of a base organic semiconductor and a surface
modier that consists of a semiconducting part and a moiety
with low surface energy, such as uoroalkyl or oligosiloxane
chains. This molecular design drives spontaneous segregation
of the modiers to the surface as a monolayer with a preferred
molecular alignment during coating to minimize the total
energy of the system. The phenomeon can be understood in an
analogous way to the Langmuir adsorption of surfactants at
liquid/air interfaces.43 Recently, we discovered that SSMs based
on a fullerene derivative (e.g., pSi in Fig. 1c) induce the crys-
tallization of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)
inside the lm from the surface to give PCBM lms with an
unprecedented high crystallinity aer thermal annealing.42

Structural analysis revealed that the crystal structure of PCBM
was induced by the SSMs. Importantly, the SSM-induced crystal
structure in the PCBM lm belonged to a non-centrosymmetric
space group and the unique axis was aligned in the vertical
direction of the lms, reecting the directed crystal growth
from the surface. These ndings led us to the hypothesis that
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 (a) Synthetic routes for (S)-pSi and (R)-pSi. Chemical structures
of (b) the achiral fullerene derivatives used for the inside of the films,
PCBM, ThCBM, and PCBE, and (c) pSi.

Fig. 2 Schematics of chiral induction in the (S)-pSi/PCBM system. (a)
In as-cast films of (S)-pSi/PCBM, the (S)-pSi SSM forms with the
preferential molecular orientation, and (b) during thermal annealing,
the (S)-pSi SSM induces the crystallization of PCBM inside the film with
a single-handed helicity along the vertical direction to form (c) the
crystallized PCBM films with the enantiomorphic structure after
thermal annealing.
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crystalline PCBM lms can acquire structural chirality through
crystallization from the surface.

In this study, we synthesized new chiral surface modiers:
(S)-pSi and (R)-pSi (Fig. 1a). Lactic acid was used as the chiral
building block to connect the fullerene part and the oligosi-
loxane moiety with low surface energy. Both the compounds
were expected to function as surface modiers to form SSMs in
the PCBM lms, as in the case of pSi/PCBM. The crystalline
materials inside the lms were investigated for other achiral
fullerene derivatives with higher crystallinity ([6,6]-thienyl-C61-
butyric acid methyl ester (ThCBM) and [6,6]-phenyl-C61 butyric
acid ethyl ester (PCBE), Fig. 1b). We hypothesized that the (S)-
pSi and (R)-pSi SSMs induce the chirality of the crystal packing
structure of the achiral fullerene derivatives inside the lms
through surface-induced crystallization (Fig. 2).
Fig. 3 Si/C atomic ratios on the surfaces of (a) (S)-pSi/PCBM, (b) (S)-
pSi/ThCBM, and (c) (S)-pSi/PCBE films plotted as a function of the (S)-
pSi concentrations in the blend solutions. The concentrations of
PCBM, ThCBM, and PCBE were fixed at 10 mg mL�1. All the films were
spin-coated on silicon wafers, and then annealed at 150 �C for 30 min
before XPS measurements.
Results and discussion
Synthesis

Fig. 1a shows the synthetic routes for chiral surface modiers
(S)-pSi and (R)-pSi. Precursor (S)-PCB-LA was synthesized by the
Steglich esterication reaction between [6,6]-phenyl-C61-butyric
acid (PCBA) and allyl L-(�)-lactate in the presence of N,N0-dicy-
clohexylcarbodiimide (DCC) and 4-dimethylaminopyridine
(DMAP), while the esterication between PCBA and allyl D-
(+)-lactate gave (R)-PCB-LA. Chiral surface modiers (S)-pSi and
(R)-pSi were prepared by the hydrosilylation of (S)-PCB-LA and
(R)-PCB-LA, respectively, using n-butyl/hydride-terminated
This journal is © The Royal Society of Chemistry 2020
polydimethylsiloxane. The detail synthesis and characterization
are described in the ESI.†
Formation of SSM

