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Unsymmetric porphyrins, containing both pentafluorophenyl (PFP = A) and 3,4-dimethoxyphenyl (DMP =
B) substituents at the meso positions, were prepared using Lindsey's methodology. The isomeric trans-A;B,
(P1) and cis-A,B, (P2) porphyrins together with the tris(pentafluorophenyl)porphyrin AsB (P3) were isolated
using chromatography. The porphyrins were characterized by UV-VIS, *H NMR spectroscopy, mass
spectrometry, elemental analysis (C, H, N) and cyclic voltammetry (CV), and their molecular structures
were confirmed by single crystal XRD. Their manganese complexes, MnP1, MnP2 and MnP3, were also
synthesised and used as catalysts in cyclooctene and cyclohexane oxidation reactions under

Received 7th August 2017 e ) . .
Accepted 23rd October 2017 homogeneous conditions. The catalytic studies were supported by electrochemical measurements and
showed that the number of electron-withdrawing substituents on the porphyrins rings influences the

DOI 10.1039/c7ra08734a catalytic activity. These porphyrins may be used as precursors for the design of new materials, such as
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Introduction

Porphyrins are macrocyclic compounds with a large extended
conjugated 7-system and they are often called “the pigments of
life”, as they play an important role in many biological systems.*
These compounds and their metallated complexes exhibit
unique properties®> and can be synthesized through various
methodologies.* The macrocycles also show great flexibility
towards structural modification which makes them very inter-
esting molecules in a number of different fields.*
Metalloporphyrins, especially those containing Fe(m) and
Mn(m) cations, have been extensively used as catalysts in
oxidation reactions of a range of organic compounds using
different oxidants. Studies have shown that the introduction of
electron-withdrawing and/or bulky substituents at the ortho
position of the meso-phenyl porphyrins (so called second
generation porphyrins) can enhance their catalytic activity in
oxidation reactions.*” This performance stems from the elec-
tronic effects that the substituents exert on the porphyrin ring,
which enhances the electrophilicity of the active catalytic
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Polymers of Intrinsic Microporosity (PIMs).

species (metal-oxo porphyrin) and also protects the ring, to
some extent, against auto oxidative destruction.®” In this
context, the free base ligand [5,10,15,20-tetrakis
(pentafluorophenyl)porphyrin], [H,(TPFPP)], represents an
important compound.®® The fluorine atoms on the phenyl ring
at the four meso positions increases the stability and catalytic
activity. In addition, the fluorine at para positions can be readily
substituted by nucleophiles, which makes this compound
a versatile platform for the design of new materials.*® Several
materials have been recently prepared, which utilize the
[H,(TPFPP)] porphyrin in a heterogeneous catalytic system.****
McKeown and co-workers used [H,(TPFPP)] porphyrin as
a monomer in a polymerization reaction with 5,5,6,6'-tetrahy-
droxy-3,3,3’,3'-tetramethyl-1,1’-spirobisindane (biscatechol) to
prepare a porphyrin network PIM (so called polymer of intrinsic
microporosity).’> The high surface area (up to 1000 m* g~ *) and
the chemical stability of this material encourages the synthesis
of new network PIMs and their application in heterogeneous
oxidation catalysis."”*™**

Meso substituted A,B, trans-porphyrins bearing different
functional groups are useful building blocks for the design and
synthesis of new materials with a wide range of applications,
such as biomimetic systems and molecular materials."*” The
trans pattern of substitution in these kinds of porphyrins can be
used to achieve new materials with well-defined structures. For
example, the same polymerization reaction previously used to
synthesize the porphyrin network PIM, could be employed
utilizing one meso-trans A,B, porphyrin as a preformed mono-
mer in order to achieve new soluble ladder PIMs. Moreover,

This journal is © The Royal Society of Chemistry 2017
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transition metal ions may also be coordinated to the porphyrin
units for future investigation in catalytic membranes.** Thus,
we undertook the synthesis of a group of new unsymmetric
porphyrins with either pentafluorophenyl (PFP = A) or 3,4-
dimethoxyphenyl (DMP = B) at the four meso positions.

Experimental
Materials

All chemicals used in this study were purchased from Sigma-
Aldrich, Merck or Fluka and were of analytical grade. Iodo-
sylbenzene (PhIO) was synthesized according to the literature.*®
The solid was carefully dried under reduced pressure and kept
at 5 °G; its purity was assessed by iodometric titration."

"H and "*C NMR spectra were recorded on Bruker Advance
III 500 MHz spectrometers, using deuterated chloroform as
solvent. Chemical shifts are reported in ppm (6) and coupling
constants (J) are given in Hz. The multiplicities of the signals in
the "H NMR spectra are abbreviated by s (singlet), d (doublet), q
(quartet) and m (multiplet). Mass spectra were acquired on
a Bruker Ultraflex MALDI-TOF or Thermo Electron MAT900
mass spectrometers (MALDI or EI). Electronic spectra (UV-VIS)
were obtained from dichloromethane solutions on a Hewlett-
Packard HP 8452A diode array spectrophotometer in the 200-
800 nm range. Analysis were accomplished with a 1 cm path
length cell. Fourier Transform Infrared (FTIR) spectra were
measured on a Biorad 3500 GX spectrophotometer in the 400-
4000 cm ™ ' range with a spectral resolution of 4 cm™". Elemental
analysis were obtained from a Series II 2400 Perkin Elmer
Elemental Analyzer. Electron paramagnetic resonance (EPR)
measurements of the powdered new manganese porphyrins
were conducted on an EPR Bruker EMX MicroX spectrometer
(frequency X, band 9.5 GHz) at room temperature and 77 K
(liquid N,), by using perpendicular microwave polarization X-
band.

Cyclic voltammetry (CV) was carried out with an IVIUM
CompactStat potentiostat/galvanostat. A glassy carbon electrode
was employed for the measurements at I = 0.1 mol L™" kept
constant with  TBAPFs  (tetrabutylammonium  hexa-
fluorophosphate). A silver wire and a platinum wire were used
as pseudo-reference and auxiliary electrodes, respectively.
Ferrocene was used as an internal standard reference and
potentials are reported versus the standard hydrogen electrode,
SHE. Experiments were conducted with a 1.0 x 10> mol L™"
complex concentration in dichloromethane solutions at
ambient temperature and under argon atmosphere.

Synthesis and characterization

Preparation of 5-(3,4-dimethoxyphenyl)dipyrromethane. The
dipyrromethane was synthesized by Lindsey's methodology*®
using a solution of 3,4-dimethoxybenzaldehyde (1.2 g, 7.22
mmol) and freshly distilled pyrrole (20 mL, 288 mmol) followed
by the addition of trifluoroacetic acid (TFA) (55 pL, 0.72 mmol).
The product was purified by chromatography column (6 cm
diameter x 20 cm height, silica, pore size: 60 A, 40-63 pm)
using a mixture of solvents: petroleum
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ether : ethylacetate : triethylamine (80 : 20 : 1). The solid (pale
yellow) was then triturated with hexane and filtered, yielding
a colourless solid (1.29 g, 63.2% yield). Molecular formula:
C,,H;3N,0,. "H NMR data (500 MHz, CDCl;, 298 K) 6 ppm: 7.95
(s, 2H, NH pyrrole), 6.85-6.84 (d, 1H, J = 8.1 Hz, ArH), 6.79-6.76
(m, 2H, ArH), 6.73-6.72 (m, 2H, CH pyrrole), 6.20-6.18 (q, 2H, J
= 2.8 Hz, CH pyrrole), 5.98-5.96 (m, 2H, CH pyrrole); 5.46 (s, 1H,
CH meso), 3.90 (s, 3H, ~OCHj3), 3.83 (s, 3H, ~OCH;). "*C NMR
data (125 MHz, CDCl;, 298 K) 6 ppm: 149.1, 148.1, 134.6, 132.7,
120.3, 117.1, 111.8, 111.2, 108.5, 107.1, 56.0, 55.9, 43.6. LRMS
(ED): m/z 282.1 (M"), according to the literature data.?!

Preparation of free base porphyrins P1, P2 and P3, and their
manganese complexes MnP1, MnP2 and MnP3. The free base
porphyrins were synthesized by Lindsey methodology®* using 5-
(3,4-dimethoxyphenyl)dipyrromethane (1.29 g; 4.57 mmol) and
pentafluorobenzaldehyde (0.9 g, 4.57 mmol) dissolved in dry
CH,Cl, (460 mL) followed by the addition of TFA (0.6 mL; 8.13
mmol). The solution was stirred under N, atmosphere at room
temperature for 50 min. Then, 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (1.34 g, 5.90 mmol) was added and the resul-
tant solution was stirred further for 1 h. The resulting crude
product was purified over two successive chromatography
columns (silica, 6 cm diameter x 30 cm height, CH,Cl,), where
it was possible to isolate the three porphyrins: P1 (R = 0.75), P2
(R¢ = 0.61) and P3 (R = 0.84).

Porphyrin P1. Purple solid (0.134 g, 6.4% yield). Elemental
analysis (%) calcd. for C4gH,gF1oN4O,4: C 63.03, H 3.09, N 6.12.
Found: C 62.97, H 3.18, N 5.73."H NMR data (500 MHz, CDCl;,
298 K) 6 ppm = 9.04-9.03 (d, 4H, J = 4.8 Hz, HB-pyrrolic), 8.82—
8.81 (d, 4H, J = 4.8 Hz, HB-pyrrolic), 7.80-7.78 (m, 4H, ArH),
7.32-7.30 (d, 2H, J = 7.9 Hz, ArH); 4.22 (s, 6H, ~OCHj), 4.03 (s,
6H, ~-OCH3), —2.78 (s, 2H, NH). UV-VIS in CH,Cl, at 298 K, Amax
(log &/M — 1 cm™%): 420 (5.38), 512 (4.25), 548 (3.77), 588 (3.76)
and 644 (3.51). FT-IR data (cm™ "', KBr pellet): 3321, 3116, 2933,
1517, 1496, 1479, 1465, 1440, 1406, 1353, 1346, 1319, 1257,
1237, 1166, 1139, 1076, 1041, 1027, 987, 923, 919, 813, 802, 779,
756, 734. MALDI-TOF-MS (m/z): 914.1 [MH]".

Porphyrin P2. Purple solid (0.055 g, 2.6% yield). Elemental
analysis (%) calcd. for C4gH,gF1oN4O,4: C 63.03, H 3.09, N 6.12,
found: C 63.13, H 3.18, N 5.72."H NMR data (500 MHz, CDCl;,
298 K) 6 ppm: 9.04-9.03 (d, 2H, J = 4.8 Hz, HB-pyrrolic), 8.95 (s,
2H, HB-pyrrolic), 8.87 (s, 2H, HB-pyrrolic), 8.79-8.78 (d, 2H, J =
4.8 Hz, HB-pyrrolic), 7.80-7.76 (m, 4H, ArH), 7.31-7.29 (d, 2H, J
= 8.1 Hz, ArH), 4.21 (s, 6H, ~OCH,); 4.03 (s, 6H, -OCH3), —2.70
(s, 2H, NH). UV-VIS in CH,Cl, at 298 K, Apax (log ¢/M — 1 cm™):
421 (5.39), 514 (4.24), 550 (3.74), 588 (3.78) and 642 (3.22). FT-IR
data (cm™', KBr pellet): 3321, 3105, 2931, 1515, 1498, 1479,
1463, 1440, 1404, 1350, 1321, 1257, 1238, 1166, 1139, 1120,
1081, 1041, 1027, 987, 918, 865, 802, 761, 742. MALDI-TOF-MS
(m/2): 914.1 [MH]".

Porphyrin P3. Purple solid (0.01 g, 0.5% yield). Elemental
analysis (%) caled. for C4H;9F15N,40,: C 58.49, H 2.03, N 5.93,
found: C 57.06, H 1.84, N 5.68."H NMR data (500 MHz, CDCl;,
298 K) 6 ppm: 9.06-9.05 (d, 2H, J = 4.8 Hz, HB-pyrrolic), 8.90 (m,
4H, HB-pyrrolic), 8.83-8.82 (d, 2H, J = 4.8 Hz, HB-pyrrolic), 7.79-
7.77 (m, 2H, ArH); 7.32-7.30 (d, 1H, J = 8.0, ArH), 4.22 (s, 3H,
~OCH), 4.03 (s, 3H, ~OCH;), —2.79 (s, 2H, NH). UV-VIS in
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CH,Cl, at 298 K, Amay (log /M — 1 cm ™ '):415 (5.41), 510 (4.31),
544 (3.71), 586 (3.90) and 638 (3.30). FT-IR data (cm™*, KBr
pellet): 3321, 3107, 2933, 1517, 1498, 1483, 1467, 1438, 1402,
1352, 1342, 1319, 1257, 1240, 1166, 1143, 1078, 1058, 1045,
1027, 989, 925, 918, 802, 756, 736. MALDI-TOF-MS (m/z): 944.1
[MH]".

The free base porphyrins P1, P2 and P3 were metallated by
a methodology described in the literature® using manganese(ir)
acetate as metal salt. The process was monitored by TLC and
UV-VIS techniques. The complexes were purified by column
(CH,Cl, and MeOH) and the excess of salt was removed by
washing the metalloporphyrins solids with plenty of warm
water. The new metalloporphyrins, designated MnP1, MnP2
and MnP3, respectively, were characterized by UV-VIS spec-
troscopy (ESI: Fig. S71) and EPR technique was used to confirm
the oxidation state of manganese and also to confirm the
absence of manganese(u) acetate (ESI: Fig. S8T).

Single crystal X-ray diffraction

Single crystal X-ray diffraction data were collected on either
a i19-FFD-air (fixed Chi) Pilatus M2 at the Diamond Light source
Beam line I19-1 (P1) or a Rigaku Oxford Diffraction Super Nova
(P2 and P3) diffractometer using synchrotron (0.6889 A) or Cu-
K, (1.5418 A) radiation, respectively. The crystal temperature
was controlled using an Oxford Cryo systems Cryo stream 700+
low temperature device for all of the samples. All data were
processed using Crysalis Pro. Crystal structure solutions were
achieved using intrinsic phasing with ShelXT and refined using
least squares minimization with the ShelXL refinement package
interfaced with Olex2.**** In structures P2 and P3 N-bound
hydrogens were identified from a difference Fourier map and
refined with appropriate geometric restraints. C-bound H atoms
in all structures were placed in calculated geometric positions
and refined using the riding model. Crystallographic data for
structures P1, P2 and P3 have been deposited at the Cambridge
Crystallographic Data Center. CCDC: 1483009, 1536642 and
1536643. Further crystallographic data can be found in the ESL

Catalytic studies of MnP1, MnP2 and MnP3 using (Z)-
cyclooctene and cyclohexane as substrates

The catalytic activity and efficiency of the new metal-
loporphyrins was tested in the oxidation reactions of (Z)-cyclo-
octene (previously purified on alumina column) and
cyclohexane with iodosylbenzene (PhIO). Furthermore, the two
associated symmetric metalloporphyrins, (5,10,15,20-tetrakis-
pentafluorophenyl)porphyrin manganese(ur), MnTPFPP, and
5,10,15,20-tetrakis-(3,4-dimethoxyphenyl)porphyrin man-
ganese(m), MnTDMPP, were also used as catalysts for
comparison.

