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Abstract: This work re-examines the problem of the broken-symmetry Density-Functional 

Theory (DFT) solutions in diradical systems, in particular for the calculation of magnetic 

couplings. The Ms=0 solution is not an eigenfunction of the S
2
 spin operator and the 

evaluation of the singlet state energy requires a spin-decontamination. A popular 

approximation is provided by the so-called Yamaguchi formula, which operates using the 

expectation values of S
2
 relative to both Ms=1 and Ms=0 solutions. Referring to a previous 

decomposition of the magnetic coupling in terms of direct exchange, kinetic exchange and 

core polarization, it is shown that this expression will lead to unreliable values of the singlet-

triplet energy gap when the spin polarization of the core orbitals becomes large. The here-

proposed method of spin-decontamination is based on the Effective Hamiltonian Theory and 

uses the overlap between the two degenerate Ms=0 solutions. An approximate and convenient 

formula, which uses the expectation values of S
2
 of the Ms=0 solutions before and after core 

polarization is proposed, which is free from the Yamaguchi’s formula artefact, as illustrated 

on an organic diradical presenting a very high value of <S
2
> for the Ms=0 solution, the 

antiferromagnetic coupling being due to the spin polarization mechanism. 
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I. Introduction 

 

The correct treatment of magnetic systems is challenging for quantum chemists for several 

reasons. The states of low energy are intrinsically multireference and they are quasi-

degenerate. Their calculation therefore requires the use of both non-dynamic and dynamic 

correlated methods. Detailed analyses
1,2,3,4,5,6

 of the physical factors governing the energy 

spectrum have evidenced in particular the role of the direct exchange between the magnetic 

electrons, the kinetic exchange and the spin polarization. Among these various contributions, 

spin polarization effects are less intuitively understood. However, these effects have been 

widely studied and are known to play a crucial role in electron paramagnetic resonance,
7,8

 and 

in molecular photochemistry, where they are for instance responsible for the singlet-triplet 

energy ordering in the twisted ethylene molecule.
9
 They are also important in magnetic 

systems, in particular in poly-metallic complexes involving spin polarizable bridging 

ligands
10,11,12

 and organic systems.
13,14

 

In a zero-order description, diradicals may be seen as bearing two unpaired electrons, 

occupying remote magnetic orbitals, while all the other electrons populate doubly occupied 

Molecular Orbitals (MOs). The low energy states are a triplet and a singlet resulting from the 

coupling of the unpaired electrons spins S1 and S2, and their energy difference gives the 

magnitude and sign of the Heisenberg Hamiltonian magnetic coupling J. The Ms=1 

component of the triplet is satisfactorily described at order zero by a single determinant, while 

a correct description of the singlet requires at least a two-determinant wave function. Of 

course wave-function based methods can handle the treatment of multireference states and 

specific treatments have been proposed, such as the very accurate Difference Dedicated 

Configuration Interaction (DDCI).
15,16

 A general review of the WF-based treatments can be 

found in reference [1]. However such methods are computationally demanding and are 

therefore of limited use. Moreover they do not allow one to perform easily geometry 

optimizations. In contrast Kohn-Sham Unrestricted Density Functional Theory (UDFT) 

calculations
17,18

 are inexpensive and make possible geometry-optimizations. They proceed to 

the energy minimization of i) the lowest broken symmetry (BS) Ms=1 solution essentially 

bearing two unpaired electrons with parallel spins in orbitals a and b respectively localized on 

the magnetic sites A and B. This solution is supposed to describe the Ms=1 component of the 

triplet state, and ii) the BS Ms=0 solution, with essentially two unpaired electrons of opposite 

spins. In practice the localized magnetic MOs of this solution are less localized than a and b 

and overlap. In both solutions, spin polarization distorts differentially the core orbitals of α 

and β spins.  

Since the Ms=0 solution is essentially a mixture of a singlet and a triplet, its energy cannot be 

assimilated to that of the singlet state. Spin polarization of the core MOs introduces in the 

Ms=0 solution components on higher spin determinants involving excitations from the core 

orbitals to virtual ones. Several procedures have been proposed to estimate the energy 

difference between the singlet and triplet states from the energy difference between the Ms=0 

and the Ms=1 UDFT solutions. The simplest one consists in a simple multiplication by a 

factor 2. This approximation assumes that the Ms=0 solution is a half and half mixture of the 

singlet and triplet states and becomes irrelevant when the Ms=0 solution tends to be closed-

shell, i.e. for a covalent singlet state. An alternative solution
19

 makes use of the overlap 
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3 

 

between the magnetic orbitals and has the advantage of being valid when the Ms=0 solution 

tends to be closed-shell. The most popular procedure has been proposed by Yamaguchi,
20,21,22

 

it exploits the expectation values of S
2
 for both Ms=1 and Ms=0 solutions.  

Section 2 recalls the elementary physics of both solutions. The Yamaguchi’s formula is 

derived in section 3, where it is also be shown that the increase of <S
2
> in the Ms=0 solution, 

due to the spin-polarization of the core, cannot be attributed to an increased component of the 

low energy triplet state, and thus that the Yamaguchi’s formula is not valid when the spin 

polarization of the core is important. Several examples of unreliable results obtained using 

this formula will be presented. Section 4 returns to the theoretical basis of the extraction of the 

Heisenberg Hamiltonian magnetic coupling in the context of BS calculations. Owing to the 

effective Hamiltonian theory, an accurate spin decontamination method is proposed. In its 

simplest and most rigorous acceptance, it only rests on the calculation of the overlap between 

the two degenerate BS Ms=0 solutions. A convenient approximation only uses the expectation 

values of <S
2
> and requires a preliminary calculation of the Ms=1 and Ms=0 solutions in 

which the core MOs are kept frozen while the magnetic MOs are relaxed. This convenient 

solution uses the same philosophy as a recent proposal
5,6

  which aimed to differentiate and 

assess the direct exchange, kinetic exchange and core polarization contributions to the 

magnetic coupling. The superiority of the resulting formula over the Yamaguchi’s one is 

illustrated in the problematic case of a cyclic diradical.  

Finally the conclusion examines the possible use of this method for geometry optimization of 

spin-decontaminated singlet states and evokes further generalizations. 

 

2 Physical content of Broken-Symmetry solutions in diradicals   

For the sake of simplicity, the decomposition is introduced for the simpler case of a Hartree-

Fock-Slater determinant. The transposition to DFT requires to consider the Kohn-Sham 

operator instead of the Fock one. 

 

2.1 Description of the Ms=1 triplet state 

 

2.1.1 Frozen core description 

Let us consider a typical diradical with two equivalent magnetic sites A and B. The Ms=1 

restricted solution is 

   gu.iiΠ=ab.iiΠ=Φ ii

T

R                    (1) 

where the core electrons populate doubly occupied MOs i. Let us call T

RE  the energy of this 

determinant: 

  T

R

T

R

R

T ΦHΦ=E .                       (2) 

The magnetic MOs may be the symmetry-adapted g and u orbitals or the localized orthogonal 

orbitals a and b uniquely defined by the unitary transformation:  
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2/u)(g=b

2/u)+(g=a


                             (3) 

The energy minimization provides canonical doubly occupied MOs which are eigenvectors of 

the following Fock operator: 

2/KJ+2/KJ+KJ2+h=F bbaa

j

jj      (4) 

The calculation also gives virtual MOs, hereafter labelled j*, k*,…, orthogonal to all occupied 

MOs. The MOs satisfy the Brillouin’s theorem, namely  

  0*jFi2=aaaaH T

Ri*ji*j

T

R   .    (5) 

 

2.1.2 Spin polarization of the core 

The spin polarization introduced by the unrestricted description makes different the core MOs 

i’ and i” of the α and β spins. The BS solution writes: 

                      ab".i'i
i

T

U                              (6) 

where the magnetic orbitals a and b are practically unaffected by the spin polarization of the 

core MOs. Its energy is: 

                   T

U

T

U

U

T ΦHΦ=E                  (7) 

A perturbative expansion of T

UΦ from T

RΦ  makes explicit the spin-dependent change of the 

occupied MOs. The exchange field felt by the α spin electrons, created by the magnetic 

orbitals, is )KK( ba  instead of the average field 2/)KK( ba   appearing in the restricted 

Fock operator. Consequently, the restricted solution is mixed with the singly excited 

determinants 
T

Ri*j aa 
through the interaction  

*j
2

KK
i*j

2

KK
FiaaHΦ babaT

Ri*j

T

R







   (8) 

Oppositely the β spin electrons of the core do not feel the exchange field of the magnetic 

electrons, so that T

RΦ interacts with the singly excited determinant through: 

*j
2

KK
i*j

2

KK
FiaaHΦ babaT

Ri*j

T

R







   (9) 

The configuration mixing between these determinants may be written as: 

  )2(aaaa
E2

*jKKi
ΦΦ T

R

*j,i
i*ji*j

*ij

baT

R

T

U 



  

,   (10) 

where *ijE is the excitation energy of an electron from i to j*. 
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The orbital transformation leading to the unrestricted solution may be seen as a series of 

orbital rotations such as  

                








*j

*ij

*j

*ij

*ji"i

*ji'i

                  (11) 

where 

           
*ij

ba

*ij
E2

*jKKi




            (12) 

Let us now evaluate the contribution of the spin polarization of the core to the expectation 

value of S
2
 in the Ms=1 BS solution. The configuration 2/)aaaa( T

Ri*ji*j  
 is the product of 

an Ms=0 triplet component in the core by an Ms=1 triplet component in the magnetic orbitals. 

It is an equal combination of a triplet and a quintet, for which the expectation value of S
2
 is 

equal to 4 

42/)aaaa(S)aaaa( T

Ri*ji*j

2T

Ri*ji*j     (13) 

Hence 

2

*ij

*j,i

T

U

2T

U 82S     (14) 

which is necessarily larger than 2. 

 

2.2 Physical content of the Ms=0 solution 

   2.2.1 Frozen core description 

As done in our previous papers,
5,6

 we successively consider the relaxation of the magnetic 

MOs and that of the core MOs. Starting from the RDFT MOs of the triplet state, i.e. from 

                                  ba.iii
0

ba
 .                             (15) 

in the frozen core description, the magnetic MOs are relaxed leading to the determinant:  

                                 
'b'a.iii

fc

ba
 .                        (16) 

The new magnetic MOs a’ and b’ are no longer orthogonal and have tails on the other site. 

They also differ from the MOs a and b due to the mixing with virtual orbitals. Nevertheless 

matrix elements with singly excited determinant involving virtual orbitals  

            
aK*jHaa b

fc

ba

fc

baa*j  ,       (17) 
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6 

 

are extremely small as they involve the vanishing electron distribution ab. Numerical 

computations confirm that this effect is negligible. The main change comes from the mixing 

between the MOs a and b, which may be described as  

                   




cosbsina'b

sinbcosa'a
                  (18) 

This rotation of the MOs implies a delocalization of the magnetic orbitals, which are no 

longer strongly localized. It introduces an ionic component in the wave function. Actually in 

the product 

 cossin)bbaa()(sinab)(cosba'b'a 22    (19) 

the two first components are neutral in the valence bond (VB) meaning, while the last ones 

are ionic. It may be rewritten as a combination of S
2 

eigenfunctions:  

2/)2)(sinbbaa(2/)2(cos)abba(2/)abba('b'a       (20) 

in which the first and last components are singlet functions while the intermediate one is a 

triplet. One may notice that  

                     1)2(cosS 2
fc

0Ms

2 


                            (21) 

At this stage, the expectation value of S
2
 is necessarily smaller than (or equal to) 1. 

Noticing that  

 

R

T

fc

S

fc

ba
'    (22) 

where 

                     
2/S2/)2(cos

fc

0Ms

222


 ,          (23) 

it is possible to express the energy of 
fc

ba
'  as a function of the singlet and triplet energies 

R

T

2fc

S

2fc

0Ms EEE    (24) 

From which one may write 

              
)EE(EE R

T

fc

S

2R

T

fc

0Ms  ,             (25) 

and the energy difference between the singlet and triplet states writes  

  
)E(E

S2

2
=

λ

EE
=EE R

T

fc

0=msfc

0=ms

2
2

R

T

fc

0=msR

T

fc

S 



 .     (26) 

At this stage the only approximation concerns the neglect of the mixing of the orbitals a and b 

with virtual orbitals in the optimization of a’ and b’. This expression is valid whatever the 
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ratio of neutral versus ionic components is. It remains valid when the symmetry breaking 

vanishes, i.e. when the Ms=0 solution tends to become closed shell. In this case  0=S
fc

0=Ms

2 , 

the denominator is equal to 2 and the decontamination factor is equal to 1 since the solutions 

are not spin contaminated. This expression is close to the well-known Yamaguchi’s formula: 

)EE(
SS

2
EE TBS

BS

2

T

2TS 


   (27) 

except that this formula is assumed to be correct after the spin polarization of the core MOs. It 

is perfectly valid for a frozen core solution but we shall demonstrate that this is no longer true 

after relaxation of the core MOs. 

An alternative formulation
19

 had been proposed at the same level of treatment in terms of 

overlap between the magnetic orbitals a’ and b’: 

 2sinsincos2''b'a  (28) 

The overlap between the two equivalent Ms=0 solutions writes 

fc

0ms

222fc

'a'b

fc

'b'a

fc S1)2(sin''


 .           (29) 

 

And one may equivalently write  

                       

)EE(
1

2
EE R

T

fc

0msfc

R

T

fc

S 


  ,                 (30) 

The relevance of this formula will be discussed in section 4. 

 

                2.2.2 Relaxation of the core MOs 

 

The full optimization of the MOs in the unrestricted scheme leads to the determinant:                             

'b'a.""i'"ii
'

'b'a
   (31) 

Previous analysis
5,6 

have shown that the magnetic MOs are practically unaffected by the 

polarization of the core MOs and remain very close to a’ and b’. Despite the change between 

the a’ and b’ orbitals, and as long as the ionic VB component of the |a’b’| determinant is 

small, one may consider that the relaxation of the core MOs is essentially due to the spin 

polarization. The α spin core electrons feel an exchange field operator –Ka, instead of the 

operator –(Ka+ Kb)/2, which appears in the restricted DFT formalism. The β electrons feel an 

exchange field –Kb. Therefore the MOs are revised according to the following transformation: 

                                       
*ji""i

*ji'"i

*j

'

*ij

*j

'

*ij









                            (32) 

where 
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*ij

ba'

*ij
E2

*jKKi




   (33) 

The rotations are opposite for α and β spins issued from the same closed-shell MO. The 

resulting energy  

'

'b'a

'

'b'a

u

0ms HE    (34)
               

 

now accounts for the spin-polarization effects. 

 

3. Drawbacks of the traditional spin decontamination and alternative solution 

3.1. Impact of the core polarization on the traditional decontamination factor 

Let us now consider the impact of the core polarization on the <S
2
> value for the Ms=0 

solution. This effect can be evaluated from the perturbative expansion: 

         

)2('b'a).i*j*ji(
*ij

'

*ij

0

'b'a

'

'b'a
  .     (35) 

Each of these excited configurations is a product of the Ms=0 triplet component in the core 

orbitals multiplied by a half and half mixture of a singlet and a triplet in the magnetic ones, 

i.e. this function has components on singlet, triplet and quintet states. One may show that 

2
2

ba).i*j*ji(
S

2

ba).i*j*ji(
2 


         (36) 

 and thus 

      
*ij

2'

*ij

fc

'b'a

2'

ba

2'

ba
)(4SS             (37) 

The polarization of the core significantly increases the 
2S  value of the Ms=0 solution. 

While the first term is necessarily less than one, the second term leads to values greater than 

1.  It is important to note that the configurations introduced by the core polarization in the 

wave function are not the low energy triplet configuration, they are orthogonal to it, and of 

much higher energies. The Yamaguchi’s formula is based on the idea that the BS Ms=0 

solution is a linear combination of the lowest singlet and triplet states and that the value of 
2S gives the mixture of these two states. This is clearly no longer the case after polarization 

of the core MOs. 

As a consequence the difference 
0Ms

2

1Ms

2 SS


 appearing in the denominator of the 

Yamaguchi’s expression may be significantly smaller than 1 and the corresponding spin 

decontamination factor may become significantly larger than 2, which is not correct. 
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Several examples of this failure can be found in the literature. The most striking is perhaps the 

evolution of the singlet-triplet gap in the series of polyacenes. Several studies
23,24,25

 have 

noticed that polyacenes are subject to a spin-symmetry breaking as soon as the number of 

cycles is larger than six. This is not an artefact since the CASSCF treatments of the full π 

electron population in the set of valence bonding and antibonding MOs using powerful 

Density Matrix Renormalization Group (DMRG) techniques
26

 have confirmed that the 

occupation numbers of the HOMO and LUMO tends to 1 when the size of the polyacene 

increases. The values of 
0Ms

2S


reported in reference [23] are 1.08 for octacene, 2.26 for 

nonacene, and 1.42 for decacene. For this last molecule the Yamaguchi’s spin-

decontamination factor is equal to 2/(2-1.42)=3.44, i.e. much larger than 2. It is not surprising 

then that the singlet-triplet gap follows a non-monotonic behavior, increasing for large 

polyacenes. The calculated values of these gaps are 5.8, 5.5 and 5.7 Kcal/mol for octacene, 

nonacene and decacene respectively. This increase of the energy difference is of course 

unphysical, it is an artefact due to the impact of 
0Ms

2S


on the Yamaguchi’s spin-

decontamination factor. This problem has also been faced recently by Trinquier et al.
27

 in the 

treatment of other diradicals, constituted of polycyclic hydrocarbons substituted by two 

remote extracyclic CH2 groups.  

 

3.2 Alternative proposal 

The core polarization energy correction of the BS solutions is  

                   R

T

U

T

SP

T EE=ΔE                  (38) 

for the triplet and  

           fc

0=Ms

U

0=Ms

cp

0=Ms EE=ΔE               (39) 

for the Ms=0 solution. Both quantities may be expressed at the second order of perturbation, 

leading to the following contribution of the core polarization effects to the energy difference 

between the Ms=0 the Ms=1 single determinantal energies  




 

*j,i *ij

basp

1Ms

cp

0Ms
E

iK*j*jKi
2EE

        (40)

 

An analytic development
1,2

 has shown that the core polarization effects brought by single 

excitations are only half of the total spin polarization correction, the double excitations giving 

the same contribution to the energy difference between the singlet and the triplet as the single 

excitations. Thus, the total contribution of the core polarization to the energy difference 

between the singlet and the triplet writes  

            
)EE(2E sp

1ms

cp

0ms

cp

ST   .                 (41) 

The resulting energy difference between the singlet and the triplet becomes: 
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)EEEE(2)EE(
S2

2
EE R

T

U

T

fc

0ms

U

0ms

R

T

fc

0msfc

0ms

2
TS 


 



  (42) 

       

)EE(2
S2

2
)EE(2EE R

T

fc

0msfc

0ms

2

U

T

U

0msTS 



















 



 .       (43) 

As previously shown the signs of the first and second terms are opposite. As a consequence 

the excitation energy is bounded in absolute value by )E(E2 U

T

U

0=ms  . 

These alternative formulas behave properly when the Ms=0 BS solution tends to become 

closed shell. In such a case 

0S
0Ms

2 


  (44) 

U

0=Ms

fr

0=Ms E=E   (45)
 

and, as expected,
 

U

T

fr

0=MsTS EE=EE    (46)
 

This alternative solution avoids the drawbacks of Yamaguchi’s formula when the spin 

polarization becomes large and remains valid when the symmetry breaking disappears. It only 

requires to perform two additional frozen core calculations, namely the restricted Ms=1 

calculation, and using the corresponding core orbitals, a constrained energy minimization for 

the Ms=0 solution. This procedure has been used in two recent papers
,6

 for an analysis 

purpose. This procedure offers a  practical solution to the divergent behavior of Yamaguchi’s 

formula in the situations where <S
2
> for Ms=0 becomes larger than 1. 

 

4. New spin decontamination method derived from the Effective Hamiltonian Theory  

4.1 Theoretical basis of spin Hamiltonians 

Spin Hamiltonians, and in particular the Heisenberg-Dirac-van Vleck Hamiltonian,
28,29,30

 

which describes the low energy spectrum of two interacting spins, 

2112HDvV S.SJH    (47) 

are derived from the exact electronic Hamiltonian through the Effective Hamiltonian 

formalism. This formalism, as expressed by Bloch
31

 or by des Cloizeaux,
32

 projects the 

information relative to N lowest eigen-states and eigen-energies onto a model space of the 

same dimension. The model space is defined by its projector P0, which one usually writes in 

terms of an orthogonal basis of N functions   





N,1I

O IIP .  (48) 

The eigenvectors of the exact Hamiltonian satisfy the equation: 
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mmm EH  .  (49) 

The Bloch Effective Hamiltonian is entirely defined by the conditions 

m0mm0

eff PEPH  ,  (50) 

its N eigenvalues are the eigenvalues of the exact Hamiltonian and its N eigenvectors are the 

projections of the corresponding eigenstates onto the model space. For spin systems the model 

space is spanned by the vectors of the same space configuration, bearing a single electron in 

the magnetic orbitals and differing by their spin distributions. In the simplest case of 2 

electrons in two orthogonal orbitals a and b, the model space is defined by 

ba.iii
0

ba
   (51) 

and  

ab.iii
0

ab
 .  (52) 

4.2 From a model space with a non-orthogonal basis to a spin decontaminated 

magnetic coupling 

Let us define a model space spanned by the two BS non orthogonal Ms=0 degenerate 

solutions  '

'a'b

'

'b'a
, . The overlap matrix is 

1

1
'

'a'b

'

'b'a

'

'a'b

'

'b'a







  (53) 

where 

'

'a'b

'

'b'a
   (54) 

The Effective Hamiltonian matrix writes 

0Ms

'

'a'b

0Ms

'

'b'a

'

'a'b

'

'b'a

Eh

hE











  (55) 

Since the two BS solutions are degenerate, the only unknown quantity is the off-diagonal 

element h. In order to calculate it, one may take benefit of the knowledge of the energy of the 

triplet state from the Ms=1 BS solution which is degenerate with the Ms=0 following 

function: 

))1(2/()( '

'a'b

'

'b'aT    (56) 

One may note that while both vectors  '

'a'b

'

'b'a
,  contain ionic VB components, these 

components cancel in this antisymmetric combination. The energy is 
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1Ms0MsT E)1/()hE(E   .  (57) 

Since we know the energy of the triplet, h is known. The energy of the singlet is given by 

)1/()hE(E 0mS s
    (58) 

and the energy difference between the singlet and the triplet is:  




 

1

)EE(2
EE 1Ms0Ms

TS    (59) 

While this equation is formally identical to equation (30) derived by Caballol et al.,
19

 it now 

involves BS solutions in which the core orbitals have been relaxed.   

As the overlap is smaller than 1, the following inequalities are always satisfied 

2
1

2
1 


   (60) 

which warrants that the spin decontamination factor is bounded. 

 

4.3 Exploiting the expectation values of S
2
 

It is possible to evaluate the overlap between the two degenerate Ms=0 solutions from the 

knowledge of <S
2
> at the frozen core and core polarized levels. Actually one may return to 

the previously derived perturbative expansion of the core-polarized Ms=0 solution, and to 

calculate  

'a'b).i*j*ji('b'a).i*j*ji(
*ij

'

*ij

0

'a'b
*ij

'

*ij

0

'b'a
    (61) 

In the above expression we have taken into account the opposite rotations of the core MOs in 

the two degenerate Ms=0 solutions. The occupied MOs i and the virtual MOs j* are 

orthogonal to a’ and b’ since they are orthogonal to a and b.  So that the overlap is the product 

of two overlaps, accounting for both the magnetic and core orbitals, 

))(21(
*ij

2'

*ij

fc     (62) 

where 
fc

 is the overlap between the two degenerate solutions at the frozen core level,  and 

already expressed in terms of 
fc

'b'a

2S , 

fc

'b'a

2fc S1'a'b'b'a   . (63) 

 Using the expression  

 


*ij

2'

*ij

fc

0Ms

2

0Ms

2 )(4SS ,  (64) 

one gets the following relation 
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fc
fc

0Ms

2

0Ms

2fc )2/)SS(1( 


,  (65) 

and to a convenient approximation of the spin-decontaminated energy gap 

))2/)SS(1)(S1(1

)EE(2
EE

0Ms

2
fc

0Ms

2
fc

0Ms

2

1Ms0Ms
TS








   (66) 

)EE(
)2/)SS(S2/)SS(2

2
EE 1Ms0Msfc

0Ms

2

0Ms

2
fc

0Ms

2

0Ms

2
fc

0Ms

2
TS 






 (67) 

This decontamination factor tends to 1 when the symmetry breaking vanishes, and is bounded 

by 2.  

 

5. Numerical illustration 

The para-dimethylene-di-hydro-anthracene, may be seen as a quinodimethane substituted by 

two allyl groups on the external carbons. It has been chosen as it presents a problematic value 

of the expectation value of S
2
 for the Ms=0 BS solution. The allyl groups are compelled to 

remain in the plane of symmetry of the molecule by a cyclization through a saturated CH2 

group. The basis set is of 6-311G** quality, the exchange-correlation potential is the B3LYP 

one. The geometry has been optimized for the Ms=0 solution. The energies and expectation 

values of S
2 

at the various steps of the calculation are reported in Table 1. They deserve the 

following comments: 

- The direct exchange, given by the difference between the energies of the two restricted 

distributions with the same frozen core and the same magnetic orbitals, is very small, 

0.000103 a.u.. This indicates that the overlap between the magnetic orbitals a and b is 

particularly small. This is consistent with the spatial extent of the localized magnetic 

orbitals, as pictured in Figure 1. 

- The kinetic exchange, resulting from the delocalization between the orbitals a and b in 

the field of the frozen core is even smaller. This effect only stabilizes the Ms=0 

solution by 0.000018 a.u.. For this solution 2S = 0.999986, the deviation from 1 

comes from an extremely small ionic VB component. At this level the magnetic 

coupling remains ferromagnetic, 

R

T

fc

0Ms EE 0.000084 a.u.. The spin 

decontamination reduces to a multiplication by a factor 2. The so-calculated value of 

ES-ET=-0.10 kcal/mol remains negative. 

- The major effects are due to the core polarization. The Ms=1 solution is stabilized by 

0.007632 a.u. and the value of 2S  remains close to 2.0 (2.071), while the core 

polarization lowers the Ms=0 solution by 0.011112 a.u. and 2S  for this solution 

reaches the particularly large value of 1.34. 

- The here-proposed spin-decontamination procedures coincide in that case, and simply 

reduce to a multiplication by a factor 2 of the 1Ms0Ms EE    quantity. The value ES-ET 
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= 0.00679 a.u.= 4.25 kcal/mol obtained from our calculations is significantly lower 

than the one given by the Yamaguchi’s formula (5.83 kcal/mol).  

It is likely that our correction suppresses the pathological increase (see section 3.1) of the 

singlet-triplet energy gap in the acene series,
23

 obtained from the Yamaguchi’s spin 

decontamination factor. 

 

 

 Energy 2S  

 RDFT 

 

UDFT 

Frozen core 

UDFT RDFT UDFT 

Frozen core 

UDFT 

Ms=1 -.142970 -.150601 .150718 2.0 2.07082 2.07268 

Ms=0 -.142867 -.142884 -.153997 1.0 0.99998 1.34215 

 

Table 1: Energies in a.u. (the value -618 was subtracted from the values listed in the 

table) and 2S values of the Ms=0 and Ms=1 broken symmetry solutions. 

 
 

Figure 1: example of a localized magnetic orbital computed at the RDFT level on the 

studied compound.
 

 

6. Final discussion and conclusion 

This work calls the attention on the problems encountered when using broken-symmetry 

solutions for the calculation of singlet triplet energy gaps in diradicals. This practice is of 

common use in the DFT community as it is cheap and convenient. Of course it suffers from 

the dependence of the results on the choice of the exchange-correlation functional, and this 

dependence may be dramatic. In hybrid DFT functionals the amount of exact Fock exchange 

is crucial. B3LYP may overestimate the value of the magnetic coupling and a higher 

percentage of Fock exchange (from 25 to 33%) has sometimes been recommended. However 

the main problem concerns the fact that the Ms=0 solutions of open-shell systems are not spin 

eigenfunctions and corrections are required to correctly assess the energy of the singlet state. 

The spin-decontamination formula proposed by Yamaguchi only exploits the expectation 

values of the S
2
 operator and is extremely simple and popular. This work  
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i) shows that while the Yamaguchi decontamination factor is correct as long as the 

core remains closed shell, it becomes irrelevant for the treatment of the core 

polarization phenomenon. It can overestimate unduly the singlet triplet gap when 

the 2S value relative to the Ms=0 solution becomes larger than 1, leading to a 

decontamination factor larger than 2.  

ii) re-examines the physics of the BS solutions and proposes simple alternative 

decontamination treatments which are valid from the covalent to the diradical 

regimes. The decontamination factor is always bounded by 2.  

The most rigorous version is based on the Effective Hamiltonian Theory, it is here formulated 

using a non-orthogonal basis set of the model space. It leads, for this elementary problem, to a 

very simple expression of the singlet triplet gap as a function of the Ms=1 and Ms=0 BS 

energies and the overlap between the two degenerate Ms=0 solutions.  A direct evaluation of 

this overlap will be implemented shortly. We have derived an approximate expression as a 

function of the expectation values of S
2
 at both the frozen-core and polarized-core levels. 

 

Several prospects will be considered in the near future: 

- The first one concerns geometry optimizations. Recent works have shown that the spin 

decontamination may strongly affect the geometry, the singlet state geometry being 

significantly different from that of the Ms=0 BS solution.
33,34

 This geometry change 

has an impact on the singlet-triplet energy gap. The convenient procedure recently 

proposed in reference [33] can be combined with the revised spin decontamination 

factors. 

- The second topic concerns the generalization to more than two ½ spins, and to the 

interaction between spins larger than ½.  

- The non-orthogonal formulation of the Effective Hamiltonian can be applied to the 

recently proposed Projected Single Reference Configuration Interaction
35

 which also 

suffers spin contamination problems. 

 

 

 

 

Acknowledgements: The authors thank G. Trinquier for providing them with the optimized 
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