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Abstract

Large-scale and openly available material science databases are mainly composed of computer 

simulation results rather than experimental data. Some examples include the Materials Project, 

Open Quantum Materials Database, and Open Catalyst 2022. Unfortunately, building large-

scale experimental databases remains challenging due to the difficulties in consolidating locally 

distributed datasets. In this work, focusing on the catalysis literature of CO2 reduction reactions 

(CO2RRs), we present a machine learning (ML)-based protocol for selecting highly relevant 

papers and extracting important experimental data. First, we report a document embedding 

method (Doc2Vec) for collecting papers of greatest relevance to the specific target domain, 

which yielded 3,154 CO2RR-related papers from six publishers. Next, we developed named 

entity recognition (NER) models to extract twelve entities related to material names (catalyst, 

electrolyte, etc.) and catalytic performance (Faradaic efficiency, current density, etc.). Among 

several tested models, the MatBERT-based approach achieved the highest accuracy, with an 

average F1-score of 90.4% and an F1-score of 95.2% in a boundary relaxation evaluation 

scheme. The accurate and accelerated NER-based data extraction from a large volume of 

catalysis literature enables temporal trend analyses of the CO2RR catalysts, products, and 

performances, revealing the potentially effective material space in CO2RRs. While this work 

demonstrates the effectiveness of our ML-based text mining methods for specifically CO2RR 

literature, the methods and approach are applicable to and may be used to accelerate the 

development of other catalytic chemical reactions.
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Introduction
A large amount of material science data has been accumulated worldwide1. As a result, 

machine learning has recently emerged as a powerful tool to solve materials science problems2. 

However, the large-scale and openly available materials science databases primarily include 

results from computer simulations rather than experimental data. Some exemplary databases 

include the Materials Project3, Open Quantum Materials Database (OQMD)4, Novel Materials 

Discovery (NOMAD)5, and Open Catalyst 2022 (OC22).3, 6 Typically, experiments are 

performed locally in each laboratory, and these widely distributed results are extremely 

difficult to collect in a single database. In this regard, the scientific literature can be a great 

source of focus since the literature contains a large amount of high-quality experimental data 

as a result of the peer review processes. Extracting key information from the literature is 

considered an excellent approach to construct large-scale experimental material databases and 

requires diverse natural language processing techniques.

Manually text mining literature is very time-consuming, and thus, automated processes for 

text mining, such as rule-based or machine learning-based approaches, are highly desirable. In 

particular, named entity recognition (NER)7 is the most frequently used method for recognizing 

and extracting entities such as words or phrases in papers by classifying them according to 

predefined labels. The extracted entities from each paper could be stored as specific data, such 

as material’s name and performance value. In contrasts, when using conventional analysis tools 

from literature databases including Web of Science8or Scopus9, we can only analyze and 

extract the predefined keywords or topics, resulting in the loss of detailed information within 

the literature. To extract the detailed information from literatures, NER plays a critical role in 

automated text mining. NER has recently been used in materials science10-15 and biomedical 

research16-18 to extract the properties of materials or chemicals from texts. For example, Weston 

et al.12 successfully extracted general materials science entities, such as material names, phase 

names, and synthesis or characterization methods, by applying a long short-term memory 

(LSTM)-based NER model19 to abstracts of 3.3 million materials science papers. Similarly, 

Park et al.11 explored the literature on metal-organic frameworks (MOFs) and extracted entities 

such as MOF names and synthetic routes and conditions from 30k papers. More recently, 

transformer-based models, such as bidirectional encoder representations from transformers 

(BERT), have been actively used in natural language processing (NLP) tasks due to their 

enhanced accuracies.20-22 Notably, Trewartha et al.21 developed MatBERT and compared the 
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entity extraction performance of several BERT models, including BERT20 and SciBERT23, and 

found that the models’ performances are highly affected by the training domain.

Despite previous efforts, performing text mining for a specific target domain24 like catalysis 

remains difficult. One difficulty is selectively collecting papers of greatest relevance to the 

specific target domain. Previous reports considered general materials science papers, and in 

those cases, collecting papers is straightforward since selection processes are not needed. 

However, if a user wants to perform text mining on, for example, the domain of electrochemical 

CO2 reduction reactions (CO2RRs), an automated and efficient selection process is necessary. 

Another difficulty is the development and application of NER models. Material names 

(catalysts, products) are multi-word entities involving sometimes even more than ten words, 

which is much larger than other types of labels such as performance values. For instance, in an 

article by Wang et al.25, a complex catalyst was used consisting of Ni nanoparticles (NPs) 

encapsulated in nitrogen-doped carbon nanotubes (CNTs) and assembled on the surface of 

graphene; this catalyst is abbreviated in its original text as “N/NiNPs@CNT/G”. In this case, 

the evaluation of NER is challenging since multi-words entities are not only more difficult to 

identify but also frequently lack consensus on the entity’s exact beginning and end. Moreover, 

entity annotations need to be performed very carefully to achieve high NER performance24. 

The catalyst names appearing in CO2RR papers are not standardized and often include supports 

or structures in the catalyst name, as exemplified above. Thus, defining clear annotation rules, 

like which words should be annotated as catalyst materials, is important. For instance, in an 

article by Zhu et al.26, the authors compare the performance of copper catalysts having varied 

structures. Usually in NER tasks, catalysts are identified by solely their chemical composition 

(i.e., “copper”), but in this case, annotating both the chemical and structural words as the 

catalyst name is critical (i.e., "copper hollow fiber”, “copper foam”, “copper foil”). Since entity 

characteristics differ in various target application domains, pretrained NER models from prior 

studies are often not applicable out-of-the-box to a new domain. These problems call for the 

development of NER models that are specific to different target domains, which in our case is 

electrochemical CO2RR.

In this work, machine learning (ML)-based text mining methods are presented and 

demonstrated to be effective for the electrochemical CO2RR target domain. First, we report a 

method for selectively collecting papers pertinent to this specific domain and excluding 

irrelevant papers using a combination of Doc2Vec27 and latent Dirichlet allocation (LDA)28 

algorithms. Next, NER models based on bidirectional LSTM (Bi-LSTM)19 and BERT20 
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algorithms are retrained using 500 manually annotated CO2RR papers to extract key entities 

related to catalysis, such as material names and catalytic performance data. The MatBERT-

based model shows the best performance, exhibiting an F1-score of 90.4% that reached up to 

95.2% in a boundary relaxation29 evaluation scheme owing to the accuracy enhancements30, 31 

for multiword entities, such as catalyst and electrolyte names. The catalysis-specific NER 

model enables accelerated data extraction from a large volume of literature (in our case, 3,154 

CO2RR papers), thereby allowing yearly trend analyses of the CO2RR catalysts, products, and 

performance. This analysis reveals the recent element usage trends, including the boost of post-

transition metal elements of Bi and In for formic acid production. Additionally, it also proposes 

the potentially effective material space in CO2RRs, such as transition metal elements of Cr, Mn 

and Mo for single atom catalysts. To the best of our knowledge, this work is the first study 

reporting ML-based text mining for catalysis literature, and the proposed approach will be 

useful for other catalytic reactions in addition to CO2RRs.

Results and discussion
Workflow of CO2RR literature processing. Figure 1 presents the four sequential steps in the 

CO2RR literature processing workflow developed in this paper, including (1) paper collection 

and preprocessing, (2) exclusion of irrelevant papers, (3) data extraction using named entity 

recognition (NER), and (4) analysis of research trends and directions. In step (1), a total of 

4,838 CO2RR-related papers were collected with the permissions based on keyword queries 

from the websites of six publishers. These papers were parsed into plain text and tokenized 

using ChemDataExtractor32 for the subsequent text mining processes. Since the keyword 

query-based search in step (1) still yielded some “noise papers” irrelevant to CO2RR, in step 

(2), these noise papers were filtered out using our combined approach of Doc2Vec and latent 

Dirichlet allocation (LDA), finally leaving the most relevant 3,153 papers. In step (3), entity 

labeling and NER were performed. Twelve types of entities, including material names and 

electrochemical properties, were manually labeled. Examples of these twelve types of entities 

are provided in Table S1. Using the labeled dataset, different NER models, including Bi-LSTM 

and BERT-based models, were developed. Finally, in step (4), the best NER model (MatBERT-

based21 approach) was applied to all 3,153 papers to generate a large database. This database 

was analyzed to assess useful and recent research trends and directions in the CO2RR field. 

More detailed results from each step are explained below.
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Preparation of electrochemical CO2RR papers. Our first approach to acquire the CO2RR 

papers involves a keyword query-based search to collect papers from journal websites (Figure 

2a). Journals were considered from the following six publishers: Springer Nature, Elsevier, 

Wiley, American Association for the Advancement of Science (AAAS), American Chemical 

Society (ACS), and Royal Society of Chemistry (RSC). Only research articles were collected; 

any papers categorized as reviews, perspectives, and news were excluded. To select papers 

relevant to CO2 electroreduction catalysis, we considered many versions of keyword queries in 

the Boolean search and found the best search to be “CO2” AND “reduction” AND “reaction” 

AND “catalyst” AND “faradaic” AND (“electrochemical” OR “electroreduction” OR 

“electrocatalytic” OR “electro”). This search process resulted in a total of 4,838 papers.

Unfortunately, the keyword query-based search does not provide fully satisfactory 

screening results. A substantial number of irrelevant or “noise papers” were found, examples 

of which include photochemical CO2RR papers, oxygen reduction reaction papers, and 

nitrogen reduction reaction papers. To filter out these irrelevant papers, we report a combined 

approach involving Doc2Vec and LDA methods. Doc2Vec is an algorithm that converts a 

document into a vector (the document version of Word2Vec33, 34). We manually selected 20 

seed papers that best represent our target topic of electrochemical CO2RR. Then, 200-

dimensional document embedding using Doc2Vec are used a cosine similarity calculation and 

we compute the difference between our seed papers and the remaining papers in our collection. 

Figure 2b visualizes the document embedding results for all 4,838 papers including the 20 seed 

papers which were reduced to two dimensions using principal component analysis (PCA) 

algorithms, and the maximum cosine similarity between an arbitrary paper and 20 seed papers 

was used as a screening metric. We chose to exclude the papers that differed the most from the 

seed papers.

   To determine whether the Doc2Vec strategy was effective for removing irrelevant papers, 

topic modeling through latent Dirichlet allocation (LDA) was applied. LDA assigns the 

probabilities of several topics for each paper based on the words describing the topic. An 

appropriate number of topics must be selected, which is a hyperparameter of LDA. Based on 

the complexity28 and coherence35 of the LDA approach, the optimal number of topics was 

determined to be 11. Table S2 provides the detailed contents of the LDA topics. Several topics 

were identified as completely irrelevant to CO2RR and thus grouped as noise. We further 

classified the eleven topics into four categories, which were entitled: CO2RR, density 
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functional theory (DFT), analysis, and noise. In general, catalyst papers often contain a 

characterization part that analyzes the structure and properties of a catalyst and a part that 

identifies the mechanism of the catalytic reaction using DFT simulations. Thus, we reflected 

these attributes in the final four categories. Figure 2c shows the ratio of noise papers as a 

function of the Doc2Vec similarity. For 500 papers with the highest Doc2Vec similarity (> 

0.55), only 16% were identified as noise papers. On the other hand, for 500 papers with low 

Doc2Vec similarity (<0.35), approximately 70% were identified as noise papers. This 

comparison reveals the effectiveness of the Doc2Vec approach in filtering out irrelevant papers. 

The threshold for the Doc2Vec similarity was set as 0.4 in this work. The resulting process 

removed an additional 1,683 papers, finally leaving 3,153 papers in our corpus. The combined 

approach of Doc2Vec and LDA is useful for screening papers that are outside of the research 

target topic. This method requires the input of only tens of seed papers from a user, and thus 

can universally be applied to other research domains beyond CO2RR with ease.

Data extraction using NER. We applied the NER approach to only the abstracts of papers 

rather than the full document text because we assume that the abstract contains the most 

important information in the paper and the limited scope of text simplifies the NER task. (Table 

S3 in the Supporting Information). As shown in Figure S1, analyses of 100 randomly selected 

papers confirmed that the information about catalyst names and product names in the main 

bodies was also present as much as 98% of the abstracts. Also, we found that the information 

regarding performance (Faradaic efficiency, current density, onset potential, overpotential, 

stability hour, and turnover frequency) was present more than 76% of the abstracts. These 

analyses support that the abstracts contain the most important information in papers, and justify 

the approach of prioritizing abstracts in the current study. For the NER task, we selected the 

following twelve entities that contain key information for CO2RR: catalyst, product, electrolyte, 

reference electrode, current density, faradaic efficiency, stability hour, turnover frequency, 

overpotential, onset potential, potential, and concentration. Note that the first four entities 

contain material information, whereas the remaining eight entities are related to the 

electrochemical catalytic performance. Entities of material names are composed of chemical 

elements, while entities of electrochemical measurements are mainly composed of numbers 

and units. Several examples of each entity are provided in Table S4. These entities were 

manually annotated based on only the abstracts of the top 500 papers with high Doc2Vec 

similarity (Figure 2c). The inside-outside-beginning-end-single (IOBES) format, which is 
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known to be effective in addressing multiword entities36, 37, was adopted for the annotation 

process. Several annotation formats, including IOB, IOBE, and IOBES, were considered, and 

IOBES generally produced the best NER performance (Table S4 in the Supporting 

Information).

Two types of NER models were developed, Bi-LSTM and BERT-based models, and their 

network architectures are shown in Figure 3. The LSTM model was designed to solve the long-

term dependency problem of recurrent neural networks (RNNs), which show poor performance 

for long sequences38. Word embedding and character-level representations39 were both applied 

in the Bi-LSTM models. Word embedding was performed by training the Word2Vec 

algorithm34 based on our own corpus of catalysis papers. The character-level representations 

were obtained from the output of the character-level Bi-LSTM training based on the same 

corpus. The character-level representations reflect words such as plurals or molecular formulas. 

These two embedding vectors were concatenated and used as inputs to the Bi-LSTM model.

On the other hand, BERT is a transformer-based model20 that is known to understand the 

entire context considerably better than Bi-LSTM models due to self-attention40. Self-attention 

mechanisms obtain contextual information by calculating the correlations between all words in 

the input text. It is very important to note that in contrast to the embeddings used in Bi-LSTM 

models, contextualized word embeddings are used in the BERT model, which means that the 

same words can be embedded differently depending on the context. Several general and 

domain-specific BERT models have been reported, including BERT_base20, SciBERT,23 

MatSciBERT41, MatBERT21, BioBERT42, and FinBERT43, although a catalysis-specific 

version has not yet been devised. Since none of these previous models can be directly 

implemented to address catalysis papers, we considered four pretrained BERT models 

(BERT_base, SciBERT, MatSciBERT, and MatBERT) and fine-tuned them using our own 

CO2RR corpus. Note that the Bi-LSTM and BERT models both have a conditional random 

field (CRF) layer44 to fix the sequence problems associated with entities in IOBES format. For 

example, the CRF layer learns the constraints that I and E tags cannot appear in the first word 

of a sentence and that entity names must be consistent with the B-I-I-E pattern (for example, 

B-Catalyst must not be followed by I-Product).

   The NER performance of the Bi-LSTM and BERT-based models is presented in Figure 4. 

First, for the Bi-LSTM models, two types of input embeddings were investigated, including 

word embeddings alone and the concatenation of word and character-level embeddings. 

Overall, the model with the concatenated embedding performs very similarly to (or only 

Page 8 of 33Journal of Materials Chemistry A



9

slightly better than) the model with the word embeddings alone, which indicates that character-

level features are not critical. The F1-scores for the entities of catalyst, electrolyte, and onset 

potential are less than 80%, which is lower than those of the other entities. The low performance 

of the electrolyte and onset potential entities may be due to the relatively smaller number of 

training datasets, as shown in Figure S2. On the other hand, the low performance of the catalyst 

entity is not because of the training dataset size but because catalyst names are typically 

multiword entities. An example of a catalyst name is “nitrogen-doped carbon sheets45”, which 

is composed of four words. It is more difficult to predict multiword entities accurately because 

mismatches at the left or right ends results in false NER predictions. Alternatively, we provide 

the results of another evaluation method, namely, boundary relaxation at the left/right ends46, 

as shown in Figure 4a. In this evaluation scheme, if the model’s prediction for an entity is 

matched at either the left or right end, it is considered a correct prediction. Therefore, by 

definition, the NER performance is improved in the boundary relaxation evaluation scheme, as 

confirmed by the F1-score of 92.7% for all entities in Figure 4a. The performance enhancement 

is notably large for the catalyst entity because catalyst names are typically multiword entities.

Next, for the BERT models, four types of pretrained BERT models (BERT_base, 

MatSciBERT, SciBERT, and MatBERT) were fine-tuned based on our catalysis corpus. Note 

that each BERT model was trained on a different corpus. BERT_base was trained based on a 

general corpus from Wikipedia (~2,500 M words) and a book corpus (~800 M). SciBERT was 

trained based on the scientific literature (1.14 M papers, with 18% from the computer science 

domain and the remaining 82% from the biomedical domain). MatSciBERT was trained based 

on the same corpus used in SciBERT training as well as additional materials science papers 

(~150K). Finally, MatBERT was trained based on the materials science literature (~2 M). The 

performance of all NER models, as evaluated through 10-fold cross-validation, is presented 

below. The fine-tuned MatBERT model produced the best NER performance, with an F1-score 

of 90.4% on average, and the BERT_base model produced the lowest performance (86.8%). 

Detailed information on the 10-fold cross-validation results of the MatBERT model is provided 

in Table S5. This difference can be well understood based on the constitution of the training 

corpus. Interestingly, the F1-score of MatSciBERT (trained based on some materials science 

literature) was lower than that of SciBERT (trained based on no materials science literature). 

This result likely occurred because MatSciBERT was trained based on uncased vocabulary 

without differentiating between uppercase and lowercase letters, which is not beneficial to 

performing the NER task with our corpus. Similar to the Bi-LSTM studies, an evaluation based 
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on boundary relaxation at the left/right ends was adopted, and in this scheme, MatBERT 

produced an overall F1-score of 95.2%. The superior performance of the BERT models over 

the Bi-LSTM models indicates that the self-attention mechanism in the BERT models is critical 

to understanding the context of our corpus.

The NER performance was further analyzed based on detailed NER examples, as shown in 

Figure 5. Figure 5a shows two MatBERT prediction examples (Examples 1 and 2) where 

boundary relaxations were important. The text in parentheses is the ground truth, while the text 

in the background color is the predicted result based on the NER model. In the first example, 

“BiOI nanoplate precursor-derived” is an adjective that describes “Bi nanosheets”.47 Here, the 

ground truth for the catalyst entity is “Bi nanosheets”; however, the MatBERT model 

prediction is “BiOI nanoplate precursor-derived Bi nanosheets”, which also includes the 

adjective terms. Similarly, in the second example, the ground truth for the catalyst entity is “Cu 

hollow fiber”, but the model predicts a longer word set of “Cu hollow fiber with an 

interconnected pore structure”, which also includes its structural description.48 For these cases 

involving multiword entities, the evaluation method based on the boundary relaxation at the 

left/right ends is more reasonable since the predicted results include all the necessary 

information to fully understand the meaning.

Figure 5b shows two NER examples (Examples 3 and 4) to explain why the BERT models 

outperform the Bi-LSTM models. In Example 3, the term “35 min” represents the 

electrodeposition time49. The Bi-LSTM model incorrectly predicts this term as the entity 

representing the stability hour, whereas the MatBERT model correctly ignores the term. This 

difference is likely because MatBERT can capture the context within the text better than the 

Bi-LSTM models and was capable of differentiating stability hours (one of our 12 entities), 

and other time entities were not confused. Since minute is a word representing a time, the Bi-

LSTM model is confused by this term. In Example 4, the term ultrathin NCS represents a 

support material, not a catalyst material.50 The Bi-LSTM model incorrectly predicts this as a 

catalyst entity, whereas MatBERT correctly ignores this term and does not label it as any of 

the twelve entities. These examples suggest that MatBERT can understand the contextualized 

meaning of words better than the Bi-LSTM models. Finally, Figure 5c shows two specific 

examples (Examples 5 and 6) to explain why MatBERT outperforms the other BERT models. 

The MatBERT and BERT_base models were trained based on material science literature and 

general corpora, including Wikipedia and book corpora. In Example 5, the term RHE denotes 

the reversible hydrogen electrode, which is a commonly used term in electrochemistry. 
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MatBERT correctly tokenizes RHE to RHE without further letter decompositions, whereas 

BERT_base incorrectly tokenizes the word into three tokens of R, ##H, and ##E (## means a 

subword of the preceding tokens). This is because the term RHE does not exist in the 

vocabulary set used for BERT_base training. Similarly, in Example 6, a single term of 

hydrocarbon was tokenized into five tokens of h, ##ydro, ##car, ##bon, ##s by the BERT_base 

tokenizer. While the tokenization of BERT_base is not incorrect, it makes reconstructing the 

meaning of these common term harder and more prone to having their meaning diluted by 

common subwords. These tokenizer results explain why MatBERT, which was trained based 

on the most relevant literature, achieves the best NER performance.

NER-based analysis of research trends. The trained MatBERT model with the best NER F1-

score was used to extract the entities from the abstracts of all 3,154 CO2RR papers. In order to 

validate the extracted data, we annotated 100 randomly chosen papers that were not used for 

model training, and then these annotation results were compared to the predicted results from 

the NER models, as shown in Table S6. The average performance of our NER model across 

100 papers was found to be approximately 91% which well demonstrates the scalability of our 

model and affirms the reliability of the extracted data. Using the extracted data, several yearly 

trend analyses were performed, as shown in Figure 6. We specifically focused on trends in 

CO2RR products, catalyst design strategies, and elements used in the catalysts. Figures 6a-6c 

show in various forms the number of CO2RR products per year, and Figures 6d-6f show their 

relative ratios. Here, C1 products refer to products with a single carbon, such as CO, formic 

acid, methanol, and methane, while C2+ products refer to products with two or more carbons, 

such as ethylene and ethanol. Although research interest in the CO2RR field has continued to 

increase, the ratios of C1 and C2+ products remained unchanged from 1997 to 2021, as shown 

in Figures 6a and 6d. Although C2+ products are considered more valuable products in industry, 

the CO2RR research community still puts more effort (>80%) into producing C1 products. This 

trend is probably because C1 products require less energy than C2+ products, making them 

easier to produce. Moreover, C1 products such as CO molecules are considered intermediate 

species for producing C2+ products.51 In terms of electrical energy conversion efficiency, C1 

products are more economical products because substantial energy costs are required for the 

reduction of carbon dioxide into high carbon products.52 Figures 6b and 6e present various C1 

products in terms of their numbers and ratios; CO and formic acid, which are the simplest two-
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electron reduction products, appeared the most, with proportions of approximately 52% and 

30%, respectively.53 CO is likely the most studied product because it is an intermediate species 

that can be easily converted into other valuable C2+ products via additional reduction steps.54 

Figures 6c and 6f show various C2+ products in a similar format; ethylene and ethanol, which 

are both 12-electron reactions, were the two most studied products over all periods. Over the 

last three years from 2019 to 2021, the ethylene ratio has increased, which is likely due to 

ethylene having a lower energy barrier than ethanol, which means that ethylene is relatively 

easier to produce.55

Figure 6g shows the trends in catalyst design strategy from 1997 to 2021. Seven strategies 

were selected, including core-shell, defect engineering, alloy, single atom, doping, architecture 

engineering, and shape control. These strategies were defined based on the words that appear 

frequently in the titles of the papers, as shown in Table S7. Until 2017, the strategy of shape 

control dominated; however, its ratio gradually declined, whereas the ratios of the single-atom 

catalyst (SAC) and architecture engineering strategies clearly increased. In particular, SAC has 

recently drawn much attention because it offers the benefits of high catalytic activity, 

selectivity, and diverse elemental combinations.56

Dual-atom catalysts (DACs) have recently garnered much attention in the research and 

development of electroreduction processes. In comparison to SACs, they have not only a 

similar ability to utilize almost 100% of the catalyst atoms but also much enhanced electronic 

property, improved activity, and selectivity.57 Upon examining the 3,153 literatures we 

collected, it was verified that there are 7 papers focusing on dual-atom catalysts. We searched 

Web of Science for dual-atom catalysts to collect the most recent developments in the field. 

There has been a considerable amount of research articles (25 papers) published in 2022 and 

2023. Combining these recently acquired publications with the initial seven, we then applied 

our model to a total of 32 papers, and achieved approximately 88% F1-score (micro average 

over all entities) as summarized in Table S8. We further analyzed the combinations of catalytic 

elements used in the dual-atom catalysts that were taken from the literature. As shown in Figure 

S3, the combinations of transition metals (Fe, Ni, Co, etc.) that are frequently utilized as single-

atom catalysts were also most found in dual-atom catalysts.

Figure 6h shows the trend of the most used elements (top 10 elements) in catalysts by year. 

Examining the overall ranking of the elements, it is evident that there has been a shift in trends, 

with a decreased reliance on noble metals and increased utilization of transition metals. As 

illustrated in Figure S4, transition metals such as Fe, Co, Ni, Cu, and Zn are associated with 

Page 12 of 33Journal of Materials Chemistry A



13

CO production and have similar or higher FE values compared to noble metals like Pd, Ag, 

and Au. Note that Cu was the most used in all years from 1997 to 2021. Cu is the only element 

offering appropriate binding energy to produce both C1 and C2+ products such as 

hydrocarbons and alcohols.58 In contrast, the rank of Pt has decreased gradually every year. Pt 

is an expensive noble metal and has been reported to perform worse than Cu in terms of CO2RR 

activities.59 Interestingly, Bi has appeared in the top-10 ranking since 2018, and its frequency 

has increased rapidly. Bi is inexpensive, inert and environmentally friendly and, most 

importantly, is known to be highly active for formic acid production.60 

An NER-based trend analysis of the CO2RR performance was also carried out from 1997 

to 2021, as shown in Figure 7. Among several performance-related entities, including the 

Faradaic efficiency (FE), current density, overpotential, turnover frequency, and stability 

hours,61 the former two entities (FE and current density) were chosen for detailed trend analyses 

because these two entities were reported the most frequently in the abstracts of papers. Note 

that the FE (unit %) means the selectivity (unit %) in electrochemistry, and the current density 

(unit mA/cm2) is the measured current value divided by the electrode area, which represents 

the reaction rate or catalytic activity.62-65 In Figures 7a-7d, a clear difference was observed for 

FE trends between C1 products (CO and formic acid) and C2 products (ethylene and ethanol). 

Since 2016, the reported FE values for C1 products have mostly been over 80%, whereas for 

C2 products the FE values have typically been below 80%. These C2 products, including 

ethylene and ethanol, require complicated multistep reactions involving 12 electrons, and thus, 

selectively synthesizing these C2 products is more difficult than C1 products.

The trends of the reported current density values are presented in Figures 7e-7h. The current 

density values are lower for C2 products than C1 products. Similarly to the FE values, the 

complicated multistep reactions for the C2 product require a high overpotential and result in 

low activity compared to the relatively simpler reactions for the C1 products. Nevertheless, 

current density values have gradually increased over time. The improvements can be attributed 

to the development of both new catalyst materials and new electrochemical cell architectures. 

For example, the best performance of a CO-producing catalyst62 was from the reaction taking 

place in solid oxide electrolysis cells (SOECs) at high temperatures. Similarly, the best 

performance of ethylene-producing catalysts64 was achieved by introducing a new architecture 

to gas-flow electrochemical cells. However, the majority of the reported current density values 

were less than 200 mA/cm2. Since the current density is required to be more than 200 mA/cm2 
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for CO2RR catalysts to be utilized industrially66, there is still much room for improvement in 

terms of the current density.

NER-based guidance of research directions. NER offers the ability to conduct yearly trend 

analyses for diverse entities and may also offer novel insights regarding CO2RR research 

directions. We present the explorable area map in Figure 8a, which was generated by counting 

the catalytic elements and CO2RR products that appear in the same papers. The area map shows 

which elements have been most actively used for specific products and indicates which parts 

were overlooked and are potentially promising. Some key information that can be determined 

based on the area map is summarized as follows. First, Cu is the most actively used catalytic 

element for producing both C1 and C2 products, and its dominance is particularly notable for 

C2 products, including ethylene and ethanol. Second, post-transition metals such as Sn and Bi 

have been widely used for the production of formic acid.67 The yearly trends of metalloid and 

post-transition metal elements are provided in Figure S5, which shows a clear increase in Bi 

and In elements. Moreover, for formic acid productions, the percentage of Bi in the highest 

Faradaic efficiency range (80~100%) is noticeably higher than other transition metals as shown 

in Figure S4, which supports the recent increasing trend of Bi. Finally, precious metals such as 

Ag, Pd, and Au are used as catalysts for C2 products, although they are not used in large 

numbers. Recent studies have shown that alloying precious metals with Cu is a viable approach 

to increase selectivity in generating C2 products.68-70 Although Cu is known to have optimal 

CO binding energy for CO2RRs, it suffers from low selectivity to specific products because of 

the numerous CO2RR reaction pathways. This problem could be solved by alloying with other 

elements, such as precious metals. Similarly, other elements, such as transition metals and post-

transition metals, could also be alloyed with Cu to increase the selectivity of C2 products. 

