Issue 4, 2025

Eco-friendly Fenton reagent-based negative ζ potential engineering of porous carbon materials and their applications on the effective removal of methylene blue and SARS-CoV-2 virus by enhanced electrostatic interaction

Abstract

Various pollutants in wastewater that are produced from industrial and domestic processes are causing huge threats to human health and environmental safety. Novel porous carbon materials with specially designed surface physiochemical characteristics and pore structures are considered one of the most potential candidates for the highly efficient removal of these pollutants via adsorption. In particular, they have the inherent characteristic of being positively charged towards cationic dyes and SARS-CoV-2 virus with the unique spike protein. Based on this, in this work, we proposed and developed a new strategy for surface-negative ζ potential engineering of porous carbon materials using Fenton reagent, which is a mild, eco-friendly but potent free radical provider. After the pretreatment with Fenton reagent, the amount of oxygen-containing functional groups increased considerably, followed by a distinct decrease in the ζ potential for the porous carbon materials, which, in turn, enabled a relatively higher binding force between the adsorbent and target adsorbate, resulting in the enhanced performance of porous carbon materials in the removal of methylene blue (585.1 mg g−1) and SARS-CoV-2 virus-like-particles (98.61%, 50 g L−1). Thus, this work not only highlights porous carbon materials as promising candidates for the removal of cationic dyes and viruses but also provides a universal strategy for producing negatively charged porous carbon materials with high feasibility and sustainability.

Graphical abstract: Eco-friendly Fenton reagent-based negative ζ potential engineering of porous carbon materials and their applications on the effective removal of methylene blue and SARS-CoV-2 virus by enhanced electrostatic interaction

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2024
Accepted
12 Dec 2024
First published
13 Dec 2024

New J. Chem., 2025,49, 1391-1399

Eco-friendly Fenton reagent-based negative ζ potential engineering of porous carbon materials and their applications on the effective removal of methylene blue and SARS-CoV-2 virus by enhanced electrostatic interaction

K. Li, B. Sun, Z. Xu, M. Hou, C. Li, Q. Pan, J. Gan, Y. Huang, Q. Ding, M. Zhao, D. Zhuang and Q. Gong, New J. Chem., 2025, 49, 1391 DOI: 10.1039/D4NJ04522J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements