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panding the chemical multiverse
of peptides

Edgar López-López, ab Jean Paul Sánchez-Castañeda, a Massyel S. Martinez-
Cortés, a Cesar de la Fuente-Nunez *cdef and José L. Medina-Franco *a

Peptides occupy a unique and rapidly expanding domain within the broader chemical space, offering

exciting opportunities for therapeutic, nutritional, cosmetic, and materials applications. While efforts to

characterize chemical space have traditionally focused on small molecules, growing evidence

underscores the value of extending this concept to include peptide-based compounds. In this review,

we survey recent advances in the exploration and expansion of the peptide chemical space, focusing on

short peptides that bridge chemoinformatics and bioinformatics perspectives. We begin by briefly

discussing the impact and applications of peptides in various research and industry areas and then

examining the theoretical and practical size of the peptide chemical space, emphasizing how naturally

occurring and synthetic peptides vastly increase its diversity. We then discuss molecular

representations—from conventional notations to specialized peptide descriptors—highlighting their

impact on library design, structural analyses, and activity predictions. Visualization methods and machine

learning models are presented as tools for mapping structure–property and structure–function

relationships. Next, we explore computational strategies for de novo peptide generation, driven by

advances in generative modeling and high-throughput screening. Throughout, we emphasize the role of

open-source resources and integrated computational pipelines that combine chemo- and

bioinformatics approaches to enhance data quality and predictive performance. We conclude by

identifying major challenges—such as the complex structural landscape of peptides, data curation, and

the need for consensus screening methods—and outline emerging opportunities for further expanding

and refining the peptide chemical space.
1 Introduction

Chemical space has various denitions that can be classied
into two general perspectives that have been recently reviewed
and collected.1 One set of denitions is focused on the “total
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number of chemical compounds” that can exist. Other deni-
tions, in addition to the N-number of compounds, include a set
of M-descriptors that generate a multi-dimensional space in
which the compounds are located, like the concept of chemical
space proposed by Virshup et al.2 The latter view of the chemical
space gives rise to the high-dependence of chemical space on
the number and type of descriptors that are used to construct or
dene the space. Such variability of dependence has led to the
concept of “chemical multiverse” which has been dened as the
group or collection of chemical spaces of a given set of
compounds, each space dened by a specic set of descriptors.1

Since, in practical applications, the chemical space depends
on the N-number and type of chemical compounds that are
being studied, it would be appropriate to refer to “chemical
subspaces”, for example, the subspace of drug-like organic
compounds, metal-containing drugs, food chemicals, mate-
rials, and peptides.

Chemical space analysis, in particular, visual and
qualitative/quantitative analysis, has multiple applications such
as library design, compound selection, structure–property
relationships, and chemical diversity analysis. To date, most
common applications of chemical space are focused on small
Chem. Sci., 2026, 17, 1461–1479 | 1461
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molecules (organic compounds) and peptides, with emerging
and growing applications in other areas (such as food chem-
icals, materials, and organometallic molecules).3

Peptides as bioactive compounds are attractive in research
areas like drug discovery, owing to their unique properties.
Their high specicity and affinity to interact with targets make
them ideal for certain applications in multiple elds, including
therapeutics, material science, cosmetics, food chemistry, and
biotechnology.4–9 The rst proof of peptides' potential is given
by themedical use of insulin in 1922 for type 1 diabetes, starting
their increasing relevance in modern biomedicine.6 The archi-
tectural diversity and operationally versatile characteristics of
peptides further contribute to their constantly increasing
importance in these areas.10,11

These extensive advantageous characteristics have led the
researcher to explore the combinatorial potential of peptides, as
their sequence variability generates a virtually limitless number
of possible structures.12 The peptide's features stem from the
amino acid chain's length and conformation, which can be
composed of canonical amino acids (cAAs) or can be further
expanded by incorporating non-canonical amino acids (ncAAs),
synthetic modications, and post-translational modications
(PTMs).13 Various elements serve to create a vast and versatile
chemical domain that is under continuous exploration and
expansion.14

Considering that a peptide comprises a series of amino acid
monomers linked in a linear sequence, the range of potential
peptides increases dramatically as the length extends.10,11 This
theoretical diversity establishes the basis of peptide chemical
space for discovering new bioactive molecules and rening
potential therapeutic options.12 The extensive nature of this
space encounters several difficulties regarding synthesis,
stability, and the feasibility of practical application. By mapping
peptide chemical space, it is possible to seize its potential for
developing new drugs, biomaterials, and functional molecules
tailored to specic applications.

In the past few years, the increased interest in studying
peptides from various applications (including the deep knowl-
edge and characterization of bioactive peptides that are toxic
compounds – biotoxins) has attracted the attention of the
community to chart the chemical space of peptides.12,15,16

Similar to the exploration of the chemical space of small organic
compounds, a key aspect in the charting of the chemical space
of peptides is the nature/type and number of descriptors used to
dene the space, along with the number and type of specic
peptides under study.

The goal of this review is to survey the progress on the
exploration and expansion of peptide chemical space. The
review is organized into ve main sections. Aer this Intro-
duction, we discuss practical applications of peptides. Section 3
presents an analysis of the size of the chemical space of
peptides. The next section discusses approaches to systemati-
cally explore – quantitatively and visually – and expand the
chemical space of peptides. The last section presents
concluding remarks. The review focuses on short and long
peptides (with < 50 amino acids).
1462 | Chem. Sci., 2026, 17, 1461–1479
2 Practical applications of peptides

Due to their structural versatility, biocompatibility, and ease of
synthesis, small peptides have gained increasing interest across
various elds ranging from biomedical sciences to food tech-
nology and materials engineering. Hereunder, we discuss
exemplary practical applications highlighting their therapeutic
and industrial potential.
2.1 Drug discovery: novel peptide therapeutics

In drug discovery, small peptides serve as promising candidates
for novel therapeutics due to their high specicity and low
toxicity.17,18 Since the discovery of insulin in 1922, peptide drugs
have been developed to treat a wide range of diseases, including
cancer, immunological diseases, metabolic disorders, viral
infections, cardiovascular diseases, and other chronic
diseases.19,20 The advancement in peptide technology over the
past decades is changing the drug discovery landscape.

Insulin was isolated by Banting and Best from dog pancreas
and later from bovine sources, aer which it was further puri-
ed and its amino acid sequence determined. In 1982, human
recombinant insulin was produced for the rst time in E. coli
and yeast. Today, rapid-acting insulin analogs are being devel-
oped to optimize glycemic control.21

Pharmacologically active peptides are hard to formulate as
drug products, as compared to small molecules, due to the
various challenges in administration and delivery of therapeutic
peptides into cancer cells and tumor sites. Typically, peptide
drugs (with cAAs) exhibit shorter circulation half-lives, lower
cell permeability, and typically higher rates of enzymatic
degradation. Nevertheless, therapeutic peptides with cAAs and
ncAAs have the advantage of high target specicity and low
toxicity. Overcoming their current limitations will lead to safer
and more effective drugs.19,22

The development of therapeutic peptides has followed
diverse paths, illustrating the main challenges and solutions in
the eld. An emblematic case is that of the incretin peptide
GLP-1, initially limited by its rapid degradation in blood, which
led to the design of analogs resistant to the DPP-4 enzyme and
with structural modications that prolonged their half-life,
giving rise to successful drugs such as liraglutide and sem-
aglutide (Fig. 1). Glucagon was rst isolated in 1923 and
approved by the FDA in 1960 for treating severe hypoglycemia.
In 1982, the glucagon gene was identied in the Atlantic
anglersh, enabling the discovery of mammalian glucagon
genes and the production of recombinant glucagon in bacteria.
By the late 1990s, recombinant glucagon became commercially
available, yet it retained the same stability issues.23,24

The use of partially or fully substituted L-amino acids with D-
amino acids is a strategy to decrease proteolytic cleavage and
lower immunogenicity. An example is octreotide, an FDA-
approved octapeptide (Fig. 1), that is an unnatural D-enan-
tiomer modication, which is used in the treatment of gastro-
intestinal tumors. The development of octreotide traces back to
the discovery of somatostatin and the desire to harness its
inhibitory effects on hormone secretion, while overcoming
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Chemical structure of selected peptides approved by the Food and Drug Administration (FDA) of the United States for clinical use. Linear
amino acid sequences (one-letter code) of selected therapeutic peptides: octreotide (FCFWKTCT), bivalirudin (FPRPGGGGNGDFEEIPEEYL),
setmelanotide (RCAHFRWC), etifibatide (CXGDWPC), and liraglutide (HAEGTFTSDVSSYLEGQAAK(1)EFIAWLVRGRG), where K(1) denotes a lysine
residue acylated with palmitoyl-g-Glu (palmitic acid attached via a glutamic acid linker).
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somatostatin's extremely short half-life. Researchers adopted
a strategy of peptide analog design, selecting shorter cyclic
peptides that could maintain receptor binding yet resist
proteolytic degradation.25 In particular, they introduced D-
amino acids and chemically constrained the peptide by cycli-
zation (disulde bridge) to increase metabolic stability and
receptor affinity. Lead optimization employed structure–activity
relationship (SAR) studies to rene receptor subtype selectivity
and pharmacokinetic properties. The resulting octreotide with
an enhanced half-life, high affinity for somatostatin receptor
subtypes 2 and 5, and improved bioavailability.18,20,26

Signicant achievements have been made in the efficacy and
selectivity of therapeutic peptide delivery. The bioavailability
and stability of therapeutic peptides have been increased due to
the development of several formulation and delivery methods,
including prodrug approaches, direct chemical modications,
applying special drug delivery systems, co-administration of
enzyme inhibitors and absorption enhancers, because free
peptides are not systematically stable without modications.27,28

For example, peptide cyclization is a structural manipulation
where the constrained geometries result in dramatically
reduced proteolytic degradation by amino and carboxypepti-
dases. Octreotide is the stable analogue of the parent peptide,
somatostatin. Similarly, rational structural optimization played
a central role in the design of bivalirudin (Fig. 1), which was
developed through a structure-based approach aimed at
© 2026 The Author(s). Published by the Royal Society of Chemistry
creating a safer and more controllable anticoagulant than
heparin. Inspired by the natural thrombin inhibitor hirudin,
researchers used the crystal structure of the thrombin–hirudin
complex to engineer shorter synthetic analogs. Peptide
synthesis and biochemical assays led to the identication of
bivalirudin, a 20-amino-acid peptide that binds reversibly to
thrombin's active site and exosite I, providing potent yet tran-
sient anticoagulation.29,30 While eptibatide (Fig. 1) was engi-
neered from the snake venom peptide barbourin, using SAR-
guided optimization and cyclic peptide synthesis to enhance
receptor selectivity, stability, and pharmacokinetic properties.31

Setmelanotide (Fig. 1) and zilucoplan (chemical structure
not shown) exemplify the application of rational peptide design
and optimization in modern drug discovery. Setmelanotide, an
eight-amino acid agonist of the melanocortin-4 receptor
(MC4R), was developed through SAR studies and receptor
binding assays to enhance potency, selectivity, and signaling
bias toward Gs-mediated pathways involved in appetite regula-
tion. Similarly, zilucoplan, a synthetic 15-residue macrocyclic
peptide, emerged from an mRNA display screening platform
that identied high-affinity binders to complement component
C5. The lead sequence was optimized through solid-phase
peptide synthesis, structural cyclization, and lipophilic modi-
cation to improve stability and pharmacokinetic properties,
demonstrating how diverse engineering strategies contribute to
Chem. Sci., 2026, 17, 1461–1479 | 1463
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the development of potent and selective therapeutic
peptides.32–34

Antibiotics invented or discovered like penicillin by Alex-
ander Fleming, have been used as a wonder drug for almost
a century. However, those antibiotics are becoming failures due
to their extensive overuse in recent decades, resulting in anti-
microbial resistance. This prompted scientists to emphasize
other alternatives like ocellatin. Ocellatin is a peptide derived
from the skin secretions of Leptodactylus genus frogs and has
a broad spectrum of antibacterial activities, specically in
Gram-negative bacteria.35

Notable progress in the development of vaccines and small
molecules with antiviral therapies, the continued emergence
and re-emergence of viral outbreaks, along with rising antiviral
resistance, have driven researchers to constantly seek new
antiviral candidates.36 Hence, antiviral peptides that mainly
originate from antimicrobial peptides with antiviral activities
can be prospective antiviral agents to ght viral infections.
Antiviral peptides typically are short (12–50 amino acid resi-
dues), and hydrophobicity is likely to be a key characteristic for
antiviral peptides to target enveloped viruses. These antiviral
peptides act against enveloped viruses by interrupting the
fundamental stages of their life cycle of entry, synthesis, or
assembly. Naturally, antimicrobial peptides with antiviral
properties have been found in almost all multicellular organ-
isms, like plants, animals, mammals, and microbes. It is
important to mention that marine organisms are highly regar-
ded reservoirs of pharmacologically active molecules, including
peptides. Marine organisms biosynthesize structurally unique
and bioactive compounds as an adaptive response to the harsh,
highly competitive, and physiologically demanding conditions
of the environment; conditions that markedly contrast with
those of terrestrial ecosystems. These extreme ecological pres-
sures drive the evolution of potent and functionally diverse
molecular architectures.37,38

Marine-derived cyclic and linear peptides have signicantly
advanced our understanding of ion channel modulation, anti-
microbial activity, cytotoxic mechanisms, and other pharma-
cologically relevant properties, thereby positioning marine
peptides as promising candidates for innovative therapeutic
development.37

An example of the antiviral peptide is the HIV-1 targeting
human neutrophil peptide HNP-1 exhibits an indirect mecha-
nism of action by binding both the viral envelope glycoprotein
Env and host cell surface molecules, including CD4 and co-
receptors, in a manner that is independent of glycan interac-
tion and serum components.36 Additionally, its capacity for
oligomerization or conformational rearrangement may steri-
cally hinder the fusion process.27,39,40
2.2 Food and nutrition: functional peptides with specic
health benets

In recent years, food has been increasingly recognized not only
as a source of essential nutrients, but also as a reservoir of
biologically active compounds capable of promoting human
health and enhancing physiological functions. Among these
1464 | Chem. Sci., 2026, 17, 1461–1479
compounds, bioactive peptides (BAPSs) (short sequences of 2 to
20 amino acid residues with molecular weights ranging from
0.4 to 2 kDa) have attracted considerable attention due to their
diverse health-promoting properties. Although less common,
longer peptides such as lunasin (a 43-residue peptide from soy)
have also been identied, exhibiting anticancer and hypochol-
esterolemic effects.41,42

BAPS are typically released from parent proteins during
enzymatic hydrolysis (e.g., using trypsin, pepsin, alcalase) or
through microbial fermentation. In addition to their role in
basic nutrition, food-derived protein hydrolysates can exert
immunomodulatory, anticancer, antihypertensive, antioxidant,
antimicrobial, antidiabetic and anti-inammatory effects. BAPs
have been isolated from a wide range of sources including milk,
egg, sh, soybean, rice, pea, oyster, mussel, chlorella and
spirulina.43–45

Microalgae have emerged as sustainable, protein-rich
organisms with the ability to synthesize a wide array of
primary and secondary metabolites. Their high content of
essential amino acids, combined with a rich prole of bioactive
compounds, positions microalgae as promising therapeutic
agents and valuable sources of functional food ingredients. For
instance, Arthrospira platensis (spirulina), a blue–green micro-
alga consumed globally as a nutraceutical supplement, displays
notable anti-inammatory activity through the suppression of
pro-inammatory cytokines and gene expression.46 Microalgae-
derived peptides have demonstrated a wide range of bioactiv-
ities, including antihypertensive, antioxidant, anti-
inammatory, anticancer, antibacterial, antiallergic and anti-
diabetic effects. These peptides can be incorporated into
various functional food products such as beverages, baked
goods, pasta, yogurts and sports supplements, offering
enhanced nutritional proles without compromising sensory
quality.47

A particularly relevant class of bioactive peptides is antimi-
crobial peptides (AMPs). AMPs display broad-spectrum anti-
microbial activity, unique structural features and mechanisms
of action that reduce the risk of drug resistance. Beyond di-
srupting bacterial membranes, some AMPs can penetrate cells
and inhibit nucleic acid or protein synthesis, showing potential
against multidrug-resistant strains.48

Fermented foods, especially in Asian countries, are another
important source of bioactive peptides. Traditional fermented
products like soybean (e.g., sufu), sh, and milk derivatives are
rich in peptides with antioxidant, antihypertensive, antimicro-
bial, antidiabetic, and anticancer properties.49 Fermentations
enhance not only shelf life but also avor, texture, and nutri-
tional value, due to proteolytic activity that releases bioactive
peptides during ripening. Despite their benets, some protein
hydrolysates, particularly from soy, may generate bitter-tasting
peptides during enzymatic hydrolysis, affecting palatability.
Interestingly, the protease produced by Mucor species, used in
fermented products like sufu, can degrade soybean protein
without producing bitter peptides, while still generating
bioactive polypeptides.

Fish proteins also serve as a high-quality source of peptides,
particularly due to their content of essential amino acids and
© 2026 The Author(s). Published by the Royal Society of Chemistry
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polyunsaturated fatty acids. Fermented sh products have been
reported to exhibit antioxidant and ACE-inhibitory activity,
largely due to the presence of low-molecular-weight peptides
formed during processing.48,49

Peptides obtained from various dietary proteins have been
shown to exhibit diverse biological activities, including immu-
nomodulatory, anticancer, antihypertensive, antioxidant, anti-
inammatory, mineral-chelating, lipid-lowering, bone-
protective, and antimicrobial properties.8,50

Modulating immune function through dietary components
has proven to be a practical and effective approach; addition-
ally, the identication of new immune-modulating peptides
derived from food proteins may offer added benets in dietary-
based therapies.50
2.3 Cosmetics and materials: peptides for biomaterials,
nanotechnology, and skin penetration enhancers

The eld of medical aesthetic skin care includes a vast array of
ingredients and topical formulations, emphasizing the impor-
tance of a careful and evidence-based selection process. Evalu-
ating the quality of scientic support for manufacturer claims is
essential, including in vivo and in vitro studies that validate
Fig. 2 Examples of therapeutic and functional peptides commonly used

© 2026 The Author(s). Published by the Royal Society of Chemistry
ingredient efficacy and practitioner preferences; these factors
are key in determining product use, although not exhaustive.
Peptides have advantages over small chemical molecules in
specicity and selectivity, but they oen have poor ability to
penetrate skin.51 Due to their multifunctional and regenerative
capabilities, peptides have become a topic of growing scientic
interest. Their biological activity depends largely on their
structure and includes antioxidant, anti-aging, moisturizing,
promoting collagen production, and wound-healing effects.52

Peptides can be classied by their mechanism of action into
several functional categories: signal, carrier, neurotransmitter-
inhibiting, enzyme-inhibiting, and antimicrobial peptides.
The signal peptides stimulate the synthesis of collagen and
elastin, one of the rst cosmetic signal peptides to demonstrate
this effect was palmitoyl peptide (Fig. 2).4,53

Carrier peptides facilitate the delivery of essential trace
elements involved in enzymatic activity and tissue repair,
contributing to improve skin elasticity, the rst commercialized
carrier peptide was formulated to deliver copper, which is
a trace element necessary for wound healing.38

Neurotransmitter-inhibiting peptides act by reducing neuro-
transmitter release, a process responsible for muscle contrac-
tion. By modulating this mechanism, they help diminish the
in cosmetic formulations, discussed in the manuscript.

Chem. Sci., 2026, 17, 1461–1479 | 1465
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appearance of ne lines and wrinkles. Acetyl hexapeptide-3,
pentapeptide-3, pentapeptide-18, and tripeptide-3 (Fig. 2)
exhibit neuro-suppressive abilities and are referred to as
neurotransmitter peptides.14,54 Enzyme-inhibiting peptides
prevent collagen degradation by inhibiting specic enzymes,
thereby maintaining the integrity of skin structure. An example
that is used in skincare is oligopeptide-68 (Fig. 2). Antimicrobial
peptides defend against pathogens, including bacteria, fungi,
and viruses, by compromising microbial membrane integrity.
Myristoyl tetrapeptide-13 (Fig. 2) is an example of a synthetic
lipopeptide with potent antimicrobial activity.54,55

The amino acid sequence of a cosmetic peptide plays
a crucial role in determining its effects on the skin. Each amino
acid in a peptide sequence contributes to the shape and charge
of the molecule, therefore determining how the peptide inter-
acts with the receptors and enzymes and how it diffuses through
the lipid layer. Considering this, peptides containing amino
acids with a positive charge, such as lysine, bind with a higher
frequency to the membrane if they are located at the extremities
of the sequence. Nevertheless, peptides composed of less
hydrophobic, polar residues are much less likely to adsorb to
membranes than phenylalanine-based peptides.53

Peptides used for cosmetic applications can be combined
with zinc sulfate to enhance their antimicrobial effect and
lesion-healing. Also, