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Infrared imaging of primary melanoma reveals hints 

of regional and distant metastases 
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a
 and E. Goormaghtigh

a
 

Melanoma is the deadliest form of skin cancer. Metastatic melanomas are resistant to almost all 

existing adjuvant therapies such as chemotherapy and radiotherapy. Yet, detection of metastases 

remains a challenge, and no biomarkers are currently available to detect primary tumors with the 

highest risk of metastatization. Results presented in this paper show that Fourier Transform Infrared 

(FTIR) imaging of histological sections followed by supervised Partial Least Squares Discriminant 

Analysis (PLS-DA) can accurately (>90%) identify the main cell types commonly found in melanoma 

tumors. Here we define six cell types: melanoma cells, erythrocytes, connective tissue (includes blood 

vessel walls, dermis and collagen regions), keratinocytes, lymphocytes and necrotic cells. Interestingly, 

more than 98% of the melanoma cells are correctly identified. The spectra of the cells identified as 

melanoma were then further analyzed. First, we compared melanoma cells in primary tumors (from 26 

patients) with melanoma cells from metastases (from 25 patients). Neither supervised nor unsupervised 

analyses revealed any significant difference. Similarly, we found no significant correlation between the 

infrared spectra of melanoma cells and the number of proliferative cells assessed by Ki67 

immunostaining. Finally, we compared the infrared spectra of primary tumors from patients diagnosed 

at different stages of the disease. Infrared spectroscopy was capable to point out a difference between 

primary tumors of patients at stages I or II and patients at stages III or IV, even with unsupervised 

analysis. We then developed a supervised PLS-DA model capable of predicting whether tumor cells 

belonged to one of the two aggregated disease stage groups. The model predicted a high rate of true 

positives (sensitivity of 88.9%) and with a good rate of true negatives (specificity of 70.6%) in external 

validation. These results demonstrated that infrared spectroscopy can be used to help identify 

melanoma characteristics related to the cells’ invasive capability. 

 

Introduction 

Melanoma is the deadliest form of skin cancer, accounting for 

80% of deaths due to dermatologic cancer.1 The incidence of 

melanoma is rising faster than that of any other solid cancer.2 

According to the American Joint Committee on Cancer 

(AJCC), the main criteria used for staging patients with 

melanoma are tumor thickness in mm (Breslow index), 

ulceration, mitotic rate, lymph node involvement and distant 

metastases status.3,4 If diagnosed early, localized melanoma are 

treated by surgery. Eighty percent of the patients are dealt with 

in this way.5 Survival for these patients at stages I and II (with 

no evidence for metastasis) is relatively high. The five-year 

survival rate is around 92% and 68% for stage I and stage II 

patients respectively.4 By contrast, metastatic melanoma are 

resistant to almost all existing therapies and survival rates are 

poor for patients at stages III or IV, with a five-year survival 

rate below 10 % for stage IV patients.4  

Biological modifications occurring in the primary tumor that 

lead to dissemination of cells at distant sites are now better 

understood. It has been shown that cells can acquire 

characteristics of invasiveness that allow them to detach from 

the primary tumor and migrate through the blood and lymphatic 

circulation. These characteristics include loss of adherent 

junctions, alteration of shape, expression of matrix-degrading 

enzymes, increased motility and increased resistance to 

apoptosis.6,7 Currently, there are no biomarkers available to 

detect primary tumor with highest risk of metastatization even 

if some preliminary studies have shown a correlation between 

expression of some cadherins and the metastatization in 

melanoma.8 

Fourier Transform Infrared (FTIR) spectroscopy coupled to 

microscopy has been recognized as an emerging tool for 

histopathological studies.9–11 This technique, based on the 

absorption of the infrared light by vibrational transitions of 

covalent bonds that compose macromolecules of tissues, offers 
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a unique signature of the cells. FTIR imaging thus provides 

spatially resolved information on the chemical composition of 

the sample originating from all macromolecules (e.g. DNA, 

RNA, lipids, proteins and carbohydrates) that compose cells 

and tissues, without any staining required.12 Infrared spectra are 

also sensitive to the conformation of molecules, in particular to 

the secondary structure of proteins.13 Therefore, spectral 

features of cells and tissues can be correlated to biological 

properties.  

Various studies have demonstrated the sensitivity of infrared 

spectral signatures for observing biological changes. In cancer 

research particularly, several publications have shown spectral 

differences between healthy and cancerous tissues.14–16 

Furthermore, numerous previous studies have demonstrated the 

capability of infrared spectroscopy to distinguish different 

cellular components of a wide diversity of tissues, based only 

on the spectral differences resulting from differences in the 

biochemical composition of cells.14,17,18 

In this study, we investigated the potential of FTIR imaging as 

an automated tool for classifying the major biological cell types 

present in melanoma biopsies. We built supervised statistical 

models to identify the various cell types. We then focused on 

the melanoma cells and attempted to correlate their spectral 

properties with the presence of regional and distant metastases 

in the patients. Importantly, we developed a supervised 

statistical model that allowed a good prediction of the presence 

of regional and distant metastases. 

 

Materials and Methods 

TMA description 

Tissue microarrays (TMA) sections were purchased from US 

Biomax, Inc. (Rockville, USA) and obtained from a formalin-

fixed and paraffin-embedded block referred as number 

Me2082b. Three adjacent sections of 3-5 µm were ordered. One 

section was H&E stained and two were unstained. The two 

unstained sections were deposited respectively on a glass for 

immunostaining and on a BaF2 slide for infrared spectroscopy. 

An overall view of the H&E stained section of the TMA used in 

this work is presented in Figure 1. The TMA contains 208 

cores, each measuring c.a. 1 mm in diameter, from biopsies of 

208 donors. 128 cores are from primary tumors of melanoma 

from patients diagnosed at different stages of the disease (I, II, 

III and IV). 64 cores are from regional (lymph nodes) or distant 

metastases and 16 cores are from skin healthy tissues. 

Information on stage is reported according the American Joint 

Commission on Cancer (AJCC) Tumor-Node-Metastasis 

(TNM) system.3 The TNM system contains three key pieces of 

information. T stands for tumor features and is assigned a 

number from one to four based on the tumor’s thickness. N 

stands for spread to nearby lymph nodes. The N category is 

assigned a number from zero to three based on whether the 

melanoma cells have spread to one or several lymph nodes. The 

M category is based on whether the melanoma has metastasized 

to distant organs and depends on the site of distant metastases. 

Stage grouping is based on the TNM status and aims to group 

patients who are prognostically and therapeutically similar. The 

grouping must ensure homogeneous survival among each 

group.4 Localized melanomas are divided into stage I and stage 

II, according to tumor thickness and ulceration status. 

Melanoma ulceration is defined as the absence of an intact 

epidermis above a significant part of the primary tumor.19 Stage 

I is composed of patients with a primary tumor with a thickness 

below 2 mm and stage II is composed with patients with a 

primary tumor thicker than 2 mm. Stage III consists of patients 

with evidence for regional metastases (involving lymph node 

metastases). Stage IV is composed of patients with evidence for 

distant metastases (nonvisceral, lung metastases or visceral 

metastases).3,4 TMN staging for each patient is reported in 

Supplementary Materials. Information about the organ where 

the tissue was found is also reported in Supplementary 

Materials.  

FTIR measurements 

The IR data were collected using a Hyperion 3000 IR imaging 

system (Bruker Optics, Ettlingen, Germany), equipped with a 

liquid nitrogen cooled 64x64 Mercury Cadmium Telluride 

(MCT) Focal Plane Array (FPA) detector, in transmission 

mode. The size of an image covers an area of 180x180 µm2 

composed of 4096 pixels of 2.8x2.8 µm2 each. It must be noted 

that spatial resolution can be significantly lower than the pixel 

size, depending on the wavelength. It took about 5 minutes to 

record an infrared image composed of 4096 spectra at a spectral 

resolution of 8 cm-1 and where each spectrum is the average of 

256 scans. Areas of measurement are shown with colored 

squares in the Figure 1. They were selected to encompass a 

wide diversity of cell types and a large number of patients. 

FTIR measurements were acquired on the unstained and 

deparaffinized tissue section deposited on a BaF2 slide (ACM, 

Villiers St. Frederic, France). 

Data analysis 

Preprocessing 

All spectra were preprocessed as follows. Water vapor 

contribution was subtracted as previously described20,21 with 

1956-1935 cm-1 as reference peak and CO2 peak was flattened 

between 2450 and 2250 cm-1. The spectra were baseline-

corrected. Straight lines were interpolated between the spectra 

points at 3620, 2995, 2800, 2395, 2247, 1765, 1724, 1480, 

1355, 1144 and 950 cm-1 and subtracted from each spectrum. 

Spectra were normalized for equal area between 1725 and 1481 

cm-1 (Amide I and II peaks). The signal to noise ratio (S/N) was 

then systematically checked on every spectrum. It was required 

to be greater than 300 when noise was defined as the standard 

deviation in the 2000-1900 cm-1 region of the spectrum and the 

signal was the maximum of the curve between 1750 and 1480 

cm-1 after subtracting a baseline passing through these two 

points. Finally, some rare spectra with normalized absorbance 

lower than -5 (negative lobe) and a maximum above 120 

(saturation) were discarded. To minimize artefacts related to 
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abrupt refractive index changes we always selected areas of 

sample with contiguous cells. Visual inspection of spectra as 

well as systematic screening for negative lobes on the left hand 

side of the Amide I band did not reveal significant dispersive 

artifacts. 

Difference spectra 

Difference spectra allow emphasizing the spectral variations 

between two distinct conditions. Difference spectra were built 

by subtraction of spectra from melanoma cells of patients of 

stages III or IV to those from patients of stages I or II. A 

Student t-test was used to reveal significantly different 

wavenumbers between the two groups and are shown by black 

stars (α= 1%). 

