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ABSTRACT 

The aim of this work was to develop a general framework for the validation of discriminant 

models based on the Monte Carlo approach that is used in the context of authenticity studies 

based on chromatographic impurity profiles. The performance of the validation approach was 

applied to evaluate the usefulness of the diagnostic logic rule obtained from the partial least 

squares discriminant model (PLS-DA) that was built to discriminate authentic Viagra


 

samples from counterfeits (a two-class problem). The major advantage of the proposed 

validation framework stems from the possibility of obtaining distributions for different figures 

of merit that describe the PLS-DA model such as, e.g., sensitivity, specificity, correct 

classification rate and area under the curve in a function of model complexity. Therefore, one 

can quickly evaluate their uncertainty estimates. Moreover, the Monte Carlo model validation 

allows balanced sets of training samples to be designed, which is required at the stage of the 

construction of the PLS-DA and is recommended in order to obtain fair estimates that are 

based on an independent set of samples. 
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In this study, as an illustrative example, 46 authentic Viagra


 samples and 97 counterfeit 

samples were analyzed and described by their impurity profiles that were determined using 

high performance liquid chromatography with the photodiode array detection and further 

discriminated using the PLS-DA approach. In addition, we demonstrated how to extend the 

Monte Carlo validation framework with four different variable selection schemes: the 

elimination of uninformative variables, the importance of a variable in projections, selectivity 

ratio and significance multivariate correlation. The best PLS-DA model was based on a subset 

of variables that were selected using the variable importance in projection approach. For an 

independent test set, average estimates with the corresponding standard deviation (based on 

1,000 Monte Carlo runs) of the correct classification rate, sensitivity, specificity and area 

under the curve were equal to 96.42% ± 2.04, 98.69% ± 1.38, 94.16% ± 3.52 and 

0.982 ± 0.017, respectively. 

 

KEYWORDS 

discriminant analysis; variable selection; counterfeit medicines; Viagra 

 

1. INTRODUCTION 

Models that are constructed using a large number of explanatory variables are prone to the 

overfitting issue. Namely, they tend to provide very optimistic predictions for the samples 

used to construct a model, but perform poorly for future samples, the so-called test set. This 

phenomena has been well-documented in the literature (see e.g. 
1
) and is often observed when 

data consisting of instrumental signals are modeled. To deal with the overfitting issue two 

strategies are usually applied: (i) a careful selection of model complexity and (ii) the selection 

of relevant variables that support the construction of an adequate model. Both require 

appropriate validation. 

In order to validate the performance of a model it is necessary to gain insight into its 

predictive abilities.
2
 This can be done using different cross-validation/re-sampling methods 

(e.g. leave-one-out, leave-n-out cross-validation, bootstrap, jackknifing, Monte Carlo, etc.) 

and/or an independent set of samples. These model validation concepts are often referred to as 

internal and external validation. The cross-validation approaches are typically used to 

estimate the optimal number of components that should be used for the construction of a 

model. As claimed by Esbensen and Geladi
2
, the only proper model validation is based on an 
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independent test set. The test set is fully independent – it is never used at any stage of the 

construction of the model. It can be designed using subset selection approaches, for instance, 

uniform subset selection methods like Kennard and Stone algorithm and Duplex, clustering 

methods, random selection, D-optimality criterion, etc.
3
 The general principles of multivariate 

model validation can be followed regardless of the intended purpose of a model – calibration, 

discrimination and/or classification. 

In this study, we focused on the validation of the discriminant partial least squares models 

(PLS-DA) used in the field of drug control to discriminate authentic and counterfeit 

medicines based on their impurity profiles. The major motivation of our research was driven 

by the fact that in the literature that deals with the detection of counterfeit medicines, the role 

of model validation is often somewhat underestimated or even neglected. Assuming that 

authentic samples always have much lower levels of impurities compared to counterfeit 

samples PLS-DA seemed to be a straightforward choice that would allow the many correlated 

variables that are found in chromatographic and spectroscopic signals (fingerprints) to be 

dealt with. We introduced a general validation framework that is based on the Monte Carlo 

approach. In the course of the Monte Carlo procedure, distributions of selected figures of 

merit (e.g., sensitivity, selectivity, correct classification rate, etc.) are obtained from a 

discriminant model in the function of its complexity. Therefore, one can easily evaluate the 

performance of models that have different degrees of complexity based on the selected figures 

of merit and the uncertainties of their estimates. The proposed model validation procedure 

was especially designed to fulfill the PLS-DA assumption of balanced model sets. Moreover, 

we also assumed that model validation should be performed using balanced test sets in order 

to obtain error estimates for the groups of authentic and counterfeit samples. We also show 

that the validation scheme can easily be extended by the selection of the relevant variables 

that play a key role in differentiating authentic and counterfeit Viagra


 samples (including the 

elimination of uninformative variables
4
, the importance of a variable in the projections

5
, 

selectivity ratio
6
 and significance multivariate correlation

7
). 

To illustrate the performance of the validation approach, we focused on the issue of the 

detection of authentic and counterfeit Viagra


 samples based on their chromatographic 

fingerprints of impurities, which were determined using high performance liquid 

chromatography. A total of 143 samples of Viagra


 medicines were analyzed, including 46 

authentic and 97 counterfeit samples. The impurity fingerprints were further modeled using 

PLS-DA with the goal of developing a reliable diagnostic discriminant model. 
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2. THEORY 

2.1 Preprocessing of chromatographic impurity fingerprints 

Different preprocessing techniques are usually used to enhance the quality and interpretation 

of chromatographic impurity fingerprints. In addition to the peaks that originate from the 

analytes of interest, impurity profiles contain noise and baseline components that can 

influence the comparative analysis. In the course of a chromatographic analysis of complex 

mixtures, it is difficult to obtain chromatograms that have baseline separated peaks. 

Therefore, an over-expressed baseline component is often observed in chromatographic 

signals. When necessary, the baseline of the signal has to be corrected. A large number of 

baseline correction methods can be used to perform this task. One of these is the penalized 

asymmetric least squares method (PAsLS), which has found numerous applications. A 

detailed description of the algorithm is provided in reference 
8
. 

Another preprocessing issue of instrumental signals is related to the possible shifts of the 

corresponding peaks that can be observed for a collection of signals. The presence of peak 

shifts in chromatographic fingerprints can be induced, for instance, by fluctuations in the 

instrumental conditions or changes in the chemical composition of an eluent and/or samples. 

Correlation optimized warping, COW, is one of the many alignment methods that are 

frequently used to diminish the negative effect of peak shifts 
9
. The alignment of 

chromatographic fingerprints is achieved by the linear stretching and compression of signal 

sections in such a way that the overall correlation coefficient between the aligned signal and a 

target signal is maximized 
9
. The target signal is considered to be a template for the alignment 

and usually reflects the highest correlation coefficient with the remaining signals 
10

. Once this 

is done, it is considered to be representative. 

In the COW method, each signal is divided into the same number of sections and all of the 

sections have the same number of sampling points. In order to match corresponding peaks, 

their shapes are evaluated. The alignment is controlled by two parameters – the number of 

sections, N, into which the signals are divided and the slack parameter, s, which influences the 

flexibility of the alignment. The alignment power of COW can be adjusted to a large extent 

by modifying the N and s parameters. The major advantage of using COW to adjust peak 

shifts stems from its ability to preserve the area and shape of a peak. 
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2.2 Exploratory analysis of impurity fingerprints 

Principal component analysis, PCA, is an unsupervised technique that is used to visualize and 

compress multivariate data 
11

. It is usually applied to explore the structure of multivariate data 

by means of low-dimensional projections that enable groups of samples, local changes of data 

density and/or objects with unique chemical characteristics compared with the majority of the 

data to be revealed 
12

. In the framework of PCA, a data matrix is represented as the product of 

the score and loading matrices that contain the so-called principal components, PCs, in 

columns. It is important to stress that PCs are constructed in order to explain the largest part 

of the data variability. 

Scores are linear combinations of the explanatory variables and are mutually orthogonal, 

whereas loadings are orthonormal, i.e. they are mutually orthogonal and have a unit length. A 

large absolute loading value of the original variable indicates the significant importance of 

that variable in the construction of a given principal component. Scores and loadings are used 

to visualize the data structure. Projections of selected pairs of scores and loadings provide 

information about any similarities among the samples and variables, respectively. The 

distances that are observed among samples (characterized by instrumental signals) in the 

dataspace described by the scores on selected principal components express their chemical 

similarity. Loading weight values, which are displayed on the loading plot, express the 

importance of the variables and the level of their mutual correlation. 

 

2.3 Partial least squares discriminant analysis – model construction and validation 

The partial least squares discriminant analysis, PLS–DA, is a variant of the classic partial 

least squares, which is built to distinguish samples from mutually exclusive groups in a linear 

manner 
13

. For a two-class discriminant problem, a dependent variable, y, which drives the 

construction of the discriminant rule, defines the belongingness of a sample to a given group. 

For instance, for authentic vs. counterfeit samples, samples are usually labeled either as ‘-1’ 

and ‘+1’ or ‘0’and ‘1’. 

In the course of model construction for a two-class problem, a logic rule is built using a few 

latent variables, which are constructed to maximize the description of data variance and at the 

same time maximize the covariance between a set of latent variables and a dependent 

variable. In the context of discrimination using the PLS-DA model, this objective is 
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equivalent to minimizing the within-group scatter while maximizing the distance between the 

centers of groups 
14

. 

The future performance of any discriminant or classification model is mostly affected by the 

representativeness of the samples that are used for its construction. These define its effective 

domain and influence model complexity (i.e. the number of latent PLS-DA variables). It is 

also important to emphasize that the construction of a PLS-DA model requires a balanced 

modeling set (i.e. one containing the same number of samples from each group). This issue 

was discussed in detail in 
15

. It was proven that PLS-DA decision boundary is shifted towards 

a larger group, and thus it affects predictions of group labels. It becomes apparent that the 

samples that are used to construct a discriminant model, in fact, define its effective domain 

and thus should characterize the data variability expected during the model’s maintenance. 

Usually, this is fulfilled by incorporating the most diverse samples selected from each group 

into the model set, which is based on a uniform subset selection approach (e.g., the Kennard 

and Stone algorithm or the Duplex algorithm 
16

,
3
). 

The selection of the optimal number of PLS-DA latent variables that are necessary to obtain a 

model with satisfactory prediction properties can be guided by various cross-validation 

procedures
17

. The performance of a given model with respect to the recognition of the model 

and test set samples can be scored by several figures of merit, including the root mean square 

error for model set samples (RMSE) and the root mean square error for test samples 

(RMSEP). In general, these two figures of merit measure the level of the overall within-group 

scatter. However, other figures of merit are usually considered in discrimination problems. 

Among them the most popular are the correct discrimination/classification rate, CCR (the 

percentage or proportion of samples with a correctly predicted group label using a model) as 

well as sensitivity (SE) and specificity (SP). In order to obtain estimates of sensitivity and 

specificity, the number of true positive samples (TP), true negative samples (TN), false 

negative samples (FN) and false positive samples (FP) are evaluated. A sample from the 

group labeled ‘+1’ is called a true positive sample when it is recognized as a sample from that 

group using a model; otherwise, it is a false negative. When a sample from the group labeled 

‘-1’ is recognized as a sample from that group using a model, it is called true negative, 

otherwise, it is a false positive. Sensitivity and specificity are defined as follows: 

 

SE = TP / (TP + FN)         (1) 
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SP = TN / (TN + FP)         (2) 

 

In order to illustrate the relation between the true positive and false positive rates and their 

influence on model parameters, the so-called ROC plots 
18

 were introduced. A model’s 

performance is then expressed as the area under the convex curve, AUC. The larger it is the 

better the predictive properties of a given model, i.e. better discrimination power. 

To test the reliability of a discrimination or classification model, it is possible to estimate the 

uncertainty associated with the estimates of certain figures of merit as a function of model 

complexity. This can be done in the course of the Monte Carlo 
17

 or the bootstrap procedure 

19
. The Monte Carlo approach, MC, assumes the construction of many subsets by drawing 

samples in a random manner from the available groups. In this way, sources of variability can 

be simulated. At each step of the MC procedure, a subset of samples is selected and used to 

construct models with increasing complexity. Then, its figures of merit are calculated for each 

model using the remaining samples. Since the MC procedure is repeated many times, the 

distribution of a selected figure of merit can be constructed, thereby providing the possibility 

to obtain its uncertainty estimates. In the literature, different approaches for model 

optimization and validation are described, including the MC cross-validation, cross model 

validation, etc. 
17

,
20

. 

In this study, we adopted the idea of the MC validation specifically for a two-class 

discriminant problem that is solved using PLS-DA with an assumption of the balanced 

representation of two groups of samples (and also extended with the selection of relevant 

variables). A general scheme of the proposed MC validation procedure is presented in Fig. 1. 

 

Fig. 1 

 

At the first step, a balanced set of samples is selected at random from the available set of 

samples (the so-called initial model set). The remaining samples form an unbalanced set that 

is put aside as external test set. In the course of the MC procedure, the assumed number of 

samples is drawn randomly (without any replacement) from the initial model set and the pool 

of external test set samples. PLS-DA models with increasing complexity, 1, 2, …, f, are 

constructed for a given model subset. Each model is characterized by the selected figures of 
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merit that are obtained for the balanced model set, internal test set and external test set. After j 

MC runs, the distribution for a given figure of merit and a fixed model complexity is 

obtained. The final results are reported as the average value, which is extended with the 

corresponding standard deviation as a function of model complexity. It should be emphasized 

that the external set of samples is independent with respect to all phases of modeling and 

variable selection, i.e. these samples are never used at the stage of model optimization or 

during variable selection – they only serve to test model performance. 

Such a validation procedure allows the direct estimation of model complexity and 

straightforward validation using a completely external test set of samples. In order to enable a 

fair comparison and honest error estimates for two groups of samples, all of the subsets of the 

samples that are drawn in the course of the Monte Carlo approach are balanced. At the same 

time, model performance is revealed, which includes information about the uncertainty that is 

associated with the estimated figures of merit. 

 

2.4 Selection of relevant variables for PLS-DA 

Over the last few years, different variable selection approaches have been proposed in order to 

limit the risk of model overfitting and to enhance interpretation. Some of them, e.g., variable 

importance in projection (VIP) 
5
 and significance multivariate correlation (SMC) 

7
, are 

specifically designed to support variable selection for partial least squares regression and 

PLS-DA, whereas uninformative variable elimination and the selectivity ratio are not only 

limited to PLS 
4
,
21

,
22

. 

 

2.4.1.Uninformative variable elimination-partial least squares discriminant analysis 

Uninformative variable elimination partial least squares discriminant analysis, UVE-PLS-DA, 

is designed to eliminate variables that do not support the modeling of the dependent variable 

y. In practice, these variables contain information content that is comparable to the random 

variables 
4
. To distinguish between informative and uninformative variables, the stabilities of 

the regression coefficients for the original variables and random variables (obtained in the 

course of the jack-knifing procedure) are compared. Therefore, the UVE-PLS-DA model is 

built for augmented data that contains the experimental data matrix X of dimensions m × n 

(m samples and n variables) and matrix N with random variables that are normally distributed 
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with low magnitudes (m × n*). Artificial variables do not influence the construction of the 

UVE-PLS-DA model. 

The stability of a regression coefficient is defined as the ratio between the mean value of the 

regression coefficients for a given variable obtained from the jack-knifing approach and their 

standard deviation. It is intuitive that informative variables must have absolute stabilities that 

are larger than the absolute values of the stabilities observed for the random variables. 

Therefore, the threshold value can be selected as, for instance, the maximal value of the 

absolute stabilities that are found for the random variables or a certain percentile value, e.g., 

0.99. 

Uninformative variables are then discarded and the final PLS-DA model is built based on the 

remaining variables. 

 

2.4.2 Variable importance in projection 

Variable importance in projection, VIP, is a variable selection method that helps to filter out 

variables in PLS-DA that are irrelevant for a given discriminant or calibration problem 
23

. 

Importance of variables is scored by the VIP value, which is determined as described in 

reference 
24

. The influence of variables is classified by means of the VIP score as follows: 

VIP > 1.0 (highly influential), 0.8 < VIP < 1.0 (moderately influential) and VIP < 0.8 (less 

influential). It is recommended that the VIP criterion be used in a recursive manner, i.e. to 

perform the elimination of variables until no further model improvement is observed. 

 

2.4.3 Selectivity ratio 

Another filter variable selection method that can be used to determine the importance of 

variables in PLS is the so-called selectivity ratio, SR. The selectivity ratio is calculated for 

each variable as the ratio between the variance explained by the PLS model and the variance 

of the model residuals 
21

,
6
. A high SR value means that a variable has a strong ability to 

discriminate the analyzed groups of samples. The threshold above which the variables are 

considered as important is arbitrarily chosen by the user. 

 

2.4.4 Significance multivariate correlation method 
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The significance multivariate correlation method, SMC, assists in assessing the significance 

of variables in PLS regression or PLS-based discriminant analysis 
7
. SMC belongs to the 

category of filter variable selection methods. Its main aim is to estimate the sources of the 

relevant variability for each variable based on model regression coefficients (i.e. explained 

variance and residual variance). The importance of variables is described by the SMC 

parameter, which is calculated for each variable taking into account the predicted response 

and the regression coefficients that are obtained from a given model. Variables with relatively 

high SMC values are better correlated with the response variable y and thus they can be 

regarded as relevant for a given regression or discrimination problem. In order to identify the 

relevant variables, the threshold value for the SMC values is defined based on the F-test with 

an assumed significance level of α and 1 and m - 2 degrees of freedom. Similar to VIP, the 

SMC is designed to assist in the assessment of the relevance of a variable in the construction 

of models that uses the PLS approach. 

 

2.4.5 Variable selection and the Monte Carlo procedure 

All of the variable selection approaches discussed above can be used during the MC 

procedure to obtain information about the relevance of variables and the frequency of their 

selection based on multiple model sets. A set of retained variables is stored at each step of the 

MC procedure. The final set of variables is determined for the model that has the optimal 

complexity assuming a certain frequency of their selection, e.g., variables found in 95% of all 

of the MC runs (see Fig. 2). Then, the final model that contains only relevant variables is 

constructed and validated using the general procedure shown in Fig. 1. 

 

Fig. 2 

 

 

3. EXPERIMENTAL 

A collection of 46 authentic and 97 counterfeit Viagra


 samples were analyzed using a high 

performance liquid chromatography system (Waters 2695 Separations Module, Milford, 

USA) with a photo-diode array detector (Waters 2998 Photodiode Array Detector, Milford, 

USA). The following sample preparation was applied – 30 mg of sample was dissolved in 
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10 mL of ethanol/water (50/50 % V/V) for 15 minutes using an ultrasonic treatment. 

Afterwards, the samples were centrifuged at a speed of 2,000 rpm for 10 minutes. The 

supernatant was used for chromatographic analysis. All of the steps of sample preparation 

were performed at room temperature. 

Five µl of the sample was injected into the HPLC system. The autosampler temperature was 

15°C and the column temperature was set to 30°C. Separation was carried out using a C18 

column (Alltima, 250 mm × 3 mm; 5 µm particle size; Grace, Columbia, USA) and a binary 

mobile phase that was composed of an ammonium formate buffer (0.020 M, pH = 3) and 

methanol. Their proportions were controlled via the following gradient program – for two 

minutes; the mobile phase consisted of 90% of the buffer and 10% methanol. Then, the 

proportion of buffer and methanol were linearly altered to 50% for the next five minutes and 

kept at this level for the next seven minutes. Afterwards, the proportion of buffer and 

methanol reached 10% and 90%, respectively, for six minutes and this mobile phase 

composition remained constant for five minutes. During the last five minutes of the 

separation, the initial mobile phase composition was reached and the total separation run was 

completed after 30 minutes. A constant mobile phase flow rate of 0.5 ml�min
-1

was applied 

during the analysis. Spectra were measured between 210 and 400 nm with 1.9 nm step for 

each portion of the eluent. 

All data were acquired using the Empower software version 3 (Waters, Milford, USA). The 

final set that was used for the construction of the diagnostic models consisted of 

chromatograms recorded at the optimal detection wavelength (254 nm). At this wavelength 

excipients such as like lactose, croscarmellose, etc. do not absorb, and therefore they are not 

detected. 

 

3.1 Hardware and software description 

Calculations were performed using HP ProBook 6560b personal computer with processor 

Intel(R) Core(TM) i5-2520M CPU 2.50 GHz and 16 GB RAM, Operating System: Microsoft 

Windows 7 Version 6.1 (Build 7601: Service Pack 1). All discussed in this manuscript 

algorithms were developed in-house in the MATLAB computing environment (MATLAB 

Version: 8.1.0.604 (R2013a). The MATLAB routine for validation of PLS-DA using the MC 

framework and related algorithms are available from the corresponding author upon request. 
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4. RESULTS AND DISCUSSION 

4.1 Data preprocessing 

Since all of the chromatographic fingerprints contained the same number of sampling points 

(13,620) and were registered within the same range of elution times, they did not require 

resampling. In order to eliminate any differences in the baseline of the chromatographic 

fingerprints, the PAsLS method was used. The choice of the λ parameter was optimized. For 

most of the chromatographic fingerprints, λ = 10
5
 was found to be the optimal value and the 

second degree of differences was considered. 

The next step of preprocessing consisted of the alignment of the signals due to the presence of 

peak shifts. The misalignment issue was easily detected when the position of the active 

substance peak was analyzed across the collection of chromatograms. At the step of signal 

preprocessing, the peak of the active substance served as the marker peak, which additionally 

helped to verify the alignment. The correlation optimized warping method was used to correct 

the position of corresponding peaks. The target signal for the alignment was selected as the 

one that resembled the best average correlation with all of the remaining signals 
10

. In order to 

achieve a satisfactory alignment using COW (in terms of the improvement of the correlation 

coefficient that was evaluated before and after alignment), different values of the input 

parameters were tested. In most cases, the values of ca. 28 sections (N = 500) and s = 3 

enabled a relatively high alignment flexibility. 

Afterwards, alignment tuning in two problematic signal sections was carried out (between 

10.10 min to 10.43 min and between 20.10 min to 20.44 min) using the optimal values of the 

slack parameter that were equal to 3 and 6, respectively. For the first elution time, window N 

was equal to 20 and for the second 50. 

The initial values of the correlation coefficients, which were calculated between the 

chromatographic fingerprints and the target signals, were in the range of 0.0134 to 0.9988. 

The initial correlation coefficients did not exceed 0.8 for 48.25% of the chromatograms and 

they were found to be below 0.9 for 64.34% of the chromatograms. A substantial 

improvement of peak correspondence was observed after signal alignment. 95.10% of the 

chromatograms were described by the final correlation coefficient above 0.8 and 90.21% of 

the chromatograms had a final correlation coefficient above 0.9. In order to visualize the 

alignment effect, histograms of the correlation coefficients that described individual 

chromatographic fingerprints before and after alignment are shown in Fig. 3. 
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Fig. 3 

 

Only impurity profiles were considered in this study and therefore after the preprocessing step 

the peak of the active substance was removed from all signals (i.e. the region between 

20.22 min and 20.85 min). Afterward, the chromatographic impurity fingerprints of the 

authentic and counterfeit Viagra


 samples were further analyzed using the PCA approach and 

discriminated using PLS-DA. 

 

4.2 Exploratory analysis of chromatographic impurity fingerprints 

Potential differences between the authentic Viagra


 samples and their counterfeit variants 

were explored using the PCA score projections that visualized the similarities among their 

impurity profiles. On the score projections in Fig. 4, authentic and counterfeit samples are 

marked as ‘+’ and ‘�’, respectively. More than 87.86% of the total data variance is explained 

by the first three principal components. Projection of samples onto a space that was defined 

by the first two principal components (Fig. 4a) revealed six unique (outlying) samples with 

very different chemical characteristics in comparison to the remaining samples. These 

belonged to the group of counterfeit samples. Due to outlying character of these samples, they 

were excluded from data set to eliminate their negative influence on the construction of the 

discriminant model. 

In general, the analysis of score plots led to the conclusion that the group of counterfeit 

samples was much more inhomogeneous and scattered in comparison with the authentic 

Viagra


 samples. This observation is not surprising since the production of counterfeit 

medicines has little to do with good manufacturing practice and maintaining reasonable levels 

of production quality. A larger scatter of counterfeit samples, especially along the PC 2 axis, 

confirmed the hypothesis that illegal counterfeiting practice is indeed a source of the 

additional variability that is manifested at the chemical level and can be readily explained by 

the increasing number and/or levels of impurities (see Fig. 4b). In addition, score projections 

indicated a separation tendency between the authentic and counterfeit samples. Apparently, 

the largest differences that were observed between authentic and counterfeit samples were due 

to the presence of the impurities that eluted at ca. 23.365 min and 2.855 min (see Fig. 4c). A 
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larger scatter of counterfeit samples along PC 2 was mostly caused by a higher content of 

impurities that eluted at ca. 8.8 min (see Fig. 4d). 

 

Fig. 4 

 

4.3. Discrimination of authentic Viagra
 samples and their counterfeit variants 

In order to build a logic rule that could effectively support the discrimination of the authentic 

Viagra


 samples and their counterfeit variants based on their chromatographic impurity 

profiles, the PLS-DA method was used. The selection of a linear discriminant method 

appeared to be a straightforward choice for our pilot study. 

Regardless of the type of model that is considered, it is meant to support the decision-making 

process over a longer period of time. Its maintenance has very much to do with the samples 

used for its construction. In authenticity studies of different medicines, it is impossible to 

create or design a model set of samples since they will never reflect the potential variability of 

counterfeit variants. Therefore, local markets are sampled with the hope that the material that 

is acquired will describe the expected variability of counterfeit samples as well as possible. 

Construction of a model requires a representative set of samples that contain representative 

sets of authentic and counterfeit samples. Generally, the variability of authentic samples will 

be relatively small. Following this reasoning, in most of the published studies only a few 

authentic samples have been considered. On the other hand, the group of counterfeit samples 

is often considerably larger and this may raise two issues. The imbalanced proportions of 

samples will lead to difficulties in testing the constructed models since the independent test 

set will contain significantly fewer authentic samples than counterfeit samples. Using 

imbalanced groups of samples may, depending on the discriminant approach that is applied, 

influence the construction of the discriminant hyperplane. In support vector machines or 

k-nearest neighbor techniques, the construction of a separating hyperplane effectively 

involves only the samples that are located at the borders or very close to the borders of the 

groups. However, in LDA or PLS-DA, the situation is very different. All of the samples are 

required in order to determine the optimal location of the discriminant hyperplane and thus 

their proportions and group variances play a fundamental role. 
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In this study, we used a balanced model, test and external test sets of samples. The following 

number of samples were considered in the Monte Carlo scheme that is presented in Fig. 1: 

m1 = 46, m2 = 97, p1 = 35, h = 10 and g = 8. All of the samples were selected randomly 

without any replacement. Such a construction of different sets offers the possibility to 

(i) design them with respect to the number of samples and (ii) simulate the different sources 

of variability. The MC procedure was repeated 1,000 times. In a single step, models with 

different number of factors were used in order to obtain estimates of the selected figures of 

merit (the correct classification rate, sensitivity, specificity and AUC) for a given 

configuration of the internal model set, test set and external test set. 

After the MC procedure, a distribution of the selected figures of merit is available for a given 

model complexity, and thus their uncertainties can be estimated. Estimates of the correct 

classification rate are presented in Fig. 5, as the average value of correct classification rates 

extended with their standard deviation (vertical bars) from 1,000 MC runs as a function of 

model complexity. 

 

Fig. 5 

 

An analysis of the CCR values that were obtained in the course of the Monte Carlo procedure 

for internal test set suggested that the optimal PLS-DA model should contain 5 PLS factors, 

thus leading to 89.37% ± 1.48 of the correct classification rate for model set, 90.60% ± 3.97 

for internal test set, and 88.03% ± 2.64 for external test set. Additionally, the relatively high 

values of sensitivity, specificity and AUC that were obtained for the external test set 

confirmed that the discriminant problem that was studied could be solved with a simple linear 

PLS-DA model (see Figs. 4b, c and d). A detailed presentation of all of the figures of merit 

that were considered is provided in Table 1. 

 

Table 1 

 

4.4 Variable selection 

As was confirmed by the relatively high values of the figures of merit that are presented in 

Table 1, the PLS-DA model can differentiate authentic Viagra


 samples and their counterfeit 
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variants with great success. On the other hand, the large number of variables that were used 

for the construction of the model compared to the number of available samples increased the 

risk of model overfitting and complicated the identification of regions where the impurities, 

which are relevant for discrimination, eluted. Therefore, variable selection is usually 

recommended in order to limit model over optimism 
25

. 

Several variable selection methods that can be easily embedded into the PLS-DA framework 

were considered to eliminate uninformative chromatographic features. These included 

uninformative variable elimination, variable importance in projection, the selectivity ratio and 

significance multivariate correlation. The final PLS-DA models were constructed using 

subsets of the relevant variables. Their performance was evaluated using the MC procedure, 

which was repeated 1,000 times and was tested with the external test set. 

In the UVE procedure, only variables with absolute stabilities above the 99% percentile of the 

absolute stabilities were retained at each Monte Carlo step. The final set of variables 

contained variables that were identified as relevant in all of the MC runs. For VIP, only the 

variables selected in all of the runs were considered and the VIP procedure was applied 

recursively three times. Using the selectivity ratio, the threshold value was set to 0.9 and the 

final set of variables contained the variables selected in 95% of all MC runs (higher threshold 

values or higher selection frequencies resulted in an empty set of the selected variables). In 

SMC, the final set of variables contained variables characterized by 100% of selection 

frequency. 

Analysis of the results that are presented in Table 1 allowed it to be concluded that, in 

general, the variable selection procedures that were applied decreased the complexity of all of 

the PLS-DA models. For a subset of variables selected using either SR or SMC, the final 

models contained one factor less compared to the initial model. The subsets of the variables 

selected with UVE and VIP resulted in a larger reduction of model complexity – from five to 

two factors. It is important to emphasize that the reduction of complexity for the studied data 

to have no negative effect on the prediction properties of the models (see Table 1). Of all of 

the variable selection methods that were applied to the data, SR had the most restrictive 

performance in terms of the number of discarded variables. Only 21 of the 13,291 variables 

were detected as relevant to the differentiation of authentic and counterfeit drug samples. The 

largest set of variables, which contained 3,641 variables, was retained using SMC. All of the 

constructed models, with and without a variable selection step, had average correct 

classification rates above 88% for the external test set with an uncertainty estimate below 
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2.86%. The best PLS-DA model, in terms of CCR, SE, SP and AUC estimates for the external 

test set, was constructed for the subset of variables selected using VIP (see Table 1). In 

general, one can conclude that regardless of the PLS-DA model with the VIP-based variable 

selection, all of the models had a tendency to describe the counterfeit samples better. This is 

supported by the larger specificity values compared with the corresponding selectivity values. 

On the other hand, the PLS-DA model with the VIP-based variable selection offered best 

performance for the authentic Viagra


 samples (SE = 98.69% ± 1.38). 

 

4. CONCLUSIONS 

In this paper a general framework for the validation of PLS-DA models, which were built to 

discriminate authentic and counterfeit samples, was proposed. It takes into account balanced 

data representations based on the MC approach. Such an approach enables a simulation of 

variability due to the random selection of samples and at the same time the observation of 

model performance up to a maximal considered complexity. The major advantage stems from 

the possibility of obtaining distributions of figures of merit as a function of model complexity. 

It is also possible to easily extend the proposed framework using a variable selection 

procedure, e.g., VIP, SR, UVE or SMC. In general, such a strategy assists in reducing the 

over optimism of the PLS-DA models that are constructed and enhances their interpretation. 

The selected chromatographic variables (regions along the elution time axis) can help in the 

further identification of potential chemical markers of the counterfeiting processes that are 

studied using a complementary analytical technique. This strategy can also be used in other 

studies related to authenticity confirmation, which are designed to uncover differences 

between authentic and non-authentic samples at the chemical level, for instance to detect 

illegal fuel discoloration 
26

. In general, all of the discussed PLS-DA models (with and without 

a variable selection scheme) offered a relatively high prediction performance. The best 

diagnostic model was based on PLS-DA constructed for a subset of variables selected using 

the variable importance in projection approach. The average estimates with corresponding 

standard deviations for the independent test set (based on 1,000 Monte Carlo runs) for correct 

classification rate, sensitivity, specificity and area under curve were equal to 96.42% ± 2.04, 

98.69% ± 1.38, 94.16% ± 3.52 and 0.982 ± 0.017, respectively. 
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In general, the proposed validation workflow could also be used in many other discrimination 

and classification tasks, for instance, food adulteration or food authenticity studies (and not 

only) solved with other than PLS-DA discriminant models or class modelling techniques. 
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FIGURE CAPTIONS 

Fig. 1 A general validation scheme for partial least squares discriminant analysis based on the 

Monte Carlo procedure 

Fig. 2 A general scheme of variable selection embedded into partial least squares discriminant 

analysis model construction based on the Monte Carlo procedure for the evaluation of 

variable selection frequency (fq) 

Fig. 3 Histograms of the correlation coefficients that were calculated between a target signal 

and all of the chromatographic fingerprints: a) before and b) after alignment using the 

correlation optimized method 

Fig. 4 Score plots of the first two principal components of impurity chromatographic 

fingerprints: a) 46 authentic ‘+’ and 97 counterfeit ‘�’ Viagra


 samples, b) enlarged region 

of PC 1-PC 2 score plot, c) loadings on PC 1 with the three indicated elution regions at (1) 

2.855, (2) 8.80 and (3) 23.365 min and d) loadings on PC 2 with four elution regions 

indicated at (1) 8.80, (2) 22.02, (3) 23.26 and (4) 23.37 min, where the most influential 

impurities elute 

Fig. 5 a) correct classification rates (CCR), b) sensitivity (SE), c) specificity (SP) and d) area 

under curve (AUC) that were obtained as a function of the PLS-DA model complexity 

extended with uncertainty estimates expressed as standard deviation (vertical lines) obtained 

in the course of the Monte Carlo procedure (1,000 runs) for the internal model set (black line), 

internal test set (red line) and external test set (blue line) 
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Table 1 Different figures of merit (CCR – correct classification rate, SE – sensitivity, SP – specificity and AUC – area under curve) that were 

obtained from the classic PLS-DA model and PLS-DA extended with four different variable selection schemes (UVE – uninformative variable 

elimination, VIP – variable importance in projection, SR – selectivity ratio and SMC – significance multivariate correlation) embedded into the 

Monte Carlo-based validation. Values of different figures of merit were obtained for model set samples, internal test set and independent test set 

samples randomly drawn 1,000 times in the course of Monte Carlo procedure. Each figure of merit is reported as the average value over 1,000 

runs and accompanied by the estimate of uncertainty (standard deviation). Symbols f and k denote the number of latent PLS-DA factors and the 

number of considered (or selected using a variable selection technique) explanatory variables, respectively. 

 

Model f k 

Monte Carlo model set Monte Carlo internal test set Monte Carlo external test set 

CCR 

[%] 

SE 

[%] 

SP 

[%] 
AUC 

CCR 

[%] 

SE 

[%] 

SP 

[%] 
AUC 

CCR 

[%] 

SE 

[%] 

SP 

[%] 
AUC 

PLS-

DA 
5 13,291 

89.37 

± 1.48 

82.82 

± 1.88 

95.92 

± 3.25 

0.999 

± 

0.006 

90.60 

± 3.97 

82.44 

± 7.31 

98.75 

± 4.06 

0.984 

± 0.013 

88.03 

± 2.64 

82.48 

± 3.48 

93.58 

± 5.03 

0.972 

± 0.015 

UVE 2 674 
89.11 

± 1.44 

82.47 

± 1.44 

95.76 

± 2.62 

0.960 

± 

0.013 

90.74 

± 3.70 

81.64 

± 7.39 

99.83 

± 0.56 

0.891 

± 0.054 

88.36 

± 2.19 

82.45 

± 3.28 

94.28 

± 3.40 

0.940 

± 0.026 

VIP 2 83 
97.84 

± 1.39 

99.10 

± 1.04 

99.57 

± 2.26 

0.999 

± 

0.000 

93.34 

± 3.32 

100.00 

± 0.00 

86.68 

± 6.65 

0.956 

± 0.047 

96.42 

± 2.04 

98.69 

± 1.38 

94.16 

± 3.52 

0.982 

± 0.017 

SR 4 21 
91.32 

± 0.69 

82.65 

± 1.37 

100.00 

± 0.00 

0.955 

± 

0.008 

90.71 

± 3.73 

81.64 

± 7.39 

99.79 

± 0.65 

0.889 

± 0.046 

89.72 

± 1.90 

81.26 

± 3.40 

98.19 

± 1.60 

0.936 

± 0.022 

SMC 4 3641 
94.22 

± 1.95 

91.47 

± 3.76 

96.97 

± 2.79 

0.986 

± 

0.009 

94.41 

± 3.11 

90.30 

± 6.39 

98.52 

± 2.58 

0.999 

± 0.003 

91.38 

± 2.86 

88.71 

± 5.44 

94.05 

± 4.35 

0.962 

± 0.016 
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Figure 4 
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Fig. 5
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