Next, the relations among the elements, catalyst synthesis strategies, and CO2RR products 

were analyzed using association rule mining (ARM)71 and are visualized as graphs in Figures 

8b-8g. ARM is a rule-based machine learning method for discovering interesting relationships 

between variables in large databases, which is often called market basket analysis. A detailed 

description of this algorithm is provided in the Methods section. ARM can be applied to reveal 

how often certain elements, products, and synthesis strategies are found simultaneously in 

papers. The nodes in the graph represent the types of entities, and the thickness of the edges 

represents their correlation strength.
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Figure 8b shows the entire graph of the ARM result, and Figures 8c-8g show the subgraphs 

that illustrate certain nodes and their connections for emphasis and detailed analysis. Figure 8c 

presents a subgraph that highlights nodes that are connected to formic acid. Many post-

transition metals, including Sn, Bi, and In, can be observed, which is consistent with the results 

in Figure 8a. Figure 8d shows a subgraph highlighting nodes that are connected to bismuth. 

We found that the shape control strategy appeared, indicating that Bi-based catalysts are 

frequently synthesized by shape control strategies for formic acid production. This kind of 

ternary relationship was not found in the area maps that relate only two entities but were noted 

in the ARM analysis.

Figure 8e shows a subgraph highlighting nodes that are connected to ethylene. Interestingly, 

Cu and Ag appeared together, indicating that these two elements are synergistic for ethylene 

production.72, 73 Indeed, many Cu-Ag bimetallic catalysts were found, with Ag observed for 

desorption-resorption and diffusion processes for C–C coupling on the Cu surface to effectively 

synthesize ethylene species. In addition, in Figure S6, one can observe that Cu, Ag, and Co are 

the elements that perform well in ethanol productions. Further investigations of these relevant 

articles uncovered that the ethanol production involved various catalysts such as Cu-Ag65, 

AgCo alloy74, Ag nanoparticles deposited on 3D graphene-wrapped nitrogen-doped carbon 

foam75, and CoO-anchored N-doped carbon materials comprising mesoporous carbon (MC) 

and carbon nanotubes (CNT)76. Based on these findings, we believe that the development of 

catalysts employing synthetic strategies like bimetallic catalysts combining Cu with other 

elements and the incorporation of Co and Ag into carbon matrices through doping hold promise 

for the creation of catalysts capable of producing C2 products such as ethanol and ethylene.

Figure 8f presents a subgraph highlighting nodes that are connected to SAC, where 

transition metals, including Ni, Co and Fe, can be observed.77. This result is consistent with the 

explorable area map relating the product and catalytic elements for the SAC strategy case, as 

provided in Figure S7. The SAC strategy is particularly active for CO production and is 

generally not functional for other products.78 SAC is not linked to any of the C2 products 

because SAC cannot be used for C-C coupling due to its structural limitations. Furthermore, 

the distribution of 151 SAC papers (for CO productions) connected over used elements and FE 

value ranges, as shown in Figure S8. It was observed that transition metals such as Ni, Fe, Co, 

Cu, and Zn are commonly used as SACs. Also, we found that Ni and Fe are mostly connected 

to the highest FE range (90~100%). Cobalt (Co) overall underperforms than Ni or Fe, and this 

finding is probably due that Co SAC has low activation barriers for hydrogen evolution reaction 
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(HER) and low selectivity to CO2RR.79 Interestingly, Ni is linked to the SAC node, although 

bulk Ni is not active for CO production because of severe CO poisoning issues due to its very 

strong binding energy.61, 80, 81 However, Ni in SAC offers a reduced CO binding energy and 

can thereby increase the activity and selectivity for CO production80.

Figure 8g shows subgraphs that highlight nodes that are connected to Mo, Mn, and Cr. In 

our dataset, no paper reported the effectiveness of Mo, Mn, and Cr elements as SACs in 

CO2RRs. However, these elements were strongly connected to Fe, Co, and Ni, which are the 

most active elements for SAC. In ARM, the strong connections indicate that the connected 

components are used together in the same study and may thus possess similar properties. For 

example, Cr and Mn were used as SACs on graphene for CO oxidation and had similar CO 

adsorption energies compared to Fe, Co, and Ni.82, which suggests the potential of Cr, Mn, and 

Mo to be used as SACs for CO2RRs. In fact, we found some recent papers (not included in our 

dataset) reporting Cr, Mn, and Mo elements as SACs83, 84, which supports the usefulness of our 

NER models and the subsequent analyses.

Methods 
Doc2Vec and LDA training. We trained Doc2Vec and LDA for document clustering before 

developing the NER models. Since the words in the corpus are used for learning, text 

preprocessing was used to reduce the corpus complexity so that only meaningful words were 

used for training. Doc2Vec was trained using both the abstracts and main texts of 4,838 papers. 

These 4,838 papers were obtained from the keyword query-based screening process with the 

keywords “CO2” AND “reduction” AND “reaction” AND “catalyst” AND “faradaic” AND 

(“electrochemical” OR “electroreduction” OR “electrocatalytic” OR “electro”). The papers 

used for training were tokenized using ChemDataExtractor.32 The chemical finding function in 

ChemDataExtractor was used to preprocess all tokens except chemicals to lowercase. The size 

of the document vector was set to 200.

LDA was trained using only the abstracts of 4,838 papers. Preprocessing similar to that 

performed for Doc2Vec was applied, and lemmatization was performed to find the lemma of 

the word inflected in various forms in a sentence using the NLTK library85. In addition, stop 

words, words with one letter and words with an occurrence frequency of 20 or less were 

removed. After the number of topics (k) is determined, the LDA algorithm finds k topics based 

on all documents and determines which topics a random document contains. To develop a 

proper LDA model, it is vital to set an appropriate number of topics. To determine the 
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appropriate number of topics, both perplexity and coherence were considered. Perplexity 

determines how accurately the probabilistic model predicts the outcome, while coherence 

determines how semantically consistent the topics are. In our case, the number of topics (k) 

was chosen as 11 because of the small perplexity and high coherence values associated with 

this number of topics.

NER model development. For the NER models, both the Bi-LSTM CRF model and BERT 

CRF model were used. First, we trained the Bi-LSTM model using the flair library86. In the Bi-

LSTM model, the embedding layer consists of a 100-dimensional word embedding layer and 

a 50-dimensional character-level word embedding layer. In the Bi-LSTM model, the maximum 

number of epochs was 100, the learning rate was 0.2, and the batch size was 8. Word 

embeddings were pretrained with both the abstracts and main texts of 4,838 papers using 

Word2Vec. On the other hand, for BERT models, we retrained the existing BERT models 

(MatBERT, MatSciBERT, SciBERT, and BERT base) using our own corpus obtained from 

the catalysis literature. The tokens in the BERT models were generated using each model's 

tokenizer. Each pretrained model was retrained with 500 CO2RR papers that were selected 

according to the Doc2Vec-based ranking, as shown in Figure 2c. The optimizer was AdamW, 

and training was carried out while changing the learning rate using the warmup scheduler. The 

batch size was selected as 32 based on hyperparameter fitting, as shown in Table S9. The Bi-

LSTM and BERT models both have CRF layers to address sequence problems associated with 

entities in IOBES format by learning the constraints and rules, including that the tag of the first 

word in a label starts with B (Beginning) in IOBES format.

The annotated abstracts were divided into training, validation, and test sets prior to classifier 

layer training. The test set was used to evaluate the model's final performance based on data 

that were not used for training, while the validation set was used to optimize the model's 

hyperparameters. The training, validation, and test sets were divided according to the ratio 

8:1:1. Tenfold cross validation was used to obtain more generalized performance compared to 

training with only one division.

Postprocessing after NER-based data extraction. We created a dictionary of products and 

chemical elements to process synonyms among the words extracted using the NER model. For 

example, copper and Cu are the same element, and both were converted to Cu. Additionally, 

CH4 and methane are the same chemical, and both were converted to methane. Among the 
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extracted entities, there are various units for the same entity. For example, the current density 

values can be expressed in mA cm−2, Acm−2, and μA cm−2 depending on the authors’ needs. In 

this case, the current density values were all converted to mA cm−2 through the Python code.

Association rule mining. We used the Python library mxltend to implement ARM. Apriori is 

a popular algorithm for ARM that extracts frequent item sets from given data. The apriori 

function requires data in a one-hot encoded data frame format, and thus, we used 

TransactionEncoder to prepare an appropriate data format. Frequent item sets were formed 

with min_support values greater than or equal to 0.005. Support means the number of 

appearances of a specific item divided by the total number of instances. min_support means 

the minimum support for the item combination to be returned. In other words, if the support of 

an item combination is 0.005 or less, it is not formed as a frequent item set. When creating a 

frequent item set, there is no limitation on the maximum number of item combinations, and all 

possible item combinations under the given condition are returned. Association rules are 

created based on frequent item sets, which are the a priori results. The default value confidence 

was used as an evaluation index, and min_threshold was set to 0.005 to generate only 

association rules with confidence levels of 0.005 or higher.

Conclusions
This work presents a text mining protocol for catalysis literature, taking CO2RR-related 

literature as an example. Performing text mining based on a large volume of literature in a 

specific target domain requires very careful and specialized annotations and model 

development, unlike the same tasks in general areas. We first developed a method based on 

Doc2Vec and LDA to selectively screen CO2RR-related papers while reducing the number of 

irrelevant papers. This method led to the collection of 3,154 CO2RR papers, which were used 

for further analysis. This method requires the input of only tens of seed papers prepared by a 

user and may therefore be effective for use in other domains. Next, we developed and reported 

a MatBERT-based NER model, which was applied to extract twelve key entities, including 

catalyst names and catalytic performance information in the CO2RR papers. This model 

achieved an extraction F1-score of 90.4% (up to 95.2% in the boundary relaxation evaluation 

scheme). The NER-based accelerated data extraction scheme from a large volume of literature 

enables several interesting analyses, such as the yearly trend analyses of CO2RR catalysts, 
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products, and performance. This analysis highlights the recent element usage trends, such as 

the boost of post-transition metal elements of Bi and In for formic acid production. In addition, 

it also reveals the potentially effective material space in CO2RRs, including transition metal 

elements of Cr, Mn and Mo for SAC. This work is, to our understanding, the first attempt to 

apply text mining to a large volume of catalysis literature and will serve as a great reference 

for similar future studies in the catalysis field.

Finally, we note the limitations of our study as well as potential future studies, especially 

for large scale. First, this study explored only abstracts of the papers as opposed to the full 

bodies of the papers. For example, the catalytic performance may be greatly influenced by the 

type of cell; however, our study was not able to obtain this information because such specific 

information is typically found in the main body rather than in the abstract. Thus, a performance 

analysis considering these detailed parameters was unfortunately not conducted. Expanding 

our study to the entire body of the paper remains an important future research direction. The 

second limitation of this work is the absence of relation extraction between entities. NER 

enables only entity extraction and cannot be used to determine the relationships among the 

entities. For example, the catalyst names and catalytic performance were not systematically 

linked. The lack of proper entity relations may limit data utilization. Thus, it is important to 

extract entities and determine their relations using NLP techniques such as relation extraction.87, 

88 Third, the data extractions from tables and figures are also important, as they often contain 

key information, such as performance data. This information cannot be obtained using current 

NER methods. The tabular data from the tables of a paper could be handled using data analysis 

libraries including Pandas89; however, it is important to standardize the tabular data because 

the formats of the table are much different across papers and journals. For figures, numerous 

vision techniques are rapidly developing which are applicable to a graph90 and microscopy 

images91, 92, which were proven to be very effective to extract the data from the figures in 

papers. Lastly, we observed that the NER performance is lower for catalyst name entities than 

for other entities, probably because researchers describe catalyst names in various forms in 

different papers. The MatBERT model pretrained with materials science papers worked fairly 

well after fine-tuning based on catalysis literature; however, the accuracy can be further 

increased by developing catalysis-based BERT models pretrained with millions of catalysis 

papers, which should be considered in a future study. Despite these limitations, the large 

amount of data extracted from the catalyst literature allowed us to evaluate valuable 
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information, such as research trends and directions in the CO2RR field, which will hopefully 

inspire similar efforts in other catalysis fields.

Data and code availability
The text-mining code and related data are available at https://github.com/KIST-

CSRC/CO2RR_NER or can be obtained from corresponding authors upon request. 
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Figures

Fig. 1 Workflow of CO2RR literature processing. The following steps are crucial in the workflow: (1) Papers are 
collected and then parsed in text format, and the text is tokenized for the training dataset. (2) Doc2Vec and LDA 
algorithms are applied to remove irrelevant papers. (3) Twelve types of entities are manually labeled, and the 
labeled training dataset is used to train two types of NER models. (4) The material names and catalyst performance 
are extracted based on the collected papers, and research trends and directions are analyzed.
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Fig. 2 Preparation of electrochemical CO2RR papers. (a) Scheme to collect only experimental CO2RR research 
articles, which is composed of four steps (red text). (b) Paper embeddings made by Doc2Vec and visualized with 
principal component analysis (PCA). The similarity calculation between random papers and seed papers using the 
cosine similarity method is highlighted. (c) The cumulative number of papers and ratio of noise papers according 
to the cosine similarity are shown as bar and line graphs, respectively. A cosine similarity of 0.4 is chosen as a 
criterion for filtering out noise papers. The 11 topics obtained as a result of LDA were classified into 4 categories 
(DFT, analysis, noise, and CO2RR). The pie charts show the results of applying the LDA analysis to the top 500 
and bottom 500 papers in the corpus.
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Fig. 3 Structures of the NER models. NER consists of three steps as follows. (1) The text is tokenized, and the 
token sequences are used as inputs to the model. (2) Two types of NER models were used. In the Bi-LSTM CRF 
model, tokens are converted into word embeddings and character-level representations and passed to the Bi-LSTM 
and CRF layers. In the BERT CRF model, tokens are embedded with contextualized word embeddings. Both 
models return sequences of entities in IOBES format. (3) As a result, the words in the papers are recognized as 
entities such as the catalysts, Faradaic efficiency, and products.
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Fig. 4 NER performance of Bi-LSTM and BERT-based models. The graph shows the F1-scores for each entity 
using the (a) Bi-LSTM CRF model and (b) BERT CRF model. The hatched bars in the graph are the boundary 
relaxation results. The entities highlighted in pink represent material names, and the entities highlighted in purple 
represent electrochemical measurements. The micro average marked in yellow is the global average F1-score, 
which addresses imbalanced entities.
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Fig. 5 Example of the results from the tokenizer and NER models. (a, b) The entity predictions of the NER 
models are shown. The text in parentheses is the ground truth, which means the target of the NER models, and 
the text with background color is the predicted label based on the NER models. Incorrect predictions by the NER 
models are highlighted in red. (c) Tokens tokenized through different BERT tokenizers are shown, and the red text 
emphasizes distinct tokens.
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Fig. 6 NER-based yearly trend analysis of CO2RR products, catalyst design strategies, and elements in 
catalysts from 1997 to 2021. The yearly trends of (a-f) products and (g) strategies for catalyst synthesis are shown 
with the total counts. (h) The top 10 most used elements in order of ranking. The numbers in parentheses represent 
the atomic numbers of the elements. 2021* means that only papers published by June 2021 were used for analysis. 
Etc in the legends of Figs. 6(b) and 6(e) includes carbonate and bicarbonate, while Etc in Figs. 6(c) and 6(f) includes 
oxalate, acetaldehyde, and acetone.
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Fig. 7 NER-based yearly trend analysis of the CO2RR performance from 1997 to 2021. The heatmaps show 
the Faradaic efficiency (blue) and current density (pink) by year. The color represents the normalized count, which 
is calculated by dividing the Faradaic efficiency or current density in a specific range by the total Faradaic efficiency 
or current density for that year. The red stars and numbers indicate the best performance of the current density for 
specific products and references.62-65 2021* means that only papers published by June 2021 were used for 
analysis.
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Fig. 8 NER-based guidance of research directions. (a) Explorable area heatmaps of products for each element 
in CO2RR catalysts. The color represents the count of products related to the specific elements that appear in the 
same abstract. Groups of elements are divided with vertical lines. In the tick labels on the x-axis, the number in 
parentheses represents the atomic number. (b-g) Visualization of the ARM results. The nodes with blue, orange, 
and green colors represent the elements of the catalyst, the strategy to synthesize the catalyst, and the product, 
respectively. The thickness of an edge represents the association between two nodes. (b) is the entire graph of the 
ARM result. (c) is a subgraph highlighting nodes that are connected to formic acid. (d) is a subgraph highlighting 
nodes that are connected to bismuth. (e) is a subgraph highlighting nodes that are connected to ethylene. (f) is a 
subgraph highlighting nodes that are connected to SAC. (g) Subgraphs highlighting nodes that are connected Mo, 
Mn, and Cr are merged. Nodes that are connected to Mo, Mn, and Cr are represented by pink, green, and light 
blue edges, respectively.
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