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Static wetting on deformable substrates, from liquids to soft solids
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Young’s law fails on soft solid and liquid substrates where there are substantial deformations near the

contact line. On liquid substrates, this is captured by Neumann’s classic analysis, which provides

a geometrical construction for minimising the interfacial free energy. On soft solids, the total free

energy includes an additional contribution from elasticity. A linear-elastic model incorporating an out-

of-plane restoring force due to solid surface tension was recently shown to accurately predict the

equilibrium shape of a thin elastic film due to a large sessile droplet. Here, we extend this model to find

substrate deformations due to droplets of arbitrary size. While the macroscopic contact angle matches

Young’s law for large droplets, it matches Neumann’s prediction for small droplets. The cross-over

droplet size is roughly given by the ratio of the solid’s surface tension and elastic modulus. On thin

substrates at this cross-over, the macroscopic contact angle increases, indicating that the substrate is

effectively less wetting. For droplets of all sizes, the microscopic behaviour near the contact line follows

the Neumann construction giving local force balance.
I. Introduction

Wetting is a fundamental physical process with far-ranging

applications.1–4 In the absence of long-range interfacial forces,

our understanding of wetting typically centres upon two key

results: Young’s law for wetting on rigid substrates and Neu-

mann’s triangle for wetting on liquid substrates.1,5–7 These are

shown schematically in Fig. 1. On a rigid substrate, the total free

energy is minimized when gsv ¼ gsl + glvcos q. Here, gsl, gsv and

glv, are the intensive free energies for the solid–liquid, solid–

vapour and liquid–vapour interfaces, respectively.1 This result is

often visualized in terms of an in-plane balance of surface

tensions, whose magnitudes are given by the interfacial energies,

acting at the contact line. This interpretation of Young’s law is

not rigorously correct since solid surfaces can have contributions
Fig. 1 Wetting on (a) rigid and (b) liquid substrates as described by

Young and Neumann, respectively.
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to the surface tension beyond the interfacial energy.8 On a liquid

substrate, the three interfaces arrange so that surface tensions

balance in- and out-of-plane at the contact line. This configu-

ration, called Neumann’s triangle, uniquely determines the

angles between the phases at the contact line.6,9 For liquids, the

equivalence of surface tensions and interfacial energies is not

problematic. For small drops, where the effect of gravity is

unimportant, droplets on a liquid substrate then assume lentic-

ular forms, such as that shown in Fig. 1(b), where the interfaces

between phases take the form of spherical caps.1

Young’s law and Neumann’s triangle are useful in explaining

many wetting phenomena. However, in a sense they are two

extremes in a continuum of wetting problems: Young’s law gives

the behaviour in the limit of an infinitely hard substrate, while

Neumann’s triangle gives the result for an infinitely soft (i.e.

fluid) substrate. Wetting on soft solid substrates should then

exhibit a spectrum of intermediate behaviour. This liquid–solid

crossover is suggested by several recent results. For instance,

experiment, analytical theory and molecular-dynamics simula-

tions, suggest that the shape of a soft substrate near a contact line

does not depend on the substrate elastic modulus.10,11 Eslami and

Elliott12 showed that observations of condensation on soft

substrates can be explained by treating soft surfaces as fluids.

Mora et al.13 showed that the Rayleigh–Plateau instability can

occur in thin elastic strands.

In this paper, we generalize Jerison et al.’s solution for a large

droplet on a thin solid substrate to droplets of arbitrary radius.

For large droplets, we recover Young’s law for the macroscopic

contact angle. For small droplets, the macroscopic behaviour is

given by a lenticular shape, such as that seen in Fig. 1(b), as

predicted by Neumann’s analysis for wetting on liquid
Soft Matter, 2012, 8, 7177–7184 | 7177
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substrates. The cross-over droplet size is approximately the

ratio of the solid’s surface tension and elastic modulus. For

droplets of all sizes, the microscopic behaviour near the contact

line follows a Neumann construction so as to give local force

balance.

II. Deformation of an elastic slab with surface
tension

Recently, Jerison et al.10 measured the deformation of a thin film

of soft silicone gel under a large water droplet. Their results

showed that the surface profile was well-matched by a linear-

elastic theory that included the out-of-plane restoring force due

to the substrate’s surface tension. The theory they presented was

two-dimensional, and thus applicable to very large droplets.

However in order to apply the theory to droplets of a finite

radius, we need to extend their results to three dimensions. To

this end, we solve the elastic equations in cylindrical coordinates

for a uniform substrate of thickness h and of infinite horizontal

extent.

A. Purely elastic deformations

We take a substrate which is pinned to a rigid surface at

z ¼ 0 with displacements there being zero. In cylindrical-polar

coordinates, the governing equations are the steady-state Navier

equations:

ð1� 2nÞ
�
V2ur � ur

r2

�
þ v

vr
ðV$uÞ ¼ 0 and

ð1� 2nÞV2uz þ v

vz
ðV$uÞ ¼ 0

(1)

where we have assumed cylindrical symmetry, ur and uz are the r

and z components of the displacement u, and n is the Poisson’s

ratio.14 The stress is related to the displacements by:

sij ¼ E

1þ n

�
1

2

vui

vxj

þ 1

2

vuj

vxi

þ n

1� 2n

vuk

vxk

dij

�
; (2)

where E is Young’s modulus. Because of the radial symmetry, we

take Hankel transforms of the stress and displacement fields,

giving ûr(s,z) ¼ H1[ur(r,z)], ûz(s,z) ¼ H0[uz(r,z)], ŝrz(s,z) ¼
H1[srz(r,z)] and ŝzz(s,z) ¼ H0[szz(r,z)]. Here H0 and H1 are

Hankel transforms of order 0 and 1 respectively.15 By following

the same solution method used Xu et al.,16 we then obtain:

ŝi(s,h) ¼ Qij(s,h,z)ûj(s,z), (3)

where ŝi(s,z)¼ (ŝrz(s,z), ŝzz(s,z)) and ûi(s,z)¼ (ûr(s,z),ûz(s,z)). The

spring constant Qij(s,h,z) that relates surface tractions to

substrate displacement is given by:

Qijðs; h; zÞ ¼ E

1þ n
Pijðs; hÞM�1

ij ðs; zÞ (4)

where

Pijðs; hÞ¼
0 � s

2

sn

1� 2n
0

0
BB@

1
CCAMijðs; hÞ þ

1

2
0

0
1� n

1� 2n

0
BB@

1
CCA vMijðs; zÞ

vz

�������
z¼h

(5)
7178 | Soft Matter, 2012, 8, 7177–7184
and

Mijðs; zÞ ¼

ð3� 4nÞsinhðzsÞ þ zs coshðzsÞ
4sð1� nÞ

z sinhðzsÞ
2ð1� 2nÞ

�z sinhðzsÞ
4ð1� nÞ

ð3� 4nÞsinhðzsÞ � zs coshðzsÞ
2sð1� 2nÞ

0
BBB@

1
CCCA:

(6)

Knowing Qij enables the calculation of displacements

throughout a substrate given forces applied to its surface, as it is

directly related to the Green’s function for the problem. For

example, in the case of purely vertical forces acting on the

surface, the surface displacements are given by uz(r,h) ¼
H�1

0 [Q�1
zz (s,h,h)ŝzz(s,h)], where

Q�1
zz ðs; h; hÞ

¼ 2ð1� n2Þ
sE

ð3� 4nÞsinhð2shÞ � 2sh

5� 12nþ 8n2 þ 2s2h2 þ ð3� 4nÞcoshð2shÞ :
(7)

As a useful check, Q�1
zz (s,N,N) ¼ 2(1 � n2)/(sE) which gives

Terezawa’s displacement solution for axisymmetric forces acting

on a semi-infinite elastic substrate.15
B. Elasticity with surface stresses

The elastic response due to stresses applied at the free surface is

given by eqn (3). However, to describe the deformation due to the

wetting of a liquid droplet, we also need to include surface

stresses – a generalization of surface tension for solids. The

surface stress, Y, is related to the surface energy g by the Shut-

tleworth equation:

Yij ¼ gdij þ vg

v3ij
; (8)

where dij is the Kronecker delta, and 3ij is the surface strain.
2,8 Y is

generally anisotropic, however it does simplify under certain

situations. For instance at a fluid–fluid interface
vg

v3ij
¼ 0, so the

surface stress is isotropic and equal to the surface energy. Both Y

and g can then be called the ‘surface tension’ without ambiguity.

For many isotropic solid materials the surface stresses are also

approximately isotropic,17–19 and Y and g are typically of similar

magnitudes.18 However they are not necessarily equal19,20 and we

have to distinguish carefully between them. Here we follow

Shuttleworth8 in referring to Y as the ‘surface tension’ with the

understanding that it represents the actual tension force at the

surface of the solid.

For tractability, we assume isotropic surface tensions, and that

the solid–vapour surface tension Ysn and the solid–liquid surface

tension Ysl are the same and given by Ys. Later we discuss

expected changes in more general cases.

The linearised surface tension force is

sY ¼ Ys
1

r

v

vr

�
r
vuzðr; hÞ

vr

�
ẑ, where ẑ is the unit vector in the

vertical direction.18 We include this in the force balance at the

surface10 to find that:

ŝi(s,h) ¼ QSij(s,h,z)ûj(s,z), (9)
This journal is ª The Royal Society of Chemistry 2012
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where

QSijðs; h; zÞ ¼ Qijðs; h; zÞ þ
�
0 0

0 Yss
2

�
: (10)

In particular, we have

QS�1
zz ðs; h; hÞ ¼

2ð1� n2Þ
sE

�
�
5� 12nþ 8n2 þ 2s2h2 þ ð3� 4nÞcoshð2shÞ

ð3� 4nÞsinhð2shÞ � 2sh

þ 2ð1� n2ÞsYs

E

��1

: (11)

QS�1
zz (s,h,h) tells us how the surface of the substrate responds to

imposed forcings of wavelength O(1/s), and we can use this to

gain some interesting insights into the physics of the problem.

For small wavenumbers, QS�1(s,h,h) / Q�1(s,h,h). That is, for

long-wavelength surface perturbations, the response of the

substrate is purely elastic. On the other hand, for large s,

QS�1(s,h,h) / 1/(Yss
2). That is, for short wavelength perturba-

tions to the surface, the force due to surface tension dominates

the substrate response. Analysis of eqn (11) shows us that the

cross-over length scale is Ys /E, provided the substrate thickness h

aYs /E. Perturbations of lengthscale l [ Ys /E are damped

elastically, while perturbations of length scale l � Ys /E are

damped by surface tension.21 For thin substrates h < Ys /E, the

substrate is less compliant due to the presence of the rigid bottom

boundary, so the elastic response to perturbations is stronger,

and the crossover lengthscale is reduced. As we shall see, the

length scale Ys /E repeatedly emerges in substrate micro-defor-

mation problems as a controlling influence on the behavioural

response of the substrate. Because it represents the balance

between elasticity and capillarity we refer to it here as the elasto-

capillary length, though it should be noted that there are several

other length scales that have also been given this title.22

At this point it is worth correcting a small error in the analysis

of Jerison et al.10 When including the surface tension of the

substrate in their model, they used sY ¼ Ys

2

d2uzðx; hÞ
dx2

. The

correct linearised surface tension force does not have the factor

of 1/2. This can be derived from the fact that for a curved surface

sY ¼ Yskn where k is the surface curvature and n is the normal

vector to the surface.8 The surface-tension force is the linearised

version of this expression. Importantly this correction does not

affect Jerison et al.’s claim that that a linearised elastic model

matches the observed surface profile. Rather, it changes the fitted

ratio of the liquid and solid surface tensions.

III. Solution for a hemispherical droplet

Using the results above, we can calculate the exact deformation

of the surface caused by a hemispherical droplet of radius R.

Assuming that all length scales in the problem are much bigger

than the typical range of intermolecular forces, then the surface

tension of the droplet appears as a line force, and the traction

imposed by the droplet on the surface of the substrate is given by:

T(r,h) ¼ gld(r � R)ẑ � PlH(R � r)ẑ (12)
This journal is ª The Royal Society of Chemistry 2012
where gl is the liquid–vapour surface tension, Pl is the Laplace

pressure in the droplet, d(x) is the Dirac delta function, H(x) is

the Heaviside step function, and ẑ is the unit vector in the z

direction.23 The first term corresponds to the out-of-plane surface

tension force of the droplet at the contact line. Here we have

assumed that the liquid–vapor interface is oriented normal to the

substrate in accordance with Young’s law. We will relax this

constraint in Section IV. The second term corresponds to the

Laplace pressure force. To ensure mechanical equilibrium, the

total force exerted by the droplet on the substrate is zero, thus

the distributed Laplace pressure inside the droplet must balance

the localised force of the droplet surface tension at the contact

line.1 For our hemispherical droplet, this means Pl ¼ 2gl/R.

Taking the Hankel transform H0[T(r,h)], we find that ŝzz(s,h) ¼
glRJ0(sR) � 2glJ1(sR)/s, where Ji(z) is the ith order Bessel func-

tion of the first kind. Therefore, using eqn (9) and taking the

inverse Hankel transform we find the vertical surface deforma-

tion of the substrate that results from the presence of the droplet:

uzðr; zÞ ¼ gl

ðN

0

s

�
RJ0ðsRÞ � 2

J1ðsRÞ
s

�
QS�1

zz ðs; h; zÞJ0ðsrÞds: (13)

The horizontal displacements ur(r,z) can be similarly

calculated.

A. Large droplets on a thin substrate: R [ h

There are three asymptotic limits that are of particular use.

Firstly, when the droplet is very large compared to the substrate

thickness, we expect that the peak profile should approach the

two-dimensional solution given by Jerison et al.10 If we define 3¼
h/R, nondimensionalise s by setting �s ¼ sh, and move into the

frame of reference of the peak by setting �x ¼ (r � R)/h. Then we

can expand the results for uz and ur from above in powers of 3, to

find that at leading order the surface displacements are:

uzðxÞ ¼ 2glð1� n2Þ
pE

�
ðN

0

cosðs xÞd s
5� 12nþ 8n2 þ 2 s2 þ ð3� 4nÞcoshð2 sÞ

ð3� 4nÞsinhð2 sÞ � 2 s
sþ 2ð1� n2ÞYs

Eh
s2
;

(14)

urðxÞ ¼ glð1þ nÞ
pE

�
ðN

0

��3� 2s2 þ 10n� 8n2 þð3� 10nþ 8n2Þcoshð2sÞ
ð3� 4nÞsinhð2sÞ � 2s

�
sinðs xÞds

5� 12nþ 8n2 þ 2s2 þ ð3� 4nÞcoshð2sÞ
ð3� 4nÞsinhð2sÞ � 2s

sþ 2ð1� n2ÞYs

Eh
s2

(15)

These are the same as the results given by Jerison et al.,10 after the

correction of a small error in their analysis noted above. Thus we

recover the two-dimensional solution.

Fig. 2(a) and (b) demonstrate how the vertical and horizontal

surface displacements tend to the two-dimensional solution as

the droplet diameter increases. For smaller droplets, the shape of
Soft Matter, 2012, 8, 7177–7184 | 7179
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Fig. 2 Substrate deformation with droplet size: (a) out-of-plane

displacements and (b) in-plane displacements. The drop is to the left of

the wetting ridge. h¼ 50 mm, E¼ 3 kPa, Ys¼ 0.06 Nm�1 and n¼ 1/2. For

R ¼ 0.2 mm (blue dashed-dotted curve) and 0.4 mm (red dashed curve),

the profile is computed using eqn (13) and its ur analogue. The large

droplet limit is computed using eqn (14) and (15) (black curve). (c) The

height of the wetting ridge on a semi-infinite substrate. The dashed line

shows the asymptote for RE/Ys [ 1.
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the wetting ridge is asymmetric, as has been observed experi-

mentally.24 As the droplet radius increases the shape of the

wetting ridge becomes more symmetric. For R/h T O (10), the
two-dimensional solution provides a good estimate to uz(r,h)

near the contact line. However a significant difference persists

between ur(r,h) and the two-dimensional theory up to relatively

large droplet radii. This can explain the deviation between

experiments and theory found by Jerison et al.10 They measured

droplets with R/h z O (10) and found excellent agreement

between the two-dimensional theory and experiments for vertical

displacements. However experimentally observed horizontal

displacements were asymmetric and shifted towards positive

displacements relative to theoretical predictions. Our results

suggest that this is simply due to the finite droplet size.
B. Small droplets: R � h, R � Ys /E

Consider a sessile droplet of radius R � Ys /E on a substrate of

thickness h[R. Since the wavelength of applied surface stresses
7180 | Soft Matter, 2012, 8, 7177–7184
can be no bigger than the droplet radius, then the arguments

from the end of Section II imply that surface tension dominates

the response of the substrate. As elasticity effectively drops out of

the problem at these small lengthscales, the system is the same as

that of a droplet of liquid sitting at the interface between two

other fluids. Thus, the solution must simply be that of Neu-

mann’s classic three-fluid contact problem shown in Fig. 1(b),

with gsl and gsn replaced by Ys. Here, the droplet takes a lentic-

ular shape formed by the union of two spherical caps, with

contact angles given by Neumann’s triangle.9
C. Droplets on a semi-infinite substrate: R � h, Ys /E � h

In the case of an infinitely thick substrate, as sh / N, we find

that eqn (11) simplifies considerably. We nondimensionalise

using the droplet radius as a length scale, so that ~r ¼ r/R and

~s ¼ sR to find that the surface displacement is:

uz
	
~rR


 ¼ 2glð1� n2Þ
E

ðN

0

�
J0ð~sÞ � 2

J1ð~sÞ
~s

�
J0
	
~s~r


d~s

1þ 2ð1� n2ÞYs

RE
~s

: (16)

This equation shows two interesting details. Firstly, the height of

the peak has a linear dependence on gl /E, as predicted by many

theoretical works,25 but is also a weak function of RE/Ys.

Asymptotically we find that for R [ Ys /E,

uzðRÞz 2glð1� n2Þ
Ep

log

�
RE

2ð1� n2ÞYs

�
þ const: (17)

Fig. 2(b) shows the peak height as a function of droplet radius,

along with this leading order asymptotic result without the

constant term. Evidently, the asymptotic expression is a conve-

nient upper bound on the surface displacement of a substrate

caused by a drop of radius R. This is always finite, in contrast to

Terezawa’s solution for the case of a circular line force on a semi-

infinite substrate, where the substrate strain diverges at the

contact line,15 and the two-dimensional models of Jerison et al.10

and Long et al.21,26 that predict a divergent peak height for semi-

infinite substrates. Our asymptotic expression resembles the

logarithmic divergence of peak height with R found by White.27

However, while White’s expression depends on the range of

intermolecular forces, our result only depends on drop radius

and the elastocapillary lengths Ys /E and gl /E.
IV. Discussion

A. Does Young’s law hold on soft substrates?

Above, we have imposed a particular macroscopic contact angle

q for the droplet, namely the value given by Young’s law.

However, as some experiments have suggested, this may not be

the equilibrium contact angle on a soft substrate.28 Therefore, we

seek to determine the range of validity of Young’s law using the

model derived above.

We calculate the equilibrium shape of a sessile droplet on a soft

substrate by minimizing its free energy, written as F¼ Fsurf + Fel,

where the contribution from surface energies,

Fsurf ¼ glAlv + (gsl – gsv)Asl, (18)
This journal is ª The Royal Society of Chemistry 2012
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with Alv being the area of the liquid–vapour interface, and Asl

being the area of the substrate–liquid interface. Note that we use

the surface energies gsl and gsv here rather than the surface

stresses. The elastic contribution is:

Fel ¼ 1

2

ð
Asl

T$udA: (19)

Note that we ignore the contribution to F of the line tension s.
This is only expected to be significant when the size of a droplet

s/gl.
1 Typically s z 10�11 J m�1,1 so line tension can generally be

ignored for droplets larger than a nanometre.

The contact angle for a droplet is then found by minimising

this energy subject to the constraint that the total droplet volume

is constant. The elastic energy starts to impact the equilibrium

contact angle when Fel z Fsurf and we can predict when this will

occur by noting that for our hemispherical droplet,

Fel ¼ pRgluzðR; hÞ �
2pgl

R

ðR

0

ruzðr; hÞdr: (20)

The first term corresponds to the work done by the surface

tension of the droplet in pulling up the wetting ridge, while the

second term corresponds to the work done by the Laplace

pressure of the droplet. Each of these two expressions scale like

glRuz(R,h), and so using eqn (17) gives an upper bound on the

magnitude of the elastic energy: Fel(
Rg2

l

E
logðRE=YsÞ. Fsurf z

glR
2, so we find that the ratio Fel/Fsurf z (gl/RE)log(Ys/RE). This

is small provided that R [ Ys /E, gl /E, in which case the

deformation of the substrate will have little influence on the

energetics of the droplet. Then the contact angle will be the same

as it is for a rigid substrate. On the other hand, as the droplet

radius reduces towards max[Ys /E,gl /E], the growing influence of

the substrate deformation will start to manifest itself as a change

in the macroscopic contact angle.