Statistical analyses 

We performed unsupervised analysis in order to observe the 

intrinsic proximities and distances within the data set and group 

spectra according to their similarities. Principal component 

analysis (PCA) was applied, this statistical analysis is already 

described elsewhere.22 Multivariate Analysis of Variance 

(MANOVA) is a statistical test capable to assess whether 

vectors of means of two or more groups are sampled from the 

same distribution. In the present paper, MANOVA was 

computed on the first three PCs scores obtained for each mean 

spectrum. Supervised analysis, such Partial Least Squares 

Discriminant Analysis (PLS-DA) was also conducted on the 

data set. PLS-DA was used to extract latent variables of the 

data set that enable the construction of a factor capable of 

predicting a class. Partial Least Squares Regression (PLSR) 

was used to correlate infrared spectrum of melanoma cells to 

proliferative rate. The purpose of this statistical analysis is to 

build a multivariate linear model that predicts a Y-variable 

(here, the proliferative rate) based on many X-variables which 

are highly correlated (IR absorbances). To build this model, 

new artificial variables are defined (PLS components) which 

are linear combinations of the X-variables. The coefficients of 

these PLS components are calculated taking into account matrix 

of variance and covariance of the X and Y variables. 

 

Correction of the spectra for water vapor contribution, baseline 

subtraction and normalization, PCA and PLS-DA were carried 

out by Kinetics, an in-house program, running under Matlab 

(Matlab, Mathworks Inc). 

Immunofluorescent staining targeting antigen Ki67 

Ki67 protein is a proliferation marker, expressed during all 

phases of the cell cycle except the G0 phase.23 An 

immunostaining targeting Ki67 was performed on the unstained 

section of the TMA deposited on the glass slide (US Biomax 

Inc., Rockville, USA). First, paraffin was removed by 

incubation in four successive baths of xylene during 20 minutes 

in total. The section was then rehydrated by 3 successive baths 

with a decreasing gradient of ethanol (100%, 90%, 70%, 5 

minutes each) and followed by incubation in milliQ water (10 

minutes). Slide underwent heat-induced epitope retrieval by 

incubation in citrate buffer diluted 10 times (stock solution: 

citrate buffer 10 X, pH 6, Skytek Laboratories, Logan, USA) at 

95°C in a water-bath during 30 minutes and was then washed in 

distilled water for 5 minutes. Tissue was surrounded by a 

hydrophobic trait of Dakopen (Dako, Santa Clara, USA). Then 

non-specific sites were blocked with a 30 minute incubation in 

a solution of BSA (Bovine Serum Albumin; 1% w/w, Sigma, 

Saint-Louis, USA) in DPBS buffer (Lonza, Basel, Switzerland). 

Primary antibody anti-Ki67 rabbit monoclonal IgG (ab16667, 

Abcam, Cambridge, UK) was incubated in a moist chamber at 

4°C overnight with a dilution of 1:50.  Slide was washed 3 

times during 5 minutes in DPBS. Secondary antibody with a 

fluorescent probe (Dylight™ 594) goat anti-rabbit IgG (35561, 

Thermo Scientific, Waltham, USA) was incubated at room 

temperature during two hours (dilution 1:200, concentration 

5µg/mL, pH 7.2). Two tonsil sections were used as negative 

and positive controls. Negative control was incubated without 

the primary antibody. The TMA slide was scanned with a 

NanoZoomer 2.0-RS equipped with a fluorescence imaging 

module (C10730, Hamamatsu, Hamamastu, Japan). Images 

were analyzed by Ndpview program (Hamamastu, Hamamstu, 

Japan). Positive nuclei were counted with Image J program. 

Counts were expressed by number of positive nuclei for an area 

of measurement of 129,600 µm2 and are shown in Figure S1 

(supplementary material). 

 

Results 

A tissue microarrays (TMA) section composed of 208 cores 

obtained from 208 donors was analyzed by FTIR imaging. The 

adjacent section, H&E stained, was used as a reference (Figure 

1). 91 areas of measurement were selected following the 

observation of the H&E stained section with the help of a 

pathologist. These areas were selected to encompass the 

diversity of cell types found in the tissue section and to include 

a large number of patients. In total, spectra from 81 patients 

were included in the present study. 

Major cell type identification 

In a first step we attempted to build a tool to identify 

automatically from the IR spectral features the different cell 

types present in the histological section described in Figure 1. 

For this purpose, a spectral database containing spectra from 

the various cell types composing the tissue cores was built. The 

strategy used to accumulate spectra from each cell type is 

schematically illustrated in Figure 2 for the erythrocytes. First, 

erythrocytes were identified on the adjacent H&E stained 

section, then the same area in the unstained section was 

identified and an IR image (usually 4096 spectra) was recorded. 

Spectra from the whole image were processed as described in 

Materials and Methods (subtraction of water vapor 

contribution, baseline subtraction, normalization) and spectra 

were submitted to a quality test as described. Only spectra 

passing the quality test thresholds were retained. The spectra of 
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the erythrocytes were then extracted manually from the image 

either in a delimited area, or one by one when necessary 

(around 500 spectra per measurement). It must be noted that 

spectra that did not pass the thresholds appear in black in 

Figure 2 (IR image of the unstained section) and cannot be 

selected. The same operation was repeated for keratinocytes, 

lymphocytes, dermis, blood vessel walls, melanoma cells, 

necrotic cells and fibrous regions (collagen). Table 1 describes 

the composition of the spectral database in term of histological 

class, number of spectra and number of patients used for each 

class. It must be noted that 10 patients among the 81 were used 

twice for a different histological class. For each of the 91 

measurements achieved, a mean spectrum was calculated from 

the extracted spectra (c.a. 500 spectra per patient). 

In a first exploratory study, the 91 mean spectra obtained for 

the six cell types were submitted to a principal component 

analysis (PCA) on the 1800-950 cm-1 spectral region of the IR 

spectra. A score plot is reported in Figure 3. The projection on 

the first, second and third principal components demonstrates 

some degree of separation (Figure 3). Some cell types are 

particularly well separated from the others (keratinocytes 

(yellow), connective tissue (pink) and melanoma cells (green)) 

but some other cell types such as erythrocytes (blue), 

lymphocytes (purple) and necrotic cells (orange) separate only 

partially. We also averaged spectra from each class to obtain a 

representative spectrum for each individual cell type. These 

mean spectra are represented in Figure 4. The very different 

chemical nature of keratinocytes must be noted. A significant 

shift can be observed in the amide I and amide II bands, 

reflecting a particular protein secondary structure. The 

difference in chemical composition is also very apparent in the 

C-H stretching region of the spectrum. We can clearly identify 

major spectral differences. In order to optimize separation and 

build a tool for cell type recognition in images, a Partial Least 

Squares Discriminant Analysis (PLS-DA) model was built 

using the individual spectra of the database (instead of the 

means as described in Figure 3) using two combined spectral 

regions, 3000-2800 and 1800-950 cm-1. Recognition rates of the 

model were high, ranging from 91 % (for melanoma cells) to 

100 % (for keratinocytes; data not shown). To evaluate the 

robustness of the PLS-DA model, we performed a cross-

validation. Six different models were built excluding each time 

spectra from six patients corresponding each to an histological 

class. The six PLS DA models were trained with all IR spectra 

except those from 6 patients (one for each cell type) and 

validated on the spectra of the patients left. This was done six 

times with different patients in training sets and test sets in 

order that each patient was included once in the test set. Results 

are presented as a confusion matrix in Table 2. This table shows 

the average percentages of correct prediction obtained for the 6 

models and the standard deviations. 

A more qualitative way of validating the model was also 

performed. Each of the six models was applied to entire images 

containing different cell types from patients who did not 

contribute to the model. Figure 5 shows an example of 

application of one of the six models on six images, each mostly 

composed with one cell type. Each pixel is associated with a 

color according to the membership of the spectrum to a class. 

H&E equivalent sections are presented next to the false-color 

infrared images. At first glance, the different models have a 

good recognition rate. Overall, melanoma cells, keratinocytes, 

necrotic cells, erythrocytes and lymphocytes are well identified 

but some connective tissue is identified as melanoma cells. This 

slight confusion is also observed in the confusion matrix shown 

in Table 1 and are discussed later. In conclusion, these results 

show that overall the PLS-DA models allow a rather accurate 

identification of the main cell types present in these tissue 

cores. Now that melanoma cells can be identified on the tissue 

sections, we will investigate in more details biological 

variability occurring among tumoral cells. 

Comparison of melanoma cells in the primary tumor and in 

metastases 

In this second part of the work we attempted to compare the 

spectra of melanoma cells in primary tumor and in metastases 

coming from different patients. Around 25 biopsies from 25 

patients have been considered for each class i.e. 26 primary 

tumors and 25 metastases. In order to evaluate if some 

differences could exist between spectra of melanoma from 

primary tumors and metastases, we carried out a Principal 

Component Analysis on the mean spectra, each one being the 

average of the ca. 15,000 spectra recorded by patients. The 

score plot was not able to show any separation between these 

two classes (data not shown). Furthermore a supervised 

analysis (PLS-DA) carried out with an external validation 

(patients who did not participate to the training set) did not 

result in significant separation. 

It can be concluded that, at the level of experimental error 

characterizing our measurements, there is no significant 

difference between the IR spectra of melanoma cells in the 

primary tumors and in the metastases. This suggests that 

melanoma cells exhibit essentially the same phenotype in both 

locations. This will be discussed in more details later. It must 

also be pointed out that this negative result is also an interesting 

control demonstrating that PLS-DA does not recognize groups 

that do not have a significant molecular difference (overfitting). 

Correlation between Ki67 expression rate and infrared 

signature 

In this part of the work, we attempted to correlate Ki67 

expression rates with infrared spectra of melanoma cells, both 

in primary tumors and in metastases. Ki67 is a biomarker of 

proliferation as it is expressed by cells during all phases of the 

cell cycle except the G0 phase (G1, S, G2/M). Some studies 

have demonstrated the role of Ki67 as a prognostic biomarker 

(survival and risk of metastasis) in melanoma primary 

tumors.23–25 To evaluate Ki67 expression rate, a fluorescent 

immunostaining of the Ki67 antigen was achieved on an 

adjacent section of the TMA as described in Materials and 

Methods. The number of cells positively stained on a surface of 

129,600 µm2 has been counted for each patient’s section. This 
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area corresponds to the area analyzed by FTIR imaging. 

Potential correlation was tested between the number of cells in 

division (i.e. expressing Ki67 antigen) and the infrared spectra. 

Absorbances or ratio of absorbances at different wavenumbers 

characteristic of nucleic acids have been tested (e.g. 1244, 

1230, 1121, 1080 or 1020 cm-1) but no correlation with the 

proliferative rate was found. Moreover, Partial Least Squares 

Regressions (PLSR) have been built at every wavenumber 

between 3000 and 900 cm-1. Again no significant correlation 

was observed. 

Melanoma spectral sub-classification according to cancer 

stages 

In this last part of the work we addressed the question of the 

possibility to obtain sub-classification of melanoma cells from 

the primary tumor according to cancer stage. Melanoma stages 

are described in Materials and Methods and reported in Table 

S1 (supplementary material) for the different samples present 

on the TMA used for this study (Figure 1). The 26 mean spectra 

obtained from the primary tumors and described above (one 

mean spectrum is the average of around 15 000 spectra per 

patient) were subjected to PCA (Figure 6). Some limited 

separation occurs on the score plot between patients of stages I 

or II (non-metastatic stages) on the one hand (green color dots) 

and patients of stages III or IV (metastatic stages) on the other 

hand (red color dots) when the mean spectra are projected in 

the first three principal component space. A Multivariate 

Analysis of Variance (MANOVA) was computed on the first 

three principal components of the PCA. P-value obtained was 

lower than 0.002, indicating that these two groups are 

significantly different. A difference spectrum (non-metastatic 

versus metastatic) was also performed to highlight spectral 

difference between these two groups (Figure 7). To build this 

spectrum, the mean spectrum from melanoma cells of patients 

from stages III or IV was subtracted from the mean spectrum 

from melanoma patients from stages I or II. A Student t-test 

was applied to compare the two groups. The significantly 

different wavenumbers are identified by black stars (alpha= 

1%). As the difference spectrum is ten times less intense than 

mean spectra, we can assess that the difference between the two 

groups are moderate. These differences mainly occurred in the 

protein region (amide I and II bands) and are probably due to a 

change in the secondary structure of proteins. 

In order to create a tool able to predict the presence of 

metastases with only the spectral signature of the primary 

tumor itself, we built a PLS-DA model with the individual 

spectra recorded from patients at different stages of the disease. 

To test the predictive power of the model, we built 26 models, 

each time leaving out spectra from one of the 26 patients. These 

models were trained on subsets of spectra (c.a. 500 spectra per 

patient). Each model was validated on the c.a. 150,000 spectra 

from the patient who did not train the model (entire infrared 

image). Results of this validation are schematically represented 

in Figure 8. Green columns of this graph represent percentages 

occupied by pixels correctly predicted as originating from non-

metastatic patients for patients with no evidence for metastases 

(stage I and stage II patients) and red columns represent 

percentages occupied by pixels correctly predicted as 

originating from metastatic patients for patients with evidence 

for regional or distant metastases (stage III and stage IV 

patients). A threshold of 30% of the melanoma cells 

characterized by pixels predicted as metastatic has been set. It 

is shown in Figure 8 by a dark blue line. Above this threshold 

patient has to be considered as metastatic. The corresponding 

threshold for non-metastatic patients is also represented by a 

dark blue line at 70%. The ROC curve presented in Figure 9 

reports the true positive rate as a function of false positive rate 

(1-specificity). This curve allows the evaluation of the 

performance of a diagnostic model. The closer the curve will be 

to the left vertical axis, the more performant the test. Area 

under the curve (AUC) shows accuracy of the model and 

reaches here a value of 0.84 that corresponds to a good model. 

This value can be compared with 1 for a perfect predictive 

model or with 0.5 for a random model (also shown by a 

diagonal straight line y=x) in Figure 9.  

Figure 10 shows two examples of application of one PLS-DA 

model on areas containing only melanoma cells from patients 

C5 and D5 who did not participate to the training of the model 

(external validation). Correct assignment to metastatic/non 

metastatic melanoma cells is found for 98.5 and 98.7 % of the 

image pixels for patients C5 and D5 respectively, which is 

significantly superior to random assignment (50%). 

Examination of Figure 10 indicates that incorrectly assigned 

spectra are scattered throughout the tumor. At this point it is not 

possible to determine whether the incorrectly assigned spectra 

reflect a failure of PLS-DA to achieve a perfect assignment or a 

real heterogeneity of the tumor. Indeed, tumors are known to be 

heterogeneous and a mix of phenotypes is more likely than a 

homogenous population.  

Figure 11 presents an example of global analysis including cell 

type recognition followed by subclassification of melanoma 

cells on an entire core. Two successive PLS-DA models were 

applied. The tested patient did not contribute to any of the two 

training sets. This tissue core originated from a patient with a 

skin melanoma (E1) diagnosed as a stage II by pathologists 

(T4N0M0). Figure 11 shows the H&E stained section of this 

tissue core (A) and the equivalent false-color infrared image 

(B). The first model applied on this image allowed the 

identification of the six main biological classes defined as 

melanoma cells, connective tissue, erythrocytes, lymphocytes, 

keratinocytes and necrotic cells. In this case, the tissue core was 

predicted as being mainly composed of connective tissue 

(63.1%, in pink) and melanoma cells (26.8 %, in light and dark 

green). The second PLS-DA model was applied on spectra just 

assigned to melanoma cells to predict the potential of 

metastatization of this primary tumor. Pixels assigned as non-

metastatic are shown in light green whereas pixels assigned as 

metastatic are shown in dark green. In this case, 82.2% of the 

melanoma pixels are correctly recognized as non-metastatic 

(light green). The figure illustrates the possibility to run 
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automatically successive analyses, each one taking into account 

the result of the previous one. 

 

Discussion 

Metastatic melanomas are refractory to most current adjuvant 

treatments and patients with regional and distant metastases 

show a quite low survival rate. The median survival rate is 6 

months and less than 5% of stage IV patients reach five years.5 

Fifteen to 20% of melanoma patients will develop metastases to 

regional lymph node.26 Due to the wide diversity in the 

outcomes and in the administered treatments, an accurate 

diagnosis is an essential step. Sentinel-node examination is a 

crucial step in the diagnosis as involvement of lymph node is 

the most important prognostic factor for the overall survival of 

patients.27 Yet, detection of metastases remains a challenge, and 

no biomarkers are currently available to detect primary tumors 

with the highest risk of metastatization. 

Results presented in this paper show that we could develop a 

supervised PLS-DA statistical model allowing an accurate 

(>90%) identification of the main cell types commonly found in 

melanoma tumor. Six cell types have been defined here: 

melanoma cells, erythrocytes, connective tissue (includes blood 

vessel walls, dermis and collagen regions), keratinocytes, 

lymphocytes and necrotic cells. Interestingly, more than 98% of 

the melanoma cells are correctly identified (Table 2). Yet, it 

must be said that there is some degree of confusion between a 

few percentages of the connective tissue sometimes recognized 

as melanoma cells. The misidentification appeared only for the 

subclass of the connective tissue composed of blood vessels 

spectra. Neither collagen nor dermis spectra were misidentified. 

More particularly spectra misidentified for the blood vessels 

were those at the inside edge of the vessel. These few 

misidentified spectra were not noisier but showed spectral 

differences throughout the spectral regions 3000-2800 and 

1800-950 cm-1. The interior surface of vessel is lined with a 

layer of endothelial cells. Therefore misidentification could be 

either due to the model itself or to spectral similarities 

occurring between melanoma cells and endothelial cells. This 

overall result is interesting in its own right as it provides an 

automated quantified analysis of the cell types, including for 

lymphocyte infiltration. It is also important as the “melanoma” 

category so identified can be submitted to further analyses.  

First, we have compared melanoma cells in primary tumors 

(from 26 patients) with melanoma cells from metastases (from 

25 patients). Neither supervised nor unsupervised analyses 

revealed any significant difference. This suggests that 

melanoma cells exhibit very similar phenotypes in both 

locations. The literature6,7 about phenotypic changes observed 

during the invasion-metastases cascade and the colonization 

step may explain this result. Indeed, invasiveness is 

accompanied by some capability acquired through the 

activation of the so-called EMT (epithelial-mesenchymal 

transition). This transition implies activation of some traits (loss 

of adherent junctions, alteration of shape, expression of matrix-

degrading enzymes, increased motility and increased resistance 

to apoptosis), all needed for the process of metastatic 

dissemination. At the opposite, the colonization process implies 

that the cells pass through the reverse process known as MET 

(mesenchymal-epithelial transition). This recovery of a non-

invasive phenotype may result in the formation of new tumor 

colonies of carcinoma cells exhibiting a phenotype similar to 

the one found in primary tumor.7 Moreover some genomic 

studies have shown that primary tumors and metastases exhibit 

high genomic concordance in cancer.28 However, this result 

was obtained for melanoma and was achieved on 51 biopsies 

and with specific statistical analyses (PCA and PLS-DA 

mainly). A different result could be obtained for other cancer 

types. Furthermore, only linear correlations have been 

considered. Other approaches could reveal more subtle 

differences. 

In a second step, we attempted to correlate the infrared spectral 

signature of different tumors (primary tumors and metastases) 

with the proliferation rate. The number of proliferative cells 

was assessed by Ki67 immunostaining. Indeed Ki67 is 

expressed during all phases of the cell cycle except the G0 

phase. No significant correlation between these two parameters 

was found. An explanation could be that the fraction of cells in 

division is in general quite low. The average percentage of cells 

positively stained among all cells was generally around 3.3 %. 

In this study we could not identify spectra of single cells with 

and without Ki67 expression. Such identification would require 

1) an immunostaining of the tissue section previously analyzed 

by FTIR imaging, 2) image registration to assign every pixel of 

the IR image to a specific value of the Ki67 expression. 

Furthermore, due to the diffraction limited resolution, the poor 

spatial resolution achieved in the infrared (roughly in the range 

of 10 µm) would not allow a precise overlap of highly localized 

features. The results described here rather report the average 

signature of all the tumoral cells of each tissue section. In 

addition, even if some previous publications have shown that 

contribution of the cycle to infrared spectra signature is 

identifiable, these spectral differences are quite small.29–33 

Furthermore, Ki67 positive cells remain a minor fraction of the 

total cell population present on a section (around 3.3%) 

reducing the likeliness of FTIR to detect such a small spectral 

difference. 

The last step of this work aimed to compare the infrared spectra 

of primary tumors from patients diagnosed at different stages of 

the disease. Surprisingly we were able to observe a difference 

between primary tumors of patients at stages I or II and patients 

at stages III or IV even with unsupervised analysis (Figure 6). 

We then developed a supervised PLS-DA model with the 

capability of predicting membership to one of the two groups. 

The model was able to predict high rate of true positives 

(sensitivity of 88.9%) and with a good rate of true negatives 

(specificity of 70.6%) in external validation. The major 

biological difference between primary tumors of patients at 

stages I or II and patients at stages III or IV is the capability of 

some cells to disseminate from the primary tumor to a distant 

site. While the majority of the cells present in melanoma do not 

have a mesenchymal phenotype, infrared spectroscopy can 
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identify features related to their acquired potential to invade 

neighboring tissues. The biological nature of the markers 

identified by infrared spectroscopy remains to be identified. 

Misrecognition of some patients by the PLS-DA model could 

be due to either a limitation of the model or to the heterogeneity 

of the tumor which include cells at different step of their 

progression towards more malignant phenotypes. It is known 

that not all the cells in the primary tumor will acquire ability to 

migrate and invade.  

Although, recent papers have shown that studies based on 

“tissue microarrays” are sufficiently representative of the entire 

tumor,34,35 the issue of representativeness of the results remains 

as tumors are not homogeneous and these results were based on 

the study of subsets of cells present in areas of around 0.13 

mm2. 

Currently, evaluation of dissemination of the primary tumor is 

achieved by surgical removing of the sentinel node and by the 

detection of melanoma cells inside the lymph node. If the 

lymph node is positively invaded, others nodes are then 

removed36. A promising application of our results could be to 

help predict the presence of metastases with only the spectral 

signature of the primary tumor. Yet, the results described here 

have been obtained on a limited number of patients (26 primary 

tumors distributed in the 2 classes as described in Table 1) and 

extending this study to a much larger number of patients is 

necessary. 
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Histological class Number of individual 

spectra 

Number of 

patients 

Primary tumor stage I 2939 6 

Primary tumor stage II 4894 11 

Primary tumor stage III 2285 6 

Primary tumor stage IV 1500 3 

Metastases 9920 25 

Collagen 2675 6 

Blood vessels 1871 5 

Dermis 1885 6 

Erythrocytes 2019 5 

Keratinocytes 2227 6 

Lymphocytes 1626 7 

Necrotic cells 2122 5 

Total 35963 91 

 

TABLE 1: Description of the spectral database collected from the TMA. Table 1 summarizes for each cell type class; the number 

of spectra manually selected and the number of patients involved in the building of the database. 10 patients were used twice for 

two different histological classes. 81 patients were used in the study. 
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 Predicted as 

True 
 

Melanoma 

cells 

Connective 

tissue 
Erythrocytes Necrotic cells Keratinocytes Lymphocytes 

Melanoma cells 98.3 ± 4.6 0.0 ± 0.0 0.1 ± 0.2 0.4 ± 0.9 0.0 ± 0.0 1.3 ± 3.4 

Connective tissue 7.7 ± 11.9 91.5 ± 13.4 0.4 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 1.1 

Erythrocytes 0.4 ± 0.5 1.6 ± 3.0 97.8 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.4 

Necrotic cells 0.1 ± 0.1 0.3 ± 0.6 0.0 ± 0.0 99.7 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 

Keratinocytes 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 

Lymphocytes 7.0 ± 7.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 93.0 ± 7.8 

 

TABLE 2: Validation of the cell type recognition model allowing identification of six biological classes: confusion matrix obtained 

from the average of the six PLS-DA supervised analyses performed on the two combined spectral regions 3000-2800 and 1800-

950 cm-1 (mean ± standard deviation). 
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FIGURE 1: Illustration of the H&E stained “Tissue Micro Array” section with alphanumerical code associated with each core. 

The TMA is composed of 208 cores collected from biopsies from 208 donors. 128 cores are from primary tumors of melanoma 

patients at different stages of the disease (I, II, III and IV). 64 cores are from regional or distant melanoma metastases and 16 

cores are from skin healthy tissues. Areas of infrared imaging measurement are represented by colored squares. In total, 122 

measurements have been done, i.e. more than 1 million spectra. Green squares surround melanoma cells; red squares surround 

blood vessels, dermis and collagen; blue squares surround erythrocytes; yellow squares surround keratinocytes; purple squares 

delimit the lymphocytes and black squares delimit the necrotic cells. 
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FIGURE 2: Schematic presentation of spectrum selection for building the database. 1. The first step involves the selection of the 

area of interest on the H&E adjacent stained section with the help of a pathologist and the localization of this equivalent area on 

the unstained section. 2. The second step consists in the recording of infrared images composed of at least 4096 spectra. 3. The 

third step is a manual selection of spectra specific to a particular cell type and with a good quality (ratio signal/noise larger than 