The catalytic reactions were performed in a 1.5 mL glass flask
equipped with a magnetic stirrer, in a dark chamber. The
solvent mixture (acetonitrile/dichloromethane, ACN : DCM
1: 1, v/v) and the substrates were purged with argon for 15 min.
The catalysts (MnP1, MnP2, MnP3, MnTPFPP and MnTDMPP)
and the oxidant PhIO (catalyst/PhIO at a molar ratio of 1 : 10)
were added in the reaction flask and they were also purged with
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argon for 15 min. Then, the mixture of solvents (ACN : DCM,
1:1) was added to the reactions flasks, followed by addition of
the substrates (Z)-cyclooctene or cyclohexane. The molar ratio
(catalyst/PhIO/substrate) used was 1:10:1000 which was
calculated based on the molecular mass of the metal-
loporphyrins (about 0.5 mg of metalloporphyrins were used for
each reaction). The oxidation reactions were performed under
magnetic stirring for 1 h, at room temperature, in the absence of
light. After 1 h, the excess of iodosylbenzene was consumed by
addition of sodium sulfite and the reaction mixture was trans-
ferred to a volumetric flask (2 mL). The resulting solution con-
taining the reaction products analyzed by gas
chromatography using bromobenzene or 1-pentanol as internal
standards. The products from the oxidation reactions were
quantified with an Agilent 6850 gas chromatograph (flame
ionization detector) equipped with a 30 m long DB-WAX capil-
lary column with 0.25 mm internal diameter (J&W Scientific).
Product yields were based on the quantity of PhIO added to each
reaction.

was

Results and discussion
Porphyrin synthesis

It was anticipated that the porphyrin meso trans-A,B,(P1) would
be synthesized using Lindsey's methodology,*”** between 5-(3,4-
dimethoxyphenyl)dipyrromethane and pentafluorobenzalde-
hyde (Scheme 1). Analysis of the crude product mixture revealed
that the desired porphyrin P1 was prepared along with the cis-
A,B, isomer P2 and the tris-pentafluorophenylporphyrin A;B
(P3) (Scheme 1). The formation of P2 and P3 is probably asso-
ciated with scrambling of the phenyl substituents due to acid-
olysis and recombination of dipyrromethanes.”®*” The yield for
the desired porphyrin (P1) was low (6.4%), but respectable in
comparison with that of the isomeric unsymmetric porphyrin
5,15-bis(3,5-dimethoxyphenyl)-10,20-bis(pentafluorophenyl)

(3.8%), prepared using the mixed aldehyde methodology.*

5-(3,4-dimethoxyphenyl)

- pentafluorobenzaldehyde
dipyrromethane

1.TFA | 2. DDQ

F F
cis-A;B, tris-A;B

(P1) (P2) (P3)

]
trans-A;B,

Scheme 1 Schematic representation of the free-base porphyrins
preparation.

This journal is © The Royal Society of Chemistry 2017
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The "H NMR spectroscopy was fundamental for differentia-
tion between the trans-A,B, (P1) and cis-A,B, (P2) isomers
(Table 1 and ESI: Fig. S3-S57). The D,;, symmetry of ¢rans-A,B,
molecule (P1) gives specific signal patterns with two doublets
for the B-pyrrole protons at 9.0 and 8.8 ppm, while the lower
symmetry in the cis-A,B, (P2) compared to the trans P1 isomer*
gives rise to two singlets at 8.9 and 8.8 ppm and two doublets at
9.0 and 8.7 ppm. In the tris-A;B molecule (P3) the B-pyrrole
protons are split up into two doublets at 9.0 and 8.8 ppm and
one multiplet at 8.9 ppm. These results are in agreement with
the basic patterns of splitting of the B-pyrrole protons in
unsymmetric porphyrins as reported for Meng and co-
workers.>

The UV-VIS spectra of the porphyrin macrocycle are consis-
tent with the D,j, micro-symmetry according to the Four-Orbital
Model developed by Gouterman (ESI: Fig. 61).*° The spectra of
the free base porphyrins shows an intense absorption near
400 nm (Soret band) and four less intense bands (Q bands)
labeled as IV, III, I and I, between 450 and 700 nm. In general,
electron-donating substituents lead to red shifts for both the
Soret and Q bands.*** The electronic coupling between
electron-donating groups and the porphyrin core in P1-P3
decreases the HOMO-LUMO energy gaps and causes a red shift
in its spectra compared to the free base porphyrin H,TPFPP
(ESI: Fig. 61).

Furthermore, it is well established that the relative intensity
of the four Q bands is dependent on the substituent groups at
the macrocycle periphery. According to the relative intensities,
the four visible Q bands are classified as etio, rhodo, oxorhodo,
and phyllo.*** The porphyrins P1-P3 give a phyllo spectra (with
intensities IV > II > III > I), which is in agreement with meso-
phenyl porphyrins spectra. The reduction in the intensities of
bands IIT and I observed in the spectrum of the porphyrin P3
may be attributed to the restricted rotation of the phenyl groups
resulting from steric interaction of the ortho-fluorine substit-
uent and the B-pyrrole hydrogens.>®

The metalation process of the free base porphyrins P1, P2
and P3 with manganese(u) acetate was monitored by recording
the electronic spectra at different reaction times. The bath-
ochromic shift observed in the Soret band is characteristic of
Mn(m) porphyrins, which confirms the formation of MnP1,
MnP2 and MnP3* (ESI: Fig. S77). These new metalloporphyrins
were also characterized by solid state EPR (ESI: Fig. S81) and no
signal was observed at room temperature or 77 K, in agreement
with presence of Mn(ur) in the porphyrin core.>*® Indeed, the
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Mn(w) ions has four unpaired d electrons with S = 2, typically
featuring a pronounced Jahn-Teller distortion which results in
substantial spin-orbit coupling.*® Thereby, the coupling and
rapid spin relaxation process results in absence of signal in
mononuclear Mn(m) EPR spectra even at 77 K (under perpen-
dicular microwave polarization).***

Furthermore, the EPR confirms that the excess of man-
ganese(n) acetate, which shows a signal in g = 2 (ESI: Fig. S81),
was removed during the purification of the new metal-
loporphyrins (through column and washing with warm water).

Single crystal X-ray diffraction

Each one of the free base porphyrins P1, P2 and P3 was
successfully characterized by single crystal XRD that allowed
unambiguous confirmation of each structure. Suitable crystals
were grown via slow vapour diffusion of methanol into chloro-
form solution. Crystal data, data collection and structure
refinement can be found in the ESIL.{ Selected crystallographic
and geometric parameters for each structure are also shown in
Table 2. Crystals of P1, P2 and P3 form monoclinic unit cells
belonging to the space groups P2,/c, I2/a and Cc, respectively.
The ORTEP*® and molecular crystal packing diagrams for each
porphyrin are shown in Fig. 1.

The unsymmetric units of P1 and P2 contain one-half of each
molecule, along with one molecule of chloroform. The
porphyrin rings are both relatively flat, with the largest devia-
tion from planarity being 0.04 A and 0.09 A for P1 and P2
respectively, demonstrating little difference for the cis or trans-
isomer. The dihedral angle between the DMP substituents and
the porphyrin ring appear to be relatively similar for both P1
and P2, varying from 66.4 to 67.9°, with the PFP groups of P1
also within this range. However, the PFP groups of P2 adopt
a close to perpendicular orientation to the macrocycle, with an
angle of 86.0°.

The porphyrin macrocycles in the crystal structures of P1 and
P2 are arranged in a herring bone and off-set stacked crystal
packing motif, respectively (Fig. 1b and d). Analysis of the
packing in the crystal of P1 reveals a variety of close intermo-
lecular interactions between each of the macrocycles, of which
C---H, C---O, H:-‘N, F---H, F---C and F---F interactions are
present. Despite the similarities in the chemical composition of
P1 and P2, fewer types of interactions could be observed in the
crystal structure of P2, attributed to the relative positions of the
substituted phenyl substituents. The crystal structure of P2
contains C--F, F---H, F---C and O---H close interactions, with

Table 1 'H Chemical shift data (6, ppm) for trans-A,B, (P1), cis-A,B; (P2) and tris-AsB (P3) in CDCls. Multiplicity and integration in parentheses

H-B-pyrrolic ArH -OCH; NH

Trans-A,B, (P1) 9.04-9.03 (d, 4H) 8.82-8.81 7.80-7.78 (m, 4H) 7.32-7.30 4.22 (s, 6H) 4.03 (s, 6H) —2,78 (s, 2H)
(d, 4H) (d, 2H)

Cis-A,B, (P2) 9.04-9.03 (d, 2H) 8.95 (s, 2H) 7.80-7.76 (m, 4H) 7.31-7.29 4.21 (s, 6H) 4.03 (s, 6H) —2,70 (s, 2H)
8.87 (s, 2H) 8.79-8.78 (d, 2H) (d, 2H)

Tris-A;B (P3) 9.06-9.05 (d, 2H) 8.9 (m, 4H) 7.79-7.77 (m, 2H) 7.32-7.30 4.22 (s, 3H) 4.03 (s, 3H) —2,79 (s, 2H)

8.83-8.82 (d, 2H) (d, 1H)

This journal is © The Royal Society of Chemistry 2017
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Table 2 Selected crystallographic and geometric parameters for the crystal structure of P1, P2 and P3
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P1 P2 P3
Empirical formula Cs50H30ClgF1oN,04 Cs5oH30ClgF;1oN,O4 C47H,,F15N,05
Formula weight 1153.48 1153.48 975.68
Temperature/K 100 200 120
Crystal system Monoclinic Monoclinic Monoclinic
Space group P2,/c 2/a Cc
alA 13.948(3) 12.0821(2) 11.5360(2)
b/A 15.6771(17) 17.9808(2) 26.8989(6)
/A 11.2006(16) 22.7546(3) 15.0809(3)
B/ 109.177(18) 96.0320(10) 109.961(2)
Volume/A® 2313.2(7) 4915.97(12) 4398.56(16)
zZ 2 4 4
20 range for data collection/° 2.996 to 40.268 6.278 to 152.246 6.240 to 152.16
Reflections collected 8341 39378 35 755

Independent reflections
Final R indexes [I = 24(1)]
Final R indexes [all data]
CCDC deposition number

2340 [Rip = 0.0857, Ryigma = 0.0726]
Ry = 0.0725, wR, = 0.1897

R, = 0.1160, wR, = 0.2565

1483009

5127 [Rine = 0.0661, Ryigma = 0.0289]
R; = 0.0659, wR, = 0.1874

R, = 0.0708, WR, = 0.1943

1536642

7617 [Rint = 0.0660, Ryigma = 0.0400]
R, = 0.1043, wR, = 0.2897

R, = 0.1079, WR, = 0.3001

1536643

a)
BYIEL:
f«"z“’“)f}”f
4 \){‘\1
!
c) d)

' a TR S e
— Oulped
4 - WNV""'"'{ ?3«* T
gl '3.“3“:: Iﬂ{?,{

Fig.1 ORTEP molecular diagrams of (a) P1, (c) P2 and (e) P3 where the
solvent molecules and hydrogens have been omitted for clarity.
Thermal ellipsoids are also shown at 50% probability for P1 and P2 and
35% probability for P3. Crystal packing diagrams for (b) P1, (d) P2 and (f)
P3 where the solvent molecules and hydrogen, oxygen and fluorine
atoms have been omitted for clarity. Thermal ellipsoids are also shown
at 50% probability for P1 and P2 and 35% probability for P3.

the O---H close contacts generated by the association between

the methoxy substituents of each porphyrin (Fig. S12-ESI¥).
The unsymmetric unit of P3 contains a complete porphyrin

macrocycle with one molecule of methanol. The ring

50614 | RSC Adv., 2017, 7, 50610-50618

demonstrates a much larger deviation of planarity compared to
P1 and P2, with a maximum deviation from planarity of 0.351 A.
The two PFP substituents both exhibit significant disorder that
could be modelled over two positions but still demonstrate
a large amount of libration as shown on the thermal ellipsoids.
The disorder appears to coincide with the presence of small
voids around the PFP substituents, that when combined
account for 5.7% (251 A%) of the unit cell, as calculated by
PLATON VOID.*

Further analysis with PLATON SQUEEZE* calculated
a residual electron count of 47 e~ that corresponds to another
possible 0.6 molecules of methanol per molecule of P3.
However, their scattering contribution to the overall structure
refinement was not removed. The dihedral angle between the
substituted phenyl groups varies from 68.4° to 86.3°, with the
maximum dihedral angles observed for the two disordered PFP
rings. The macrocycles within the crystal structure of P3 are
arranged in a slip-stacked formation (Fig. 1f), which is arranged
via a number of O---H, C---H, F---H, F---N, F---C and N---H close
interactions and, as expected, a large number of the intermo-
lecular interactions observed involve fluorine.

Cyclic voltammetry of H,P

Fig. 2 shows the cyclic voltammograms (CV) of the free base
porphyrins in CH,Cl, solutions. H,Ps showed two quasi-
reversible oxidations and two quasi-reversible reductions. The
oxidations exhibited E,,, potentials that are referred to the SHE
as follows: +1.671 V and +1.836 V for P1, +1.632 V and +1.866 V
for P2 and +1.829 V and +2.023 V for P3. Reductions were
observed at E;;,: —0.942 V and —0.536 V for P1, —0.972 V and
—0.608 V for P2 and —0.853 V and —0.447 V for P3.

These values clearly show a similar redox behavior for P1 and
P2, which is expected since they have the same substituents,
and differ only on their geometric configuration, cis or trans,
thus offering the same overall outcome to the electronic density
of the porphyrin. In contrast, the unsymmetric porphyrin P3
exhibited a significant resistance to oxidation, in agreement

This journal is © The Royal Society of Chemistry 2017
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Fig. 2 Cyclic voltammograms of H,P and MnP in dichloromethane
containing 0.1 mol L™ TBAPFs. Scan rate at 100 mV s~2. Initial anodic
scan.

with the presence of a higher number of fluoro-atoms, which
causes a strong inductive electron withdrawing effect. The mean
potential difference between the two oxidations and between
the two reductions for H,Ps are 0.198 V and 0.392 V, respec-
tively. This result is in accordance with analogue cases in the
literature for successive monoelectronic ring-centered
processes, explained by the formation of porphyrin 7-cation/
anion radicals and dications/dianions as depicted in
Scheme 2.*»** Furthermore, the potential difference between
the first oxidation and the first reduction, AE1>(oxi-req), is @ good
estimate of the band gap between the frontier orbitals HOMO
and LUMO. It was found the following order of decreasing
AE1 jpoxi-reayt P3 (2.276 V) > P2 (2.240 V) > P1 (2.207 V), in
accordance with the higher resistance of P3 towards oxidation.
The values for P3 are slightly higher than the 2.23 V observed for
the meso-tetraphenylporphyrin [H,(TPP)],* and lower than
2.34 vV for 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin
[H(TPFPP)]. All electrochemical data are collected in Table 3.

H,P
_‘,/// ‘\té
[H,P]"® [H,P]®
-6 l+é
[H,P]%* [H,P]

Scheme 2 Schematic representation of monoelectronic process in
the formation of porphyrin m-cation/anion radicals and dications/
dianions.

This journal is © The Royal Society of Chemistry 2017

View Article Online

RSC Advances

Cyclic voltammetry of MnP

The cyclic voltammograms (CV) of manganese(u) porphyrins
showed irreversible oxidations starting at +1.8 V, which were
assigned to the electrogenerated cation radicals and the dica-
tions of the macrocycle ring (Fig. 2). An irreversible reduction of
MnP, probably related to the irreversible oxidations, was seen in
the range of —0.35 V to —0.48 V along with quasi-reversible
reduction processes between —0.926 V and —0.999 V to
produce the monoanion radical and dianions porphyrins, in
that order. Anodic peak potentials of the quasi-reversible elec-
tron transfer centered in the manganese ion were observed at
+0.440 V, +0.413 V and +0.558 V, for MnP1, MnP2 and MnP3,
respectively. The overall electron transfer sequence can be
summarized in the following steps: [Mn"P*~ — [Mn"P"]” —
[MI‘IHP] — [MnIIIP]+ — [MnIIIP~]+ — [MnIIIP]2+'44,45

Ucoski and co-workers*® reported the electrochemistry of the
5,10,15,20-tetrakis(1,3-benzodioxole}-Mn"™  porphyrin  in
dichloromethane and observed a E;,, = —0.61 V vs. SHE for the
Mn""/Mn" couple. This result agrees with the donor character of
the dioxole substituent, compared to the substituents reported
in this work, making the oxidation of the manganese center an
easier process in that case. Also for comparison, E;,, of Mn™/
Mn"(TPFPP) and of Mn"/Mn"(TPFPP) were observed in
acetonitrile at +0.05 and at +1.75 V vs. SHE, repectively.*’

Catalytic studies of MnP1, MnP2 and MnP3 using (2)-
cyclooctene and cyclohexane as substrates

The efficiency of the porphyrins MnP1, MnP2 and MnP3 and the
model compounds MnTPFPP and MnTDMPP as catalysts in
homogeneous oxidation reactions was tested using the
substrates (Z)-cyclooctene and cyclohexane and iodosylbenzene
(PhIO) as an oxidant (Fig. 3). It has been previously shown that
electron-withdrawing substituents at the ortho position of the
meso-phenyl substituents in the porphyrin ring can enhance the
catalytic activity of these compounds for oxidation reactions.®”
Hence, MnTPFPP was used as a model catalyst because it is
recognized as a highly efficient catalyst in homogeneous
oxidation reactions for various substrates.*** Its enhanced
performance can be attributed mainly to its greater stability
under oxidative conditions, resulting from the -electron-
withdrawing nature of the PFP substituent, which protects, to
some extent, the self-destruction of the porphyrin ring. On the
other hand, MnTDMPP was used as an opposing model catalyst
for comparison because it contains only the highly electron-
donating DMP substituents.

The molecule (Z)-cyclooctene is a useful diagnostic substrate
as it is easily oxidized in the presence of metalloporphyrins,
with (Z)-cycloocteneoxide usually being the sole product of
reaction.*®°

The catalytic activity of the new manganese(u) porphyrins
MnP1, MnP2 and MnP3 using (Z)-cyclooctene as a substrate
resulted in similar product yields. The new unsymmetric man-
ganese(m) porphyrins also showed analogous catalytic activity
to that observed for the completely symmetric porphyrin
MnTPFPP (~86%) (Fig. 4). This result suggests that the presence
of two (MnP1 and MnP2) or one (MnP3) 3,4-dimethoxy groups

RSC Adv., 2017, 7, 50610-50618 | 50615
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Table 3 Half-wave potentials (V vs. SHE) measured at 100 mV s~ of free base porphyrins and metaloporphyrins in CH,Cl,, 0.1 M TBAPF¢

Eoxa Eoxz Aon Erear Ereaz AEred (onl - Eredl)d E“ (MnIH/MnH) Ref.

H,TPP +0.93 +1.26 0.33 —1.29 —1.62 0.33 2.22 — 41
H,TPFPP +1.838¢ +2.123¢ 0.285 —0.543 —0.952 0.409 2.340° — tw
H,TDMPP +1.299 +1.433 0.134 —0.965 —1.267 0.302 2.264 tw
P1 +1.671 +1.836 0.165 —0.536 —0.942 0.406 2.207 — tw
P2 +1.632 +1.866 0.234 —0.608 —0.972 0.364 2.240 — tw
P3 +1.829 +2.023 0.194 —0.447 —0.853 0.406 2.276 — tw
MnP1 +1.8% n.o. — —0.48° —0.926 0.45 2.3 +0.440° tw
MnP2 +1.8% n.o. — —0.35% —0.882 0.53 2.2 +0413¢ tw
MnP3 +1.8¢ n.o. — n.o. —0.999 — — +0.558 tw
¢ Epa. b Epe. © (Epa1 — Epe1)- 4 HOMO-LUMO gap; n.o. = not observed; tw = this work.

in the structure of the new synthesized metalloporphyrins does
not seem to interfere in their catalytic activity for the oxidation
of (Z)-cyclooctene. However, the catalytic activity of the
completely symmetric MnTDMPP was lower (~73%), which can
be attributed to the absence of electron-withdrawing substit-
uent in this porphyrin.*®

Cyclohexane is a less reactive substrate than (Z)-cyclooctene
in oxidation reactions and when metalloporphyrins are used as
catalysts, both cyclohexanol and cyclohexanone are obtained as
major products.’®***° The novel metalloporphyrins reported
here have shown alcohol selectivity in the cyclohexane oxidation
(Fig. 5), which is in agreement with reported results of homo-
geneous catalysis using other metalloporphyrins.**->°

For the cyclohexane reactions it was possible to observe
a trend in the catalytic activity of the fluorine-substituted met-
alloporphyrins which increased with an increasing number of
pentafluorophenyl substituents present in the porphyrin: MnP1
~ MnP2 (~40% yield for alcohol) < MnP3 (~49%) < MnTPFPP
(~54%). The low catalytic activity of the MnTDMPP (~14%)
under the reaction conditions is associated with the absence of
bulky or electron-withdrawing substituents at the ortho position

R1 R F
PFP = pentafluorophenyl = F
R4 R2 F F
DMP = dimethoxyphenyl = OCH,

R3 OCH;

Metalloporphyrins | R1 R2 | R3 | R4

MnP1(frans-A2B,) | PFP | DMP | PFP | DMP

MnP2 (cis-A;B;) | DMP | PFP | PFP | DMP

MnP3 (tris-AsB) | PFP | PFP | PFP | DMP

MnTPFPP | PFP | PFP | PFP | PFP

MnTDMPP DMP | DMP | DMP | DMP

Fig. 3 Structures of porphyrins MnP1, MnP2 and MnP3, and the model
compounds MnTPFPP, MNnTDMPP used as catalysts for (2)-cyclo-
octene and cyclohexane oxidation reactions.

50616 | RSC Adv., 2017, 7, 50610-50618

of the meso-phenyl macrocycle, which is in agreement with
results obtained previously using a similar porphyrin
structure.*

The oxidation peak potentials (Ep,) values of MnP1 (+0.440
V), MnP2 (+0.413 V) and MnP3 (0.558 V) (Table 3) correlates well
with their increasing catalytic activity, in that order, towards the
oxidation of cyclohexane (Fig. 5). The similarity of Ep, for MnP1
and MnP2 agrees with the close yields (~40%) observed for the
cyclohexanol production, while MnP3 showed a 49% yield for
the alcohol. The higher reduction potential of MnP3 compared
to the other metalloporphyrins herein reported means that the
active intermediate containing the high valent manganese®>*
IV or V Mn=(0)P3 is a better oxidant agent due to the increased
number of pentafluorophenyl groups in the porphyrin compo-
sition, thus, in the course of the reaction, it favors the oxygen
transfer to the substrate. Furthermore, the pentafluorophenyl
substituents protect the porphyrin from oxidative damage,
increasing the turnover numbers and helps increase the yields
of the oxidation reactions.

o

-
Room temperature o
(25°C)
1h, ACN:DCM

100

90
§ 80 -
§ 70 -
.; 60 -
§ 50 -
3 40
IEI. 30 4
20 -
10
0 -

MnP1 MnP2 MnP3  MnTPFPP MnTDMPP
Fig. 4 (2)-Cyclooctene oxidation reaction using PhlO catalyzed by

MnP1, MnP2, MnP3, MnTPFPP and MnTDMPP. Catalyst/PhlO/
Substrate molar ratio = 1: 10 : 1000. The product yields were calcu-
lated based on the amount of PhlO used in the reactions. Results
represent reactions performed in duplicate.
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Fig.5 Cyclohexane oxidation reaction using PhlO catalysed by MnP1,
MnP2, MnP3, MnTPFPP and MnTDMPP. Catalyst/PhlO/Substrate molar
ratio=1:10 : 1000. The product yields for cyclohexanol (alcohol) and
cyclohexanone (ketone) were calculated based on the amount of PhlO
used in the reactions. Results represent reactions performed in
duplicate.

Conclusions

In this work the synthesis, characterization and crystal structure
of three unsymmetrical free base porphyrins (P1, P2 and P3) are
reported. The catalytic activity of the metallated unsymmetric
porphyrins MnP1, MnP2 and MnP3, together with the electro-
chemical studies, showed that the number of penta-
fluorophenyl groups on the metalloporphyrin structure (two or
three) has a direct influence on their catalytic activity in
homogeneous medium. The compound MnP3, which has three
pentafluorophenyl in its structure, showed better catalytic
results, similar to the MnTPFPP, and also higher reduction
potential compared to the other metalloporphyrins herein re-
ported. These porphyrins are interesting precursors for the
design of well-defined new materials, with a focus towards the
construction of PIMs that combine high surface area with
recognized catalytic properties of metallated porphyrins.
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