The key result here is that Young’s law is recovered for

droplets that are much larger than the two elasto-capillary

lengths Ys /E and gl /E, i.e. gsv ¼ gsl + glvcos q. An instructive
Fig. 3 Substrate deformation for a hemispherical 1 mm radius droplet of w

Ys ¼ 0.05 N m�1 and E ¼ 3 kPa. (a) Macroscopic view. (b) Substrate displa

(c) Close up of the tip of the wetting ridge, with Neumann’s triangle superim

This journal is ª The Royal Society of Chemistry 2012
example of this is given in Fig. 3(a). In this case,R[ Ys /E, gl /E.

Therefore, macroscopically the droplet conforms to Young’s

law, with q ¼ 90� as we assume gsl ¼ gsv. However if we zoom in

on the contact line, we see that the local angle between the liquid–

air and substrate liquid interfaces deviates substantially from q.

This is clearly demonstrated in Fig. 3(b). Note that this second

figure is calculated using eqn (13) and the vertical length scale is

non-dimensionalised with gl /E.

In order to demonstrate how Young’s law holds for large

droplets, and also how the contact angle changes as R

approaches Ys /E and gl /E, we calculate the change in the

macroscopic contact angle, q for the particular case of an

incompressible, thin substrate with h � Ys /E. The details of this

calculation are given in Appendix A. Fig. 4(a) shows the

macroscopic contact angle for a droplet of volume V ¼ 4/3pR3
0,

with E ¼ 3 kPa, h ¼ 20 mm and gl ¼ 0.07 N m�1. gsl ¼ gsv so the

macroscopic contact angle given by Young’s law is 90�. We plot

the curve for q for Ys ¼ 0.08, 0.12 and 0.16 N m�1. There are four

different regimes of behaviour. In regime I, where R [ Ys /E, h,

Young’s law holds in agreement with the analysis above. In

regime II, as the size of the droplet shrinks towards Ys /E (though

R [ h), q starts to increase. This occurs because the elastic

energy required to deform the substrate into a wetting ridge acts

like a line tension, causing the droplet to attempt to reduce its

wetted surface area. This makes the substrate appear less wetting.

In regime IV, when the droplet becomes much smaller and R0 �
Ys /E, h then, as we showed in Section IIIB, the substrate

responds like a fluid and the system behaves like the classical

three-fluid problem shown in Fig. 1(b). Thus q reduces to the

value given by Neumann’s triangle, with substrate surface

tensions replaced by surface stresses. Unfortunately, the linear

constraints of the model, detailed further in Appendix A, mean

that it is difficult to estimate the contact angle behaviour in

regime III. However it is interesting to note that there must be

a pronounced maximum in q as R / 0. Note that we do not

assume that Ys ¼ gs anywhere in this calculation.

As well as showing the change in contact angle with droplet

size in Fig. 4, we also show the free energy of droplet adhesion, F,

changes with R0. This is normalised by the free energy of
ater on an incompressible elastic substrate of thickness h ¼ 0.5 mm with

cement underneath the droplet. Here, the vertical axis is scaled by gl /E.

posed.
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Fig. 4 Effect of substrate deformability on (top) contact angle and

(bottom) adsorption free energy. Change in free energy relative to the free

energy of a droplet on a rigid substrate (F� Frig)/Frig. For both plots, gl¼
0.07 N m�1, E ¼ 3000 Pa, h ¼ 20 mm. The different lines correspond to

different values of Ys; continuous line: Ys ¼ 0.08 N m�1, dashed line: Ys ¼
0.12 N m�1, dash-dotted line: Ys ¼ 0.16 N m�1. Roman numerals indicate

different regimes of behaviour as described in the text.
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adhesion for a rigid substrate Frigid. In regime II, there is an

increase in the free energy above that of a rigid substrate, while in

regime IV the free energy drops to a lower energy state than that

in the rigid-substrate case.

Each of the regimes above should be observable experimen-

tally. For typical liquid droplets on gels (with kPa scale moduli),

the elastocapillary length is in the micron scale. Thus, droplets in

regime II should be readily observable with light microscopy.

Droplets in regime IV could be readily generated by condensa-

tion and should be observable with atomic force microscopy. In

that case, our results suggest that condensation will occur more

rapidly onto a soft substrate than onto a rigid substrate due to

the lower energy state of droplets on the softer substrate, as

shown in Fig. 4(b). This is in agreement with the experiments of

Sokuler et al.29 and the theory of Eslami and Elliott.12 By

contrast, the elastocapillary length for soft elastomers and

rubbers (Ez 1 MPa) is �50 nm, so regime I and II drops will be

achievable, but interfacial forces will likely be important in

regimes III and IV. Finally the elastocapillary length for hard

materials such as glass (GPa and above) is at, or below, molec-

ular dimensions, so any droplet will be in regime I.

It is worth briefly noting two points. Firstly, our results also

indicate that the predicted deviations in contact angle from

Young’s law also depend upon the size of the solid surface

tension Ys, as shown in Fig. 4(a). For larger values of Ys/gl, the

changes in contact angle become small, while when Ys/gl is

smaller, there can be quite significant changes in contact angle,
7182 | Soft Matter, 2012, 8, 7177–7184
especially when R0E/Ys � 1. Physically this occurs because when

Ys/gl is large, the liquid surface tension cannot overcome the solid

surface tension. This means that the system approximates that of

a droplet on a rigid interface, and so the contact angle

approaches that given by Young’s law. On the other hand, as

Ys/gl reduces, the stronger liquid surface tension causes surface

deformations to increase, resulting in larger changes in q.

Secondly, we note that our predictions differ from those derived

theoretically by Shanahan30 and Leonforte and Muller.11 Sha-

nahan30 considered a local energy minimisation at the contact

line in his derivation of the contact angle. This is in contrast to

the global energy minimisation we perform to calculate q.

Leonforte and Muller primarily considered nano droplets

including intermolecular forces and line tension. They also per-

formed a scaling analysis to approximate the competition of

surface tension and elasticity and concluded that for very small

droplets Young’s law would hold, while for larger droplets

Young’s law would break down.
B. Force balance at the contact line

While Young’s law holds for the macroscopic contact angle for

droplets with R [ gl /E, Ys /E, the microscopic behavior at the

contact line is quite different. Fig. 3 shows the equilibrium of the

three-phase system across length scales. Near the three-phase

contact line (|r � R| � Ys /E, R), the wetting ridge forms a cusp

with a well defined angle, as shown in Fig. 3(c). Interestingly, this

angle is identical to the one predicted by Neumann’s triangle with

solid surface tensions Ys, so local force balance between surface

tensions is enforced at the tip of the ridge. An analytical proof of

this result is given in Appendix B. This also means that the

contact between the three phases behaves much like the contact

between three fluids. As E / 0, the size of this fluid-like region

grows, and the substrate behaviour approaches a completely

fluid-like response. On the other hand, as E becomes large, the

ridge height becomes small, as can be seen from eqn (17), and the

response of the substrate returns to the flat, rigid surface of

Young’s law. Note that additional physics is introduced when the

height of the peak is comparable to the range of interfacial forces

(�2 to 10�A), which will effect the local behaviour at the contact

line.27,31

Importantly, the presence of a small region where interfaces

obey Neumann’s triangle at the contact line ensures balance in

the out-of-plane component ignored by Young’s construction.