300). 4. The last step is the compilation of spectra from all cell types or biological structure to establish a spectral database. 
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FIGURE 3: PCA score plot of the 91 mean IR spectra for the histological classes described in Table 1 from 81 different patients 

and representing the six main biological classes (see color code). Connective tissue is a biological class defined here as including 

dermis, collagen and blood vessel wall. The spectral range used for this analysis is 1800-950 cm-1. Each dot plotted in the PC1-

PC2-PC3 space represents a mean spectrum obtained from a different image. 
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FIGURE 4: Mean IR spectra of the 6 main classes of cell types identified in melanoma tumors in this study. 
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FIGURE 5: Example of application of one of the six PLS-DA models on a series of histological sections containing various cell 

types and coming from six patients who did not contribute to the training set used to build the model. PLS-DA models were built 

using two combined spectral regions composed of 3000-2800 and 1800-950 cm-1. For both columns, the left side images are false-

color images obtained after application of the PLS-DA model and the right side images report the H&E adjacent stained sections. 

For images of the left side, each pixel corresponding to a spectrum received a color according to its membership as indicated at 

the bottom of the figure. Black pixels correspond to spectra with a signal/noise ratio lower than 300. Pictures cover an area of 

180x180 µm2 except for the melanoma image which covers a 360x360 µm2 area. 
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FIGURE 6: PCA score plot computed on mean spectra of melanoma cells from primary tumor of patients at different stages of the 

disease. The spectral ranges used for this analysis are 3000-2800 and 1800-1000 cm-1. Each mean spectrum is the average of 

approximatively 15 000 individual spectra. Mean spectra from primary tumor from patients without any metastases (patients from 

stage I and stage II) are shown in green and mean spectra from patients with evidence for regional or distant metastases (patients 

with stage III and IV) are shown in red.  
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FIGURE 7: Mean spectra of primary tumors of patients diagnosed at stages III or IV (red) and at stages I or II (green). Difference 

spectrum obtained by subtracting the mean spectrum of primary tumor of patients of stage III and IV from the mean spectrum of 

patients of stage I and II. This spectrum highlights small difference that could be observed between these two groups. Black stars 

alongside the spectra point to wavenumber significantly different with α=1%. For the clarity of the figure, difference spectrum was 

amplified 10 times compared to the mean spectra and spectra are offset along the absorbance axis. 
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FIGURE 8: Schematic representation of the prediction of PLS DA models allowing a determination of metastatization based on 

spectral information present in primary tumors. Patient codes are represented in the abscissa axis. For each patient a PLS DA 

model was trained with the spectra of the 25 other patients (subsets of spectra) and validated on ca. 15 000 spectra from the 

patient considered. This cross-validation was repeated for the 26 patients. Columns in green are cores from patients at stage I and 

II (non-metastatic patients) and columns in red are cores from patients at stage III and IV (metastatic patients).The value 

indicated by the height of each column is the percentage of pixel predicted as non-metastatic (in green) or as metastatic (in red). A 

threshold of 30 % of metastatic pixels has been selected to reach a maximum of truly detected metastatic patients with an 

acceptable level of falsely positive. False positives (non-metastatic patients predicted as metastatic) are represented in light green 

and false negatives (metastatic patients predicted as non-metastatic) are represented in light red. 
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FIGURE 9: ROC curve for the PLS-DA model allowing discrimination between patients with a metastatic primary tumor or with a 

non-metastatic primary tumor. The red dot on the curve shows the threshold allowing the highest rate of true positives with a low 

rate of false positives (corresponding to a threshold of 30 % in Figure 8). Area under the curve (AUC) is 0.84. 
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FIGURE 10: Example of application of a PLS-DA model on histological sections of primary tumors from patients graded as stage 

II and stage IV (B) and the equivalent H&E stained sections (A). This model allows prediction of metastatization of a primary 

tumor and uses two combined spectral regions: 3000-2800 and 1800-1000 cm-1. Green color corresponds to cells with prediction 

for non-metastatic tumor and red color corresponds to cells with a potential of metastatization. The PLS-DA model was trained on 

the 25 patients and applied on the 26th patient for an independent validation. Pictures cover an area of 360x360 µm2 and contain 

16384 spectra. The coordinates C5, D5 refer to the TMA core/patient as indicated in Figure 1.  
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FIGURE 11: H&E stained section of an entire tissue core of the TMA (A) and false-color infrared image obtained by the 

application of two successive PLS DA models (B). A first model was applied to predict the membership to the main six biologicals 

classes (melanoma, connective tissue, erythrocytes, lymphocytes, keratinocytes, necrotic cells) and a second model was applied on 

the spectra assigned to melanoma cells (26.8% of the core area) to predict the potential of metastatization of the primary tumor 

(light green for non-metastatic and dark green for metastatic). Area of melanoma occupied by light green pixels (non-metastatic) 

is 82.2% and area occupied by dark green pixels (metastatic) is 17.8%. Black pixels correspond to spectra with a signal/noise 

ratio lower than 300. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 21 of 22 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



FTIR imaging can identify the main cell types of melanoma tumors and can help identify primary melanomas with 

the highest risk of metastases. 
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