The surface segregation behavior of (S)-pSi in the fullerene
derivative lms was systematically investigated by X-ray photo-
electron spectroscopy (XPS) according to our previous
method.36,38,40,42 The concentration of the fullerene derivative in
the blend solutions was xed as 10 mg mL�1 and the concen-
trations of the chiral surface modiers were varied from 0 to
1.75 mg mL�1. The spin-coated lms were thermally annealed
under N2 at 150 �C for 30min before XPSmeasurements. The Si/
C atomic ratios on the lm surface were calculated from the
intensities of the Si 2p and C 1s peaks in the XPS spectra. Fig. 3
shows the Si/C ratios on the surfaces of the (S)-pSi/PCBM, (S)-
pSi/ThCBM, and (S)-pSi/PCBE lms as a function of the
Chem. Sci., 2020, 11, 4702–4708 | 4703
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Fig. 4 Out-of-plane XRD patterns of pure (a) PCBM, (c) ThCBM, and
(e) PCBE films annealed at different temperatures. The films were
prepared by spin-coating the fullerene derivative solutions (10 mg
mL�1). Out-of-plane patterns of (b) (S)-pSi/PCBM, (d) (S)-pSi/ThCBM,
and (f) (S)-pSi/PCBE annealed at different temperatures. The films were
prepared by spin-coating the (S)-pSi (1.5 mg mL�1) and fullerene
derivative (10 mg mL�1) blend solutions.
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concentration of (S)-pSi in the solutions. The Si/C ratios
depended linearly on the concentration of (S)-pSi in the lower
concentration region up to 1.5 mg mL�1 and become constant
at above that. This behavior is similar to previous studies on
SSM formation42 and suggests that the surface energy of (S)-pSi
is low enough for all the added (S)-pSi molecules to adsorb to
the air/liquid interface during spin-coating and remain on the
lm surface. The Si/C ratio at the saturation point was close to
that of pSi/PCBM (7.5%), at which the surface coverage with pSi
is estimated to be higher than 90%.42 These results indicate that
(S)-pSi was segregated to the surface of the lms of PCBM,
ThCBM, and PCBE to form the SSMs (Fig. 2). This was further
conrmed by the results of XPS depth proles and angle-
resolved XPS (Fig. S1–S3†). The depth proles showed that the
high surface coverages with (S)-pSi SSMs can be maintained
with a xed surface modier concentration (1.5 mgmL�1) in the
solutions while the total lm thicknesses can be independently
controlled with the concentrations of the fullerene derivatives
for the bulk of the lms. The thicknesses of the oligosiloxane
layers on the surface were estimated as 1.18–1.25 nm by the
angle-resolved XPS analysis based on a bilayer model. The
concentration of the chiral surface modiers close to the satu-
ration point (1.5 mgmL�1) was used in subsequent experiments
to ensure the maximum SSM coverage.

The surface Si/C ratios of the lms with an (S)-pSi concen-
tration of 1.5 mgmL�1 aer annealing at different temperatures
(120–160 �C) were measured by XPS (Fig. S4†). The Si/C ratios
showed very little change aer annealing, regardless of the
temperature, indicating that all the (S)-pSi molecules had
already segregated to the lm surface of the as-cast lms and
that thermal annealing did not substantially change the density
or the molecular orientation of (S)-pSi at the surface.
Crystallization induced by SSM

Fig. 4a shows the out-of-plane X-ray diffraction (XRD) patterns
of the pure PCBM lm aer annealing at different tempera-
tures. There were no clear peaks in the patterns for the as-cast
PCBM lms and the PCBM lms annealed below 140 �C, indi-
cating an amorphous structure. Aer annealing above 150 �C,
the patterns showed peaks at 10.9� and 17.5�, which is consis-
tent with the reported unsolved structure of PCBM lms formed
through spontaneous cold crystallization.44,45 Fig. 4b shows XRD
patterns of (S)-pSi/PCBM lms aer thermal annealing at
different temperatures. The characteristic diffraction peaks at
3.9�, 7.8�, 11.7�, 15.6�, and 19.5� appeared aer annealing above
140 �C, suggesting that the crystal phase formation was induced
by the SSM, as reported for pSi/PCBM, and the peaks can be
assigned to 002, 004, 006, 008 and 0010, respectively.42 The peak
intensities of the surface-induced phase reached a maximum
aer annealing at 150 �C and increasing the annealing
temperature to 160 �C did not change the intensities. 2D
grazing-incidence wide-angle X-ray scattering (GIWAXS)
measurements of the crystallized lms showed similar diffrac-
tion patterns for the (S)-pSi/PCBM and pSi/PCBM lms
(Fig. S5†). These results indicate that the (S)-pSi SSM induced
the PCBM crystallization in a similar way to the pSi SSM.42 The
4704 | Chem. Sci., 2020, 11, 4702–4708
pure (S)-pSi lm aer annealing at 150 �C showed only halos in
the GIWAXS pattern (Fig. S5a†), suggesting that it was
amorphous.

The crystallization behavior of ThCBM and PCBE in the lms
was different from that of PCBM. The pure ThCBM lms aer
thermal annealing showed the same diffraction peaks as the (S)-
pSi/PCBM lm at 3.9�, 7.8�, 11.7�, 15.6�, and 19.5� when the
annealing temperature was above 140 �C (Fig. 4c). In addition,
an extra peak appeared at 17.4�, which could not be assigned to
the reported crystal structure of the SSM-induced phase. This
extra peak may have the same origin for the peak of PCBM lm
aer the cold crystallization (17.5�). This result indicates that
pure ThCBM lms underwent spontaneous cold crystallization
with a packing motif similar to that of the SSM-induced phase
of PCBM with possible mixed crystal phases. The (S)-pSi SSM at
the lm surface lowered the lowest crystallizing temperature of
ThCBM from 140 to 130 �C (Fig. 4d). The diffraction patterns of
the (S)-pSi/ThCBM lms were similar to that of the pure ThCBM
lm, although the extra peak at 17.4� was not observed. In
addition, the (S)-pSi/ThCBM lms had higher intensities and
sharper peaks compared with the pure ThCBM lms, most
notably at an annealing temperature of 150 �C. These results
suggest that even though there was no drastic change in the
crystal structure, as for (S)-pSi/PCBM, the (S)-pSi SSMs induced
the crystallization of ThCBM into the pure phase at lower
temperatures and increased the lm crystallinity. The 2D
GIWAXS measurements conrmed that the packing motifs of
This journal is © The Royal Society of Chemistry 2020
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ThCBM in (S)-pSi/ThCBM and PCBM in (S)-pSi/PCBM were
similar (Fig. S5c and f†).

The (S)-pSi/PCBE lm showed crystallization behavior
similar to that of the (S)-pSi/ThCBM lm. The pure PCBE lm
started to crystallize aer annealing at 140 �C, and a high
diffraction peak intensity was observed aer annealing above
150 �C, indicating high crystallinity (Fig. 4e). Fig. 4f shows the
XRD patterns of (S)-pSi/PCBE lms aer annealing at different
annealing temperatures. The (S)-pSi/PCBE lm showed a lower
crystallization transition temperature (130 �C) compared with
that for the pure PCBE lm (140 �C). In contrast to ThCBM, the
diffraction peak intensities of the pure PCBE lm were higher
than those of (S)-pSi/PCBE, suggesting that the SSM did not
improve the crystallinity of PCBE, even though it lowered the
crystallization temperature. The 2D GIWAXS patterns of the
PCBE and (S)-pSi/PCBE lms were similar to those of the pSi/
PCBM, (S)-pSi/PCBM, and (S)-pSi/ThCBM lms (Fig. S5†), indi-
cating that all these lms had similar packing motifs.

Atomic force microscopy (AFM) was performed to investigate
the morphology of the crystallized fullerene lms with and
without the SSMs. The as-cast (S)-pSi/PCBM lm was very at
with a root-mean-square roughness (Rq) of 0.20 nm (Fig. S6†).
Aer annealed at 150 �C for 30 min, although the pure PCBM
lm had a very at surface with Rq of 0.31 nm (Fig. 5a), the (S)-
pSi/PCBM lm had larger grains with a larger Rq of 4.3 nm
(Fig. 5b). This could reect the differences in the crystal phases
and the crystallinity, as revealed by XRD and GIWAXS. The pure
ThCBM lm had a grained surface structure (Fig. 5c) because
the lm was crystallized by thermal annealing. The (S)-pSi/
Fig. 5 AFM height images of (a) PCBM, (b) (S)-pSi/PCBM, (c) ThCBM,
(d) (S)-pSi/ThCBM, (e) PCBE, and (f) (S)-pSi/PCBE films after annealing
at 150 �C for 30 min.

This journal is © The Royal Society of Chemistry 2020
ThCBM lm had a similar surface structure, but with larger
polygonal grains that were more distinct (Fig. 5d). The Rq values
of ThCBM and (S)-pSi/ThCBM were 0.49 and 1.86 nm, respec-
tively. The pure PCBE lm showed large square grains on the
surface (Fig. 5e) owing to the high crystallinity of the lms and
the tetragonal crystal structure. The (S)-pSi/PCBE lm had
similar square grains with a higher surface roughness (Fig. 5f).
The Rq values of PCBE and (S)-pSi/PCBE were 1.1 and 4.1 nm,
respectively.

Induced chirality

Circular dichroism (CD) spectroscopy was used to investigate
the induced chirality in the fullerene derivative lms with (S)-
pSi and (R)-pSi SSMs. The lms for the CD measurements were
prepared by spin coating on fused quartz substrates. Aer spin-
coating, the lms were annealed at 150 �C for 30 min to crys-
tallize the fullerene derivatives. All the PCBM, ThCBM, and
PCBE lms with (S)-pSi and (R)-pSi SSMs showed clear cotton
effects in the CD spectra (Fig. 6). The signs of the signals were
inverted depending on the enantiomeric structure of the
surface modier. The signal positions in the CD spectra were
correlated with the strong UV-vis absorption bands of PCBM,
ThCBM, and PCBE at around 220 and 270 nm (Fig. S7†). To
exclude the possible effects of optical anisotropy of the lms on
the CD signals, the samples were rotated to the incident light
axis or ipped the faces in the CD measurements (Fig. S8†). The
operations did not change the CD signal intensity, and linear
dichroism (LD) signals remained silent regardless of the rota-
tion angle. These results indicated that the CD activities are
originated from the chiral structure in the lm, not the optical
anisotropy.46–48 Before thermal annealing, the (S or R)-pSi/
PCBM, (S or R)-pSi/ThCBM, and (S or R)-pSi/PCBE lms were
amorphous and completely silent in the CD spectra (Fig. S9†).
These results indicate that the chirality of the lms appeared
during crystallization under thermal annealing. In addition,
Fig. 6 CD spectra of (a) (S or R)-pSi/PCBM, (b) (S or R)-pSi/ThCBM,
and (c) (S or R)-pSi/PCBE films. The films were prepared by spin-
coating the blend solutions of the chiral surfacemodifier (1.5 mgmL�1)
and fullerene derivative (10 mg mL�1). After spin-coating, the films
were annealed at 150 �C for 30 min.

Chem. Sci., 2020, 11, 4702–4708 | 4705
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chloroform solutions of (S)-pSi and (R)-pSi (Fig. S10a†) and the
pure amorphous lms of (S)-pSi and (R)-pSi aer annealing at
150 �C for 30 min showed no signal in CD spectra (Fig. S10b†).
These control experiments suggest that the CD signals observed
in the lms with the SSMs did not originate from the chiral
surface modiers themselves, but from the crystallized achiral
fullerene derivatives (PCBM, ThCBM, and PCBE) inside the
lms. Notably, no CD signal was observed when a 1 : 1 mixture
of (S)-pSi and (R)-pSi was used as surface modier to crystallize
fullerene lm (Fig. S11†).

To conrm the source of chirality in the fullerene lms, the
thickness dependence of the CD spectra was investigated. The
(S)-pSi/PCBM lms were prepared with a xed (S)-pSi concen-
tration of 1.5 mg mL�1 and PCBM concentrations of 5, 10, 12.5,
15, and 20 mg mL�1 to maintain the surface coverage with (S)-
pSi SSMs while the total lm thickness increased. The lms
were spin-coated from the blend solutions and annealed at
150 �C for 30 min, and the thicknesses of the lms were
measured by surface prolometry. Fig. 7a shows the CD spectra
of (S)-pSi/PCBM lms with different lm thicknesses and
Fig. 7b shows the ellipticity of the peak at 230 nm plotted as
a function of the thickness. The ellipticity increased almost
linearly as the thickness of the lms increased from 22 to
102 nm. The absorbance of the lms had a linear relationship
with the thickness of the lms in this range, indicating that the
lms had a uniform density and structure in the vertical
direction (Fig. S12b†). These results conrmed that the CD
signals originated from the crystallized PCBM inside the lms,
not from the surface or the interfaces between the samples and
Fig. 7 CD spectra of (a) (S)-pSi/PCBM, (c) (S)-pSi/ThCBM, and (e) (S)-
pSi/PCBE films with different thicknesses. Ellipticity of the positive peak
at 230 nm in the CD spectra of (b) (S)-pSi/PCBM, (d) (S)-pSi/ThCBM,
and (f) (S)-pSi/PCBE films plotted as a function of the film thickness.
Dashed lines are the linear regressions of the data.

4706 | Chem. Sci., 2020, 11, 4702–4708
the substrates. In addition, the good linearity suggests that the
enantiomorphic crystals grew from the top to the bottom of the
lms, with a thickness of at least 100 nm.

The thickness dependence for (S)-pSi/ThCBM was also
investigated in a similar way. Fig. 7c shows the CD spectra of
these lms, and the ellipticity of the peaks at 230 nm in the CD
spectra were plotted as a function of lm thickness (Fig. 7d).
The CD intensity increased linearly as the lm thickness
increased from 28 to 100 nm. For (S)-pSi/PCBE lms, due to the
low solubility of PCBE, only 5 and 10 mg mL�1 PCBE with
1.5 mg mL�1 (S)-pSi blend solutions were used. Nevertheless,
a clear increase in CD intensity was also observed for (S)-pSi/
PCBE lms when the lm thickness increased from 27 to
49 nm (Fig. 7e and f).

The dependence of the ellipticity on the thickness can give
information on the factors that affect the chiral induction from
the SSMs. The slopes of the linear tting for the q-thickness
relationship were 0.038, 0.071, and 0.131mdeg nm�1 for (S)-pSi/
PCBM, (S)-pSi/ThCBM, and (S)-pSi/PCBE, respectively. This
difference may be related to the crystallinity of the fullerene
derivatives inside the lms; the order of the crystallinity is PCBE
> ThCBM > PCBM, as determined from the intensity of the XRD
patterns in Fig. 4. The fraction of the crystallized domains or the
disorder of the crystal structures inside the lms could affect
the intensity of the induced CD signals.

To further conrm the origin of the crystallization and the
chirality, the surface layer of the as-cast (S)-pSi/PCBM lm was
removed by reactive-ion etching with O2 plasma and the resul-
ted lm was subsequently annealed at 150 �C for 30 min
(Fig. S13†). XRD results showed that the lms did not crystalize
into the SSM-induced crystal phase aer annealing, but into the
ordinary crystal phase observed for the pure PCBM lms. The
lms showed no CD signal. This control experiment provides
the strong evidence that the crystallization and the chirality of
the fullerene lm was induced from the surface monolayer of
(S)-pSi.

Our previous structural analysis on pSi/PCBM lms based on
GIWAXS patterns gave the crystal structure with the space group
of I�4c2 that is non-centrosymmetric but not chiral. Since the
chiral (S)-pSi/PCBM crystal structure must belong to the chiral
space group, but gives the identical GIWAXS pattern as pSi/
PCBM lms, there are two possible situations: (1) the crystalli-
zation induced by (S)-pSi SSM lowers the crystal symmetry from
I�4c2 into I4 or I422, or (2) pSi/PCBM and (S)-pSi/PCBM lms
have the same crystal structure with the space group of I4 or
I422. In either case, I4 or I422 structure could show the addi-
tional diffraction peaks on the GIWAXS patterns resulting from
disappearance of the c-glide symmetry of I�4c2 space group.
Unfortunately, however, the information from GIWAXS patterns
of the 2-D random lms is limited and detailed analysis on the
patterns did not show any evidence of the lowered symmetry in
either (S)-pSi/PCBM or pSi/PCBM lms. This is possibly due to
a pseudo c-glide symmetry between crystallographically inde-
pendent PCBMmolecules and/or the lack of the electron density
contributing to the corresponding reections. In the case of (2),
the pSi/PCBM lms have chiral crystal domains but they are
1 : 1 mixture of the two enantiomorphic structures. In this case,
This journal is © The Royal Society of Chemistry 2020
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these domains may be observable by advanced imaging
methods such as CD imaging. At this stage, we cannot conclude
which situation is real, and further investigation on the actual
crystal structure of the chiral (S)-pSi/PCBM lm is necessary.

Conclusions

We demonstrated that chiral SSMs of (S)-pSi and (R)-pSi
induced the formation of enantiomorphic crystal structures of
achiral fullerene derivatives in thin lms. This is the rst report
of the surface-induced chirality of organic semiconductors in
lms during crystallization. This study provides a strategy to
prepare chiral crystalline organic lms and offers a better
understanding of chiral induction. In addition, the resulting
thin-lm chiral materials may have interesting applications in
nonlinear optics and spintronic devices.

Experimental methods
Materials

PCBM was purchased from Solenne BV (Netherlands). ThCBM
and PCBE were purchased from ATR Company (Japan). The
other chemicals and solvents were purchased from FUJIFILM
Wako Pure Chemical (Japan), Sigma-Aldrich (USA), or TCI
Chemicals Co. (Japan). All reagents were used as received,
unless otherwise indicated. The synthesis and characterizations
of the surface modiers (S)-pSi and (R)-pSi are described in the
ESI.† All moisture- or air-sensitive reactions were carried out
under a nitrogen atmosphere by standard Schlenk techniques.
Column chromatography was conducted using silica gel with
a particle diameter of 20–40 mm.

Sample preparation

Silicon wafers and quartz glass substrates were cleaned by
sequential ultrasonication in detergent solution, water,
acetone, and 2-propanol. The substrates were dried, and then
subjected to UV-O3 treatment. The spin-coating solution was
prepared by dissolving the fullerene derivative (5–20 mg) and
surface modiers (0–1.75 mg) in chloroform (1 mL). The solu-
tion was spin-coated on the substrates at 2500 rpm for 30 s
under N2. The lms were thermally annealed on a hotplate
under N2 for 30 min.

Characterization
1H and 13C NMR spectra were recorded on a 300 MHz spec-
trometer (JNM-AL300, JEOL, Japan). Data are reported as
chemical shi in ppm (d), multiplicity, coupling constant (Hz),
integration, and assignments. High-resolution mass spectrom-
etry was performed on a mass spectrometer (JMS-T100GCV,
JEOL). XPS was performed with an X-ray spectrophotometer
(PHI 5000 Versa Probe II, ULVAC-PHI, Japan). Monochromated
Al Ka (1486.6 eV) radiation was used in all XPS measurements.
The C 1s (285 eV), Si 2p (102 eV), and O 1s (532 eV) peaks were
used in the characterizations. To obtain the XPS depth prole,
each sample was etched with Ar+ ion at an acceleration voltage
of 500 V with an etching rate of approximately 0.25 nm s�1. The
This journal is © The Royal Society of Chemistry 2020
CD and UV-vis absorption spectra of lms on quartz glass
substrates were recorded on a spectropolarimeter (J-820, JASCO,
Japan) and spectrophotometer (V-670, JASCO), respectively. The
lm thickness was measured with a surface prolometer
(Dektak 6 M, ULVAC-PHI). XRD measurements were performed
on an X-ray diffractometer (Smartlab, Rigaku, Japan) with Cu Ka
radiation (l ¼ 0.154 nm). GIWAXS measurements were con-
ducted at beamline BL46XU of SPring-8, Japan. The irradiation
wavelength for GIWAXS was l ¼ 0.10002 nm (energy: 12.398
keV) and the incident angle was xed at 0.12�. AFM images were
obtained with a scanning probe microscope (5400, Agilent
Technologies, USA) in tapping mode.
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