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Two-dimensional diffusiophoretic colloidal banding: Optimizing the
spatial and temporal design of solute sinks and sources†

Ritu R. Raj,a C. Wyatt Shields IVab and Ankur Gupta∗a

Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute con-
centration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily
focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this
work, we numerically investigate the impact of two-dimensional solute gradients on the distribution
of colloidal particles, i.e., colloidal banding, induced via diffusiophoresis. The solute gradients are
generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar
rate. First we study a dipole system, i.e., one source and one sink, and discover that interdipole
diffusion and molar rate decay timescales dictate colloidal banding. At timescales shorter than the
interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the
source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion
timescale, the source and sink screen each other, leading to a slower enhancement. If the solute
molar rate decays at the timescale of interdipole diffusion, an optimal separation distance is obtained
such that particle enrichment is maximized. We find that the partition coefficient of solute at the
interface between the source and bulk strongly impacts the optimal separation distance. Surprisingly,
the diffusivity ratio of solute in the source and bulk has a much weaker impact on the optimal dipole
separation distance. We also examine an octupole configuration, i.e., four sinks and four sources,
arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment
depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources
and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive
arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for
spatially and temporally designing the banded structure of colloidal particles in two dimensions using
diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional
solute gradients.

1 Introduction
Diffusiophoresis is the phenomenon where colloidal particles

move in response to solute concentration gradients. The under-
standing of this key physical principle and its applications is en-
abling innovation in paint film deposition 1, laundry2, membrane
separation 3,4, and hidden target searching 5. Solute concentra-
tion gradients in diffusiophoresis can be generated by a number
of mechanisms 6: chemical reactions7, mineral dissolution8, and
chemokine secretion 9, amongst others. The movement of col-
loidal particles due to concentration gradients can be divided into
two broad categories: active and passive diffusiophoresis. In ac-
tive diffusiophoresis 10–13, colloidal particles generate their own
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concentration gradients, while in passive diffusiophoresis 14–18,
particles respond to an externally generated gradient.

Recently, there have been numerous experimental and theoret-
ical reports exploring the motion of active diffusiophoretic parti-
cles. These include the effects of finite Peclet numbers 19,20, asym-
metry in the form of Janus particles and bent rods 21–23, changes in
the local fluid environment 10,13,24,25, and the use of active droplets
instead of particles 26–28. Such systems have been proposed for
uses in applications 29 such as environmental remediation 30, drug
delivery 31, and cellular transport 32.

In contrast to active diffusiophoresis, there are several decades
of literature on passive diffusiophoresis. One of the first series of
studies to quantify the distribution of colloidal particles under dif-
fusiophoresis was conducted by Staffeld et al. 33,34. They showed,
in electrolytic and non-electrolytic solutes, that the particle distri-
bution exhibits a local maximum, resembling a band that moves
with the diffusing solute front 33,34. This laid the groundwork for
studies of diffusiophoretic banding in other systems, including the
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well-studied dead-end pore geometry 35–38. Experimental studies
have been conducted on these dead-end pore systems to optimize
nanoparticle transport in collagen hydrogels 39, show the size de-
pendence of particle transport into pores 40, determine design cri-
teria for particle capture by a pore 41, and develop a low cost
zeta-potentiometer 42. In addition to dead-end pore geometries,
similar studies have been conducted in other microfluidic sys-
tems. Cross-channel pores have been used to study surface-solute
interactions 17 and the aggregration of colloidal particles near
flow junctions 43. CO2-induced concentration gradients across mi-
crofluidic channels have been used to predict exclusion zone for-
mation in channel flows 44, remove bacteria from surfaces 45, pro-
vide crossflow migration of colloids 46, and enable membraneless
water filtration47. In a similar way, salt gradients have been used
to induce colloidal banding in microfluidic channels 16,48.

In addition to the breadth of experimental studies, analyti-
cal and numerical techniques have been used to study the phe-
nomena observed in the aforementioned experimental systems.
Anderson et al. showed that the diffusiophoretic velocity of a
particle is dictated by surface interactions between the solute
and particle49–51. For ionic solutes, the diffusiophoretic veloc-
ity is given as uDP = Me∇ ln c, where Me is the mobility of
the particle and c is the electrolyte concentration 50. For a par-
ticle moving in non-ionic solutes, the diffusiophoretic velocity
is given as, uDP = M∇c, where M is also a mobility param-
eter and c is the solute concentration 51. These mobility rela-
tionships can also be extended to include the effect of multi-
ple ionic species 52–54, arbitrary double layer thicknesses 55, and
ion sizes 56,57, amongst others. Numerical studies have been
conducted on the spreading of diffusiophoretic particles in re-
sponse to applied solute gradients with hydrodynamic back-
ground flows 58, in one-dimensional transient gradients 59,60, in
concentrated electrolyte solutions 61, in solutes that exhibit Tay-
lor dispersion due to a background/diffusioosmotic flow 14,62, and
in the presence of multiple electrolytes 52.

Despite the expansive literature on passive diffusiophoresis,
most studies focus on the effects of one-dimensional transient
or steady solute concentration profiles on particle motion. The
number of studies that expand particle motion to two or three di-
mensions are limited 14,17,41,44,52,62–64, with most focusing on diffu-
siophoretic motion in two- and three-dimensional channel flows
with one-dimensional driving solute gradients.

Recently, Bannerjee et al. 65 developed “soluto-intertial" bea-
cons that enable them to enact spatio-temporal control over so-
lute gradients surrounding their beacons. This allows them to
control and study diffusiophoretic particles moving in response
to two- and three-dimensional gradients. They initially designed
cylindrical hydrogel posts loaded with sodium dodecyl sulfate
that attracted decane droplets and repelled polystyrene particles
by releasing solute over a timescale of tens of minutes 65. By de-
termining the appropriate diffusiophoretic velocity scale analyti-
cally in 3D and numerically in 2D, they were able to collapse the
radial dependence of particle velocity 65. This proof-of-concept
study showed that diffusiophoresis can be used as a mechanism
to move colloidal particles deterministically over a length scale
of hundreds of microns 65. The authors expanded this study to

design temperature-triggered beacons, source and sink dipoles,
dipoles with distinct solutes, and dipoles with reacting solutes 66.
In follow-up studies, they developed design principles 67, which
enabled them to manipulate colloidal distributions in suspension
by a sedimenting beacon 68 and deliver particles to hidden tar-
gets5.

Inspired by the work from Banerjee et al. 66 on source and sink
dipoles, we envisioned that multiple solute sources and sinks can
be spatially and temporally designed to optimize diffusiophoretic
banding in two dimensions. To this end, we outline a numeri-
cal procedure for simulating diffusiophoretic colloidal transport
in response to a non-electrolytic solute gradient generated by an
arbitrary number of point sources and sinks. We determine an ap-
propriate time-dependent molar rate by semi-analytically solving
for the flux from a finite-sized solute source. Using our numerical
scheme, we determine the timescales governing particle separa-
tion in a dipole and octupole source/sink system. For the dipole
system, we show that there exists an optimum separation distance
between the source and sink that maximizes particle enrichment
in a specific region. This optimal distance is set by a balance be-
tween interdipole diffusion and molar rate decay timescales. We
find that the optimal separation distance depends primarily on the
partition coefficient, K, of the source/sink and is weakly depen-
dent on the diffusivity ratio, D̂. Lastly, we show how these prin-
ciples change the optimal geometric arrangement of sources and
sinks in an octupole configuration. Interestingly, we find that the
optimal design of an octupole configuration depends on both the
spatial arrangement of sources and sinks and the temporal decay
of solute molar rate. These results underscore the rich dynamics
observed by expanding diffusiophoretic driving forces to two di-
mensions. Our results also broaden the potential design space of
colloidal banding using diffusiophoresis and provide a numerical
framework to study the banding of diffusiophoretic particles in
response to an arbitrary arrangement of solute sources and sinks.

2 Problem setup
To investigate the response of colloidal particles in two-

dimensional solute gradients, described here as ∇c, we focus on
the gradients generated by an arbitrary number of solute sources
and sinks. As shown in Fig. 1, we denote the locations of the
sources and sinks by ri, where the subscript i refers to the ith

source or sink. The distance between the ith and jth source or sink
is denoted as ∆ij. For simplicity, we consider that the sources
emit solute at a molar rate J(t) and that the sinks absorb solute
at a molar rate of −J(t). At time t = 0, we have a uniform con-
centration of particles and solute in our system. At t = 0+, the
sinks and sources begin emitting and absorbing the solute, creat-
ing a time-dependent and spatially varying concentration gradi-
ent. The solute gradient generated by sources and sinks induces
a diffusiophoretic velocity on particles, uDP = M∇c. If M > 0,
particles are attracted to the sources and repelled from the sinks.
In contrast, if M < 0, the particles are repelled from the sources
and attracted to the sinks. At early times, the sources and sinks
interact minimally, resulting in attraction/repulsion which trans-
ports particles towards the source and away from the sink (for
M > 0). This creates local extrema of particle concentration, re-
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Fig. 1 Schematic illustration of problem setup. Solute sources and sinks
are denoted by red and blue circles, respectively. The ith source/sink
is located at a position ri ≡ (xi, yi). The separation between the ith

and jth source/sink is denoted as ∆ij. The sources emit solute at a
molar rate J(t), whereas sinks absorb solute at a molar rate −J(t). The
emission and absorption of solute creates a concentration field, c(r, t),
which induces a diffusiophoretic velocity uDP = M∇c on the particles,
denoted by orange circles, where M is the diffusiophoretic mobility.

sulting in a banded distribution. As time progresses, the sources
and sinks screen each other, much like electrostatic charges. At
this timescale, the diffusiophoretic movement is diminished. In
the following analysis, we seek to optimize particle enrichment
by tuning the arrangement of sources and sinks, given a time-
dependent molar rate, J(t).

We acknowledge that in practical experimental setups, the
emission and absorption rates are unlikely to be equal and op-
posite over time. However, while our numerical framework can
handle arbitrary molar rates, we make this assumption to re-
duce the number of parameters in our system. In addition, we
note that uDP described above uses the non-electrolyte mobility
relationship. The rationale to use this relationship is two-fold.
First, the non-electrolytic mobility expression does not possess the
singularity found in the electrolytic mobility expression. We ac-
knowledge that the singularity can be addressed by considering a
concentration-dependent electrolytic mobility 61,69. For computa-
tional convenience, we refrain from incorporating a concentration
dependent mobility relation. Second, if the concentration differ-
ence is relatively small, the two mobility relationships are equiv-
alent; see Appendix A. Therefore, we choose the non-electrolytic
mobility relationship. We acknowledge that there might be quan-
titative differences if a different mobility relationship is employed,
and comment on this difference in Appendix A. Additionally, we
acknowledge the limitation in using point sources and sinks, as
spatial effects due to the presence of a finite-sized source/sink
will yield differences. However, we observe that the qualitative
features remain the same as reported in prior experiments 66; see
Appendix B.

2.1 Solute and particle transport equations

The species conservation equation for a solute concentration
c(r, t) is

∂c

∂t
= Ds∇2c+

∑
i

Ji (t) δ (r − ri) , (1)

where t is time, Ds is the solute diffusivity, ∇ is the gradient op-
erator, Ji represents the strength of the ith source/sink, r is the
position vector pointing from the origin, ri is the position of the
ith source/sink and δ is the Dirac delta function. As is evident
from eqn (1), we treat solute sources and sinks as point sources.
If the ith solute patch is a source, Ji = J(t), and if the ith so-
lute patch is a sink, Ji = −J(t). As we show later, we account
for the finite-size effect of the patch by deriving the emitted flux
from an isolated source. We note that eqn (1) neglects any ad-
vection terms in solute transport, which is typical for studies on
diffusiophoresis without background flows 61,70.

We calculate particle motion using two different approaches.
First, we use Lagrangian particle tracking to determine the posi-
tion of particles in time. The center of mass of the ith particle, xi,
can be determined by solving the following differential equation

dxi

dt
= uDP = M∇c

∣∣
xi
. (2)

We note that eqn (2) neglects Brownian fluctuations. This is a
typical assumption for diffusiophoretic particles as particle radii
are typically O(10−6) m62,63.

Second, we calculate the concentration of colloidal particles,
n(r, t). The conservation equation for particle concentration is

∂n

∂t
= Dn∇2n−∇ · (n(M∇c)) , (3)

where Dn is the diffusivity of the colloidal particles. The response
of the particles to the generated solute field is included as an
advective term. We retain Dn for numerical stability and assume
Dn
Ds
� 1. The retention of Dn helps smooth the sharp gradients

near the moving particle band. Eqns (1) and (2) or eqns (1) and
(3) are solved simultaneously to determine c(r, t), xi(r, t) and
n(r, t).

Before numerically solving, we non-dimensionalize eqns (1)-
(3) as

∂c̃

∂τ
= ∇̃2c̃+

∑
i

Ji (τ) δ̃ (r̃ − r̃i) , (4)

dx̃i

dτ
= M̃∇̃c̃

∣∣
x̃i
, (5)

∂ñ

∂τ
= D̃∇̃2ñ− ∇̃ ·

(
ñ(M̃∇̃c̃)

)
, (6)

where Ji = Ji
Dscref

, δ̃ = δL2, ñ = n
nref

, c̃ = c
cref

, τ = t
L2/Ds

,

M̃ = Mcref
Ds

, D̃ = Dn
Ds

, ∇̃ = L∇, r̃ = r
L

, x̃ = x
L

, and L is a ref-
erence length scale. We do not employ a (i.e., the source/sink
radius) or ∆ as the reference length scale since a only enters
through our molar rate calculations and ∆ is the variable that
we seek to vary. We emphasize that L is a reference length scale
and does not influence our calculations. We solve these equations
in a two-dimensional Cartesian domain with x̃, ỹ ∈ [−10, 10]. We
impose no-flux boundary conditions for both c̃ and ñ on the do-
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main boundaries. We set initial conditions ñ(r̃, 0) = ñ0 = 1 and
c̃(r̃, 0) = c̃0 = 0. For simplicity, we take D̃ = 10−4 52,61. Addition-
ally, we note that M̃ ≤ 1 for most colloids 61 and use M̃ = 0.5 for
all simulations. To solve eqns (4)-(6), we need an input of J (τ),
which we discuss next.

To elucidate the effects of molar rate decay, we use three dif-
ferent scenarios for J (τ). First, constant molar rates, J (τ) =

J0H(τ), where J0 is the strength of the step molar rate and H
is the heaviside function. In this scenario, there is no timescale
associated with molar rate decay and the timescale for colloidal
banding is dictated by the interaction between sources and sinks.
The second choice of J (τ) is a boxcar function profile given by
J (τ) = J0H(τ)H (τ0 − τ), where τ0 introduces an additional
timescale.

Lastly, we derive J (τ) by calculating the flux emitting from an
isolated, finite-sized source of radius a. This allows us to incorpo-
rate experimentally relevant parameters, i.e., the partition coeffi-
cient of the solute into the source K, and the diffusivity ratio of
solute between the source and the bulk D̂. To evaluate J (τ), we
briefly restore dimensions. We assume the origin to be the center
of the source. The inner region refers to the concentration field
inside of the source, i.e., r ≤ a and the outer region corresponds
to the concentration field outside of the source, i.e., r > a. We
assume that the concentration in the outer region is initially uni-
form such that cout = cref , and the source is saturated with solute
such that the concentration in the inner region is cin = Kcref . At
t = 0+, the concentration outside is switched to cout = 0, which
leads the source to start emitting solute. The conservation equa-
tions for solute inside and outside the source are

∂cin
∂t

=
Din

r

∂

∂r

(
r
∂cin
∂r

)
r ≤ a, (7)

∂cout

∂t
=
Ds

r

∂

∂r

(
r
∂cout

∂r

)
r > a. (8)

The initial and boundary conditions are

cin(r, t = 0) = Kcref

cout(r, t = 0) = 0

∂cin
∂r

∣∣∣∣
r=0

= 0

cout(r →∞, t) = 0

cin(r = a, t) = Kcout(r = a, t)

Din
∂cin
∂r

∣∣∣∣
r=a

= Ds
∂cout

∂r

∣∣∣∣
r=a

(9)

We set the diffusivity of solute in the outer region to be the same
as that of eqn (1) and the diffusivity of the inner region to be
Din. In order to determine the appropriate time dependence of
flux from the source, we first non-dimensionalize the equations
as follows:

∂c̃in
∂T

= D̂
1

r̃

∂

∂r̃

(
r̃
∂c̃in
∂r̃

)
, r̃ < 1 (10)

∂c̃out

∂T
=

1

r̃

∂

∂r̃

(
r̃
∂c̃out

∂r̃

)
, r̃ > 1 (11)

where c̃in = cin
cref

, c̃out = cout
cref

, D̂ = Din
Ds

, r̃ = r
a

and T = τL2

a2
. We

note that T = τL2

a2
= Dst

a2
and is not influenced by L. By Laplace

transforming the set of equations from T -space to s-space, we
find a solution for the interfacial flux F̂ (s); see Appendix C

F̂ (s) =
K
√
D̂√
s

K1,b(
√
s)I1,b(

√
s

D̂
)

I0,b(
√

s

D̂
)K1,b(

√
s) +K

√
D̂I1,b(

√
s

D̂
)K0,b(

√
s)
,

(12)
where In,b and Kn,b are modified Bessel functions of the first and
second kind, nth order. We numerically invert the flux from s-
space to T -space, i.e. F (T ) = L−1

(
F̂ (s)

)
, calculate the molar

release rate, and appropriately scale the flux to get

J (τ) = 2πF

(
L2

a2
τ

)
.

J (τ) is dependent on the partition coefficient K and diffusivity
ratio D̂, which we discuss later.

2.2 Numerical schemes

Finite-volume method: To solve the coupled partial differen-
tial eqns (4) and (6), we discretize both equations in space onto
a square Cartesian grid with a grid size of 0.05 and write the
resulting equations as coupled ordinary differential equations in
time. We use a first-order upwinding scheme to resolve the con-
vective term. We implement the point source/sink as a source
term in the finite-volume cell, which contains the coordinates for
the source/sink. For eqns (4) and (5), we discretize eqn (4) in
space and solve the resulting equations with eqn (5) as coupled
ordinary differential equations in time. We interpolate the solute
gradient at the position of the ith particle during each time step in
order to determine the particle velocity. The coupled differential
equations are then integrated using an eighth-order Runge-Kutta
integration scheme (DOP853) as implemented in Scipy. To gain
confidence in our simulations, we compare our results qualita-
tively to the experimental results of Banerjee et al. 66 and obtain
a good agreement; see Appendix B.

Optimization: We define an objective function, which inputs
the locations of sources and sinks for a given arrangement, solves
eqns 4 and 6 with a grid size of 0.1 and outputs a calculated
fraction Φ(τ). The fraction is defined as

Φ(τ) =

∫
Ω1

ñdV∫
Ω

ñ0dV

. (13)

Φ(τ) represents the fractions of particles within a sub-region Ω1

of our domain Ω. We employ the objective function into an op-
timization scheme to determine a source/sink arrangement that
maximizes Φ(τ). The optimization scheme uses a Nelder-Mead
simplex algorithm implemented through the Scipy Optimization
package.
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Fig. 2 Dipole simulations for a constant molar rate. (a) Schematic illustration of dipole setup where a source and a sink are separated by a distance
d. The shaded region shows the Ω1 used in calculating Φ(τ) via eqn (13) (b-d) x̃i(τ = 0, 50, 100) for 3000 particles as calculated by solving eqns (4)
and (5) for d = 3 and M̃ = 0.5. (e-g) ñ(r̃, τ = 0, 50, 100), as determined by solving eqns (4) and (6) for d = 3 and M̃ = 0.5. The color bar ranges
from 0 to 1. All concentration values larger than 1 are truncated to 1. (h) Φ(τ) for a monopole and dipoles with d = 1− 6. Continuum results are
represented with a solid line while particle tracking results are shown by open circles. Results for a source monopole are plotted in black. (h inset)
Φ(τ = 1) for a monopole and dipoles with d = 1 − 6 in the form of a bar chart. (i) τc, i.e, the crossover time at which Φ(τ) for the monopole
overtakes a dipole with separation distance d, plotted versus d2. The dotted line represents the line of best fit with zero intercept. J (τ) = H(τ) for
all panels.

3 Results and discussion
We begin our analysis with a dipole system, i.e., one source and

one sink separated by a distance d = ∆
L

; see Fig. 2(a). The evolu-
tion of 3000 particle trajectories, as determined by eqns (4) and
(5), for sources and sinks with constant strength J (τ) = H(τ)

and M̃ = 0.5 is provided in Fig. 2(b-d) (some representative
contours for c̃(r, t) are provided in Appendix E). The evolution
of particle concentration ñ(r̃, τ) for identical parameters as de-
termined by eqns (4) and (6) is displayed in Fig. 2(e-g). In
both the particle and continuum simulations, since M̃ > 0, par-
ticles are repelled from the sink and are attracted to the source,
forming a depletion zone around the sink and enrichment zone
around the source. As time increases, particles enrich around
the source and the depletion zone increases in size. To quan-
tify enrichment, Φ(τ) is calculated using eqn (13). We used a
volume-averaged approach for quantifying enrichment as it is re-
lated to the enrichment phenomena observed experimentally 66.

Fig. 2(h) shows that the fraction increases monotonically in time
as particles enrich near the source. Φ(τ) calculated with discrete
and continuum simulations are in quantitative agreement. Since
the results of continuum simulations and particle tracking sim-
ulations are equivalent, for the remaining analysis, results from
continuum simulations will be used. While the particle tracking
simulations provide a descriptive picture of particle trajectories,
they are computationally more expensive than continuum simu-
lations since they require a large number of particles (∼3000 in
our analysis) to compute statistically significant volume averages.

Fig. 2(h inset) reveals that smaller d values possess a higher
Φ(τ) for early times. In contrast, larger d values display a higher
Φ(τ) at later times. We also compare these values with the enrich-
ment from a single source, referred here as a monopole. At early
times, the monopole provides the least enrichment, Fig 2(h in-
set). However, at long times, the monopole enrichment surpasses
all dipoles. The time at which Φ(τ) of the monopole overtakes
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Fig. 3 Effect of time-dependent molar rate on colloidal banding.(a) Time-dependent source/sink molar rate profile described by the equation
J (τ) = J0H(τ)H (τ0 − τ), where H is the heaviside function. J0 is the strength of the molar rate and τ0 represents the time at which the
source/sink molar rate vanishes. (b) Φ(τ) for d = 1− 6, J0 = 1 and τ0 = 18.2. The vertical dotted line is placed at τ = τ0. (c) d2

opt versus τ0 for
J0 = 1, where dopt is the optimal separation distances, as estimated by our optimization scheme. (d) dopt versus J0 for τ0 = 18.2.

Φ(τ) of the dipoles is denoted as the crossover time, τc. Fig. 2(i)
shows a linear trend between d2 and τc. To explain the trends
outlined above, we examine eqn (6) more carefully. First, we ig-
nore diffusion as D̃ = 10−4. Next, we integrate eqn (6) over Ω1

(defined by the shaded region shown in Fig. 2a), and write∫
Ω1

∂ñ

∂τ
dV = −

∫
Ω1

∇̃ ·
(
ñ(M̃∇̃c̃)

)
dV. (14)

By employing eqn (13) and divergence theorem, we obtain

dΦ

dτ
= − M̃

N0

∫
S1

(
ñ∇̃c̃

)
· êndS, (15)

where N0 =
∫

Ω
ñ0dV , S1 defines the outer perimeter of region

Ω1, and ên is the unit normal vector pointing outwards from S1.
Essentially, eqn (15) states that dΦ

dτ
is affected by the convective

flux entering through S1. The convective flux has two parameters,
i.e., ∇̃c̃ and ñ.

At early times, dipoles have not had sufficient time to inter-
act with each other. Therefore, we argue that to a first approx-
imation, ∇̃c̃ are similar for both a monopole and the source in
dipoles. If so, to explain the trend in Fig. 2(h inset), eqn (14)
implies that at early times, ñ is higher for smaller d values. This
appears surprising at first since the ∇̃c̃ from sources and sinks
do not interact at this timescale. However, the depletion of par-
ticles around the sink increases the concentration of particles at

S1, which consequently increases dΦ
dτ

(see Appendix D), leading
to a larger Φ.

We argue that dipoles start to interact with each other at
τ ∼ d2, or the interdipole diffusion time. For τ & d2, the dipoles
screen each other, causing a rapid decline in ∇̃c̃. After the inter-
dipole diffusion time, ∇̃c̃ becomes localized between the source
and sink and diminishes elsewhere. This results in a smaller dΦ

dτ
;

see eqn (15). Since screening occurs later for larger d, the decay
in dΦ

dτ
starts later and Φ(τ) is higher; see Appendix D. Finally, for

the monopole, screening never occurs, and concentration gradi-
ents do not diminish due to interactions with a sink. This is why
the monopole overtakes dipoles around the interdipole diffusion
time, which results in τc ∼ d2; see Fig. 2(i).

The aforementioned discussion highlights the time-dependent
nature of enrichment. Therefore, we seek to study the effects of a
time-dependent molar rate. To this end, we employ a molar rate
profile given by J (τ) = J0H(τ)H (τ0 − τ), whereH is the Heav-
iside function; see Fig. 3(a). This molar rate provides us with
two parameters: the strength of the molar rate J0 and the time
for the molar rate to decay to zero τ0. Fig 3(b) shows Φ(τ) for
J0 = 1, τ0 = 18.2 and d = 1−6. The choice for τ0 corresponds to
the crossover time observed in Fig. 2 for d = 3. For τ > τ0 (rep-
resented by the dashed line in Fig. 3(b)), Φ(τ) increases slightly
before leveling. At τ = τ0, we also observe that Φ(τ) increases
with separation distance until d = 3 and then slightly decreases.
Thus, there is an optimal separation distance. Using the described
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Fig. 4 Optimal separation distance for experimentally realizable J (τ). (a) J (τ), as calculated by inverting eqn (12), for a finite-sized source of radius
a
L

= 0.4. K = 10, 1000 and D̂ = 10−1, 10−3. (b) Φ(τ) for K = 100 and D̂ = 10−2, d = 1 − 8. (c) dopt vs. D̂ for K = 500. (d) dopt vs. K for
D̂ = 10−2.

optimization scheme, we determined the optimal separation dis-
tance, dopt as a function of τ0 and J0. In Fig. 3(c), we observe
that a plot of d2

opt versus τ0 results in a linear trend. Additionally,
from Fig. 3(d) , we see that dopt is weakly dependent on J0.

The dopt is set by a balance between the interdipole diffusion
and molar rate decay timescales. This is seen by the linear trend
between d2

opt and τ0 observed in Fig. 3(c). When d <
√
τ0,

the source and sink screen each other before the molar rate is
turned off, leading to small Φ(τ). When d ∼ √τ0, the enrichment
around the source is boosted due to depletion around the sink,
however, the source and sink do not screen each other as the
molar rate vanishes at the inter-dipole diffusion time. Finally,
when d &

√
τ0, the enrichment around the source is less impacted

by the depletion around the sink. In effect, d ∼ √τ0 becomes the
optimal distance. In summary, the timescale of molar rate decay
can be used as a parameter to optimize particle enrichment.

J (τ) = H(τ) and J (τ) = J0H(τ)H (τ0 − τ) are not easy to
realize experimentally. Instead, as shown by Banerjee et al. 65–67,
solute fluxes arise due to solute partitioning between source and
the bulk, described by a partition coefficient, denoted here as K.
We also define the diffusivity ratio, D̂, as the ratio of solute dif-
fusivity in the source and in the bulk. As such, we incorporate
the effects of these parameters by determining J (τ) = f(K, D̂)

using eqn (12). Fig. 4(a) shows J (τ) for different values of K
and D̂. As expected, the molar rate has a higher strength for a
larger K value, and the decay is slower for a smaller value of D̂.

We conduct dipole simulations by solving eqn (6) with J (τ)

determined by inverting eqn (12). We evaluate Φ(τ) for different
values for K and D̂. Fig. 4(b) shows Φ(τ) with J (τ) = f(K =

100, D̂ = 10−2) and for different d values. Much like Fig. 3, we
observe an optimal separation distance, dopt ≈ 5. This demon-
strates that dopt is a generic feature of a time-dependent molar
rate. We investigate the dependence of dopt on K and D̂ using
the optimization scheme described earlier. Fig. 4(c) shows the
variation of dopt with D̂ for K = 500, where we observe that dopt

is weakly dependent on D̂. However, Fig. 4(d) shows that dopt is
strongly dependent on K.

The result of dopt showing a weak dependence on D̂ is sur-
prising, as one would expect D̂ to impact the timescale of so-
lute molar rate decay, which would ultimately impact the optimal
separation distance. Therefore, we investigate this effect further.
We note that there are two timescales for J (τ) = f(K, D̂): a
short timescale, during which solute transport occurs over a small
boundary layer within the source, and a longer timescale where
concentration gradients inside of the source are fully developed.
An expansion of eqn (12) around large s (small τ) shows that

J (τ) ∼ K
√
D̂

(1 +K
√
D̂)
√
τ
. (16)

Clearly, if the short timescale of molar rate decay balanced the
interdipole diffusion timescale, then a dependence of dopt on
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Fig. 5 Geometric and spatial effects on banding for an octupole. (a) Four arrangements studied in an octupole system with the shaded regions
showing the Ω1 used in calculating Φ(τ) via eqn (13). The sources and sinks are placed around a circle of radius R. (b,c) Simulation snapshots at
τ = 100 with J (τ) = H(τ)H(18.2− τ) for R = 3 and R = 5. (d) η =

Φ(τ=100)−Φ(τ=0)
Φ(τ=0)

for Cases 1-4 with R varying from 1− 5.

D̂ would be observed. Interestingly, an expansion of eqn (12)
around small s yields

F̂ (s) ∼ K

2 +Ks ln 2− K
2
s ln s

. (17)

Eqn (17) is not analytically inverted, but we emphasize that it
is only dependent on K. While an expansion for small s cannot
be directly related to large τ , Fig. 4(d) shows that dopt only de-
pends on K. To this end, we argue that dopt is determined by a
balance between interdipole diffusion and long time scaling for
J (τ), which primarily depends on K.

Given our understanding of timescales and their impact on op-
timal banding in dipole systems, we seek to expand our work to
probe how the geometric arrangment of four sources and four
sinks around a circle of radiusR, termed here as an octupole sys-
tem, affects banding. Fig. 5(a) shows the four octupole arrange-
ments we study. Case 1 refers to the arrangement where each
source is nearest to two sinks and vice-versa, i.e., a relatively
symmetric arrangement. Case 4 refers to the most asymmetric
scenario where four sources are arranged consecutively, followed
by four sinks. Case 2 and Case 3 are in between, with Case 2
being more symmetric than Case 3. The shaded areas outlined by

dashed lines represent the integration region that Φ(τ) is calcu-
lated over. Fig. 5(b,c) show simulation snapshots at τ = 100 for
J (τ) = H(τ)H(τ0 − τ) with R = 3 (panel b) and R = 5 (panel
c). τ0 = 18.2 is used for all simulations.

We quantify η = Φ(τ=100)−Φ(τ=0)
Φ(τ=0)

, i.e., the relative increase in
Φ. Fig. 5(d) shows η for all four octupole arrangements, with R
varying from 1 to 5. For R = 1, Case 1 experiences the smallest
increase in Φ(τ), while Case 4 experiences the largest increase.
As R increases from 1 to 5, this trend reverses and Case-1 ex-
periences the largest increase in Φ(τ) while Case 4 experiences
the smallest increase. To understand this trend, we invoke our
understanding from the dipole arrangement. The octupole has
multiple interpole diffusion timescales. The smallest timescale is
associated with dij =

∆ij

L
= 2R sin π

8
and the longest timescale is

associated with dij = 2R. When R = 1, the maximum dij .
√
τ0.

Therefore, all sources and sinks interact before the molar rate
decays. In this scenario, the arrangement with the most geo-
metric asymmetry, i.e., Case 4, has the largest η. Intuitively, in
this case the source/sink screening is minimized, as the sources
and sinks are collectively the furthest apart. When R = 5, the
smallest dij &

√
τ0, implying that none of the sources and sinks

interact. Case 1 performs best in this regime, as sources are able
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to benefit from a local increase in ñ(r̃, τ) due to depletion from
multiple nearby sinks. This effect is similar to the increase in per-
formance for dipoles compared to a monopole observed earlier,
see Fig. 2(h). Lastly, we note that η, for all four cases, increases
with R because dij also increases with R. As R increases, the
sinks and sources enrich particles for longer before interacting.
We underscore that such complex banding patterns are unlikely
to occur in one-dimensional diffusiophoretic systems as the mo-
tion of colloidal particles is restricted to one direction.

4 Conclusion

In summary, we present a numerical framework for studying
the banding of colloidal particles in response to two-dimensional
concentration gradients. By studying the enrichment of particles
in a dipole system, we find that both the interdipole diffusion
and molar rate decay timescales impact the optimal banding of
colloidal particles. Interestingly, a balance between these two
characteristic timescales yields an optimal dipole separation dis-
tance, one which balances enrichment before the source and sink
screen each other. By determining the flux from a finite-sized par-
titioning source, we include the effects of a partition coefficientK
and diffusivity ratio D̂ into our molar rate profiles. We find that
the optimal separation distance in this scenario depends primar-
ily on K, with D̂ only showing a weak effect. More importantly,
we used the optimization of separation distance to elucidate that
there are two timescales that impact the banding process. This
discovery can be used to engineer complex systems with multiple
sources and sinks. For instance, for an octupole arrangement of
sources and sinks, we find that banding is also affected by geo-
metric asymmetry. In fact, the optimal arrangement of sources
and sinks is due to the interplay between multiple interpole dif-
fusion timescales and the molar rate decay timescale.

Looking forward, our results provide design principles for en-
gineering microfluidic devices 5,65–67 that utilize diffusiophoresis
to move colloidal particles and create banded patterns. By utiliz-
ing partition coefficients and spatial arrangement, one can impart
temporal and spatial control over the banded structure of col-
loidal particles. From a fundamental perspective, our results can
also be expanded to include flow effects such as dispersion due to
diffusiophoresis or diffusioosmosis 14,37,52,58,62,71,72. Additionally,
there is the potential to use such a system for applications that
require precise control over colloid localization, such as biosens-
ing73, colloids separation 74, and two-dimensional micropattern-
ing75. Dipole and octupole systems, as envisioned, could be cre-
ated using lithography similar to 66. Our work also invites future
studies that move away from point sinks and sources, include
higher-order effects and investigate asymmetric fluxes between
sources and sinks. The results, as outlined in this article, mo-
tivate future experimental and theoretical studies to investigate
two- and three-dimensional diffusiophoretic banding.

A Electrolytic and non-electrolytic mobilities for
small concentration differences

The diffusiophoretic velocity for a particle moving in an elec-
trolyte gradient can be written as

uDP =
Me

c
∇c. (18)

If we consider a small concentration difference of the form
c(r, t) = c0 + c1(r, t), where c0 is a constant concentration field
and c1(r, t) is a small perturbation to that field such that c1

c0
� 1,

we can write eqn 18 as

uDP =
Me

c0 + c1
∇c1 ≈

Me

c0
∇c1 = M ′e∇c1. (19)

For small concentration differences, the electrolytic and non-
electrolytic diffusiophoretic velocities have the same form. We
note that M and M ′e will have different values.

If the concentration difference is significant compared to the
background concentration, the electrolytic and non-electrolytic
expressions will yield a different response. Specifically, for an
electrolytic mobility expression, the additional 1

c
dependence will

yield a higher uDP around the sink. In contrast, uDP will decrease
around a source. We anticipate the qualitative features will re-
main the same. We invite interested readers to explore this effect
quantiatively in future studies.

B Qualitative comparison with experimental results

Fig. 6 Comparison with experimental work by Banerjee et al.66 (a)
Example of particles moving in response to gradients generated from a
source and sink, reproduced and adapted from66 with permission under
a Creative Commons Attribution NonCommercial License 4.0 (CC BY-
NC). (b) Particle streaklines showing time-coded trajectories for particles
with M̃ = −0.5. d = 3 and J (τ) = H(τ). Simulation results are for
x̃, ỹ ∈ [−10, 10], but are zoomed in to x̃, ỹ ∈ [−3, 3].

We observe qualitative agreement with the work by Banerjee et
al.66. If M̃ = −0.5, we see that particles move from the source
towards the sink, Fig. 6(b), similar to that observed in Fig. 6(a).
Additionally, as shown by the streaklines, we observe particles
moving towards the side of the sink farthest from the source,
similar to that observed in Fig. 6(a). The observed qualitative
agreement with experimental observations highlights the poten-
tial for our system to be used as a design tool in two-dimensional
banding systems.

Journal Name, [year], [vol.],1–12 | 9

Page 9 of 12 Soft Matter



C Derivation of flux in the auxiliary problem

We Laplace transform eqns (10) and (11) from T to s-space as

L
(
∂c̃in
∂T
− D̂ 1

r̃

∂

∂r̃

(
r̃
∂c̃in
∂r̃

))
= sĉin −K = D̂

1

r̃

∂

∂r̃

(
r̃
∂c̃in
∂r̃

)
(20)

L
(
∂c̃out

∂T
− 1

r̃

∂

∂r̃

(
r̃
∂c̃out

∂r̃

))
= sĉout − 0 =

1

r̃

∂

∂r̃

(
r̃
∂c̃out

∂r̃

)
.

(21)

We drop the tildes for convenience. We now have a set of two
ordinary differential equations. We substitute H = ĉin − K

s
in

eqn (20) and obtain

H =
D̂

s

1

r

∂

∂r

(
r
∂H

∂r

)
. (22)

Applying the product rule, we obtain the modified Bessel’s equa-
tion

r2 ∂
2H

∂r2
+ r

∂H

∂r
− r2 s

D̂
H = 0, (23)

which has a solution of the form

H = A(s)I0,b(

√
s

D̂
r) +B(s)K0,b(

√
s

D̂
r), (24)

where I0,b and K0,b are the zeroth-order modified Bessel func-
tions of the first and second kind, respectively. Writing in terms
of ĉin, we get

ĉin = A(s)I0,b(

√
s

D̂
r) +B(s)K0,b(

√
s

D̂
r) +

K

s
. (25)

Applying the symmetry boundary condition at r = 0, we obtain
that B(s) = 0 as K0,b → ∞ when r → 0. Thus, our solution for
the inner problem in Laplace space reads

ĉin = A(s)I0,b(

√
s

D̂
r) +

K

s
. (26)

A(s) will be determined when applying the partition and flux-
matching boundary conditions. Returning to the outer problem,
we write eqn (21) in terms of a modified Bessel’s equation

r2 ∂
2ĉout

∂r2
+ r

ĉout

∂r
− r2sĉout = 0, (27)

which has a solution of the form

ĉout = M(s)I0,b(
√
sr) +G(s)K0,b(

√
sr). (28)

Applying the far field decay condition,M(s) must be zero because
I0,b →∞ as r →∞. Our solution to the outer problem is

ĉout = G(s)K0,b(
√
sr). (29)

To determine our unknown coefficients, we apply the partition
and flux matching boundary conditions. Starting with the parti-
tion boundary condition,

A(s)I0,b(

√
s

D̂
) +

K

s
= KG(s)K0,b(

√
s). (30)

We solve for G(s) and obtain

G(s) =
A(s)

K

I0,b(
√

s

D̂
)

K0,b(
√
s)

+
1

sK0,b(
√
s)
. (31)

By applying the flux-matching condition, we write

D̂A(s)

√
s

D̂
I1,b(

√
s

D̂
) = −G(s)

√
sK1,b(

√
s), (32)

we solve for A(s) by substituting eqn (31) into (32) to obtain

A(s) =
−KK1,b(

√
s)

sI0,b(
√

s

D̂
)K1,b(

√
s) + sK

√
D̂I1,b(

√
s

D̂
)K0,b(

√
s)
.

(33)
G(s) is thus given by

G(s) =
K
√
D̂I1,b(

√
s

D̂
)

sI0,b(
√

s

D̂
)K1,b(

√
s) + sK

√
D̂I1,b(

√
s

D̂
)K0,b(

√
s)
.

(34)
We write our expression for ĉin and ĉout as

ĉin =
K

s

1−
K1,b(

√
s)I0,b(

√
s

D̂
r)

K1,b(
√
s)I0,b(

√
s

D̂
) +K

√
D̂K0,b(

√
s)I1,b(

√
s

D̂
)

 ,

(35)

ĉout =
K
√
DK0,b(

√
sr)I1,b(

√
s

D̂
)

sK1,b(
√
s)I0,b(

√
s

D̂
) + sK

√
D̂K0,b(

√
s)I1,b(

√
s

D̂
)
.

(36)
Lastly, we find an analytical expression for the flux(
F̂ (s) = − ∂ĉout

∂r

∣∣∣
r=1

)
at the interface between the inner and

outer region as

F̂ (s) =
K
√
D̂√
s

K1,b(
√
s)I1,b(

√
s

D̂
)

I0,b(
√

s

D̂
)K1,b(

√
s) +K

√
DI1,b(

√
s

D̂
)K0,b(

√
s)
.

(37)

D dΦ
dτ

for dipole simulations with a constant molar
rate

Fig. 7 dΦ
dτ

for M̃ = 0.5, J (τ) = H(τ). dΦ
dτ

for a monopole (black line)
and dipoles with d = 1− 6 for a constant molar rate J (τ) = H(τ).
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We also calculate dΦ
dτ

for the dipole simulations with a constant
molar rate; see Fig. 7. Initially the dipoles have larger dΦ

dτ
, how-

ever, eventually dΦ
dτ

starts to decay. We argue that the initial in-
crease in dΦ

dτ
is caused by enrichment at S1 due to depletion from

the sink. We observe that dΦ
dτ

decays later for larger d. As the de-
cay at longer times is caused by interactions between the sources
and sinks, dipoles separated farther apart screen each other later.

E Solute concentration field for a dipole with d = 3

Fig. 8 Concentration field generated by a point source and sink dipole.
(a-c) c̃(r̃, τ = 0, 10, 100) for a dipole with d = 3 and a molar rate
J (τ) = H(τ). The color bar ranges between -1 and 1 and represents
the value of c̃(r̃, τ). The point source and sink are visualized as a red
and blue circle and are not representative of solute concentration at the
location of the source and sink.

Fig. 8 shows the concentration field generated by a point
source and sink dipole. The mobility approximation is less ap-
plicable near the source and the sink since the magnitude of c̃
approaches unity. However, the magnitudes of c̃ are significantly
smaller away from the source and sink, and our mobility approxi-
mation remains valid in most of the region. We note the negative
concentration values as the initial concentration was taken to be
zero. The values can be offset simply by choosing a different ini-
tial condition. The results will remain unaffected since the parti-
cle velocities only rely on the difference of concentrations and are
not influenced by the absolute value.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The authors would like to thank Filipe Henrique, Nathan Jar-

vey, Arkava Ganguly, Dr. Jin Gyun Lee, Cooper Thome, Nicole
Day, Taylor Ausec, Kendra Kreienbrink, Gesse Roure, and Dr.
Suin Shim for their feedback and insightful discussions leading
to the completion of this work. The authors would also like
to thank the anonymous referees for their insightful feedback.
Ankur Gupta acknowledges support from the American Chemical
Society (ACS) Petroleum Research Fund. C. Wyatt Shields IV ac-
knowledges support from the National Science Foundation (NSF)
CAREER grant (CBET 2143419).

References
1 J. P. Ebel, J. L. Anderson and D. C. Prieve, Langmuir, 1988, 4,

396–406.
2 S. Shin, P. B. Warren and H. A. Stone, Physical Review Applied,

2018, 9, 034012.

3 R. Guha, X. Shang, A. L. Zydney, D. Velegol and M. Kumar,
Journal of Membrane Science, 2015, 479, 67–76.

4 D. Florea, S. Musa, J. M. R. Huyghe and H. M. Wyss, Proceed-
ings of the National Academy of Sciences, 2014, 111, 6554–
6559.

5 H. Tan, A. Banerjee, N. Shi, X. Tang, A. Abdel-Fattah and T. M.
Squires, Science Advances, 2021, 7, eabh0638.

6 D. Velegol, A. Garg, R. Guha, A. Kar and M. Kumar, Soft Mat-
ter, 2016, 12, 4686–4703.

7 N. Sharifi-Mood, J. Koplik and C. Maldarelli, Physics of Fluids,
2013, 25, 012001.

8 J. J. McDermott, A. Kar, M. Daher, S. Klara, G. Wang, A. Sen
and D. Velegol, Langmuir, 2012, 28, 15491–15497.

9 Y. V. Kalinin, L. Jiang, Y. Tu and M. Wu, Biophysical Journal,
2009, 96, 2439–2448.

10 J. F. Brady, Journal of Fluid Mechanics, 2021, 922, A10.
11 R. Golestanian, T. B. Liverpool and A. Ajdari, Physical Review

Letters, 2005, 94, 220801.
12 R. Singh and R. Adhikari, Journal of Open Source Software,

2020, 5, 2318.
13 V. A. Shaik and G. J. Elfring, Physical Review Fluids, 2021, 6,

103103.
14 R. E. Migacz and J. T. Ault, Physical Review Fluids, 2022, 7,

034202.
15 N. Singh, G. T. Vladisavljević, F. Nadal, C. Cottin-Bizonne,
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