This resolves the apparent lack of local force balance at the

contact line in Fig. 1(a).32,33 Global force balance then comes

from elastic deformation of the substrate opposing the surface

tension of the droplet.22,34
V. Conclusions

We consider a sessile droplet placed on a soft substrate. We find

that large droplets satisfy Young’s law for wetting on solid

substrates, while small droplets satisfy Neumann’s construction

for wetting on liquid substrates. The cross-over size is given by

the elasto-capillary lengths Ys /E and gl /E. For droplets of all

sizes, microscopic behaviour near the contact line is fluid-like. At

distances from the contact line much smaller than Ys /E, the

system takes the form of the Neumann triangle where the upward
This journal is ª The Royal Society of Chemistry 2012
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force of the droplet surface tension is balanced by the surface

tensions of the substrate. Over distances much greater than Ys /E

the effects of the substrate surface tension diminish, and the

substrate response is elastic.

Our model, which considers the case Ysl ¼ Ysv, should be

naturally extendable to treat more general surface stresses. To

maintain local force balance at the contact line, we expect that

the surfaces will rearrange so that glv,Ysl and Ysv still obey

Neumann’s triangle. For large liquid surface tensions, the surface

strain may be sufficiently large to reveal a strain-dependent

contribution to Ys. While we have been careful to avoid equating

the surface stresses in a solid, Ys, to the surface energy, gs,

equivalence of surface stress and surface energy has previously

been seen experimentally in several solid materials.17 Specifically,

we expect Y to be isotropic and equal to g for polymer gels10 –

since their surfaces primarily consist of liquid solvent.
Appendix A: calculating the macroscopic contact
angle on a soft substrate

In order to calculate the contact angle on a soft substrate forRT

Ys /E we use the specific case of a droplet on an incompressible,

thin substrate with gsl ¼ gsv ¼ gs. Thus n ¼ 1/2 and we assume R

[ h, as considered in Section IIIA. For a hemispherical droplet

in this limit, the height of the peak is independent of R, and the

pressure contribution to Fel in eqn (20) vanishes as uz(r,h) /

0 inside the droplet,10 giving Fel ¼ (1.5Rg2
l /E)f(Ys/Eh), where the

function f is the integral in eqn (14). When the macroscopic

contact angle changes from 90�, then the vertical component

of surface tension reduces to glsin q and so Fel z 1.5Rcg
2
l sin

2

q/Ef(Ys/Eh), where Rc is the radius of the contact area, shown in

Fig. 5.
Fig. 5 Schematic diagram for the contact angle calculation.
The surface energy contribution to the free energy can be

calculated by assuming that the deflection of the substrate is

small relative to the size of the droplet, so we have the scenario

shown in Fig. 5. Then, from geometrical considerations, Fsurf ¼
2pR2

dgl(1 � cos q) + pR2
c(gsl � gsv), where Rc ¼ Rdsin q.

Assuming that the total volume of the droplet is fixed so that V¼
4/3pR3

0 we find the equilibrium contact angle by numerically

minimising F ¼ Fsurf(V,q) + Fel(V,q). The results are then plotted

in Fig. 4(b) as a function of the free droplet radius R0 divided by
This journal is ª The Royal Society of Chemistry 2012
Ys /E. The figure also shows the contact angle for small droplets

in the limit R0 � Ys /E, where the macroscopic contact angle is

determined by Neumann’s triangle, so that q ¼ cos�1(gl/2Ys).

Appendix B: fluid-like behaviour at the contact line

Here, we demonstrate that in the absence of long-ranged inter-

molecular forces, the behaviour close to the contact line always

reverts to the Neumann triangle at sufficiently small length

scales. We start with the equation for the substrate profile under

a droplet, eqn (13), and split the integral into two parts:

uzðr; hÞ ¼
ðE=Ys
0

d sþ
ðN

E=Ys

d s ¼ ulongz þ ushortz : (B1)

Since contributions from each wavenumber, s, separately

satisfy the governing equations, each of the two parts represents

a valid elastic solution. The first integral represents the long

wavelength (l > Ys /E) contribution to the surface profile, and is

therefore smooth and cusp-free. The second integral represents

the short wavelength contribution, and therefore contains all the

details of the peak. For r – R � Ys /E, R, we find that the second

integral reduces to:

ushortz ðr� R; hÞ ¼ gl

Ys

ðN

E=Ys

cos½sðr� RÞ�
ps2

ds (B2)

which has a symmetric peak of width O (Ys /E) with slope �gl/2Ys

either side. This is the Neumann triangle after linearisation for

small surface gradients. Thus for regions of size�O(Ys /E,R) the

contact line appears the same as a three-fluid contact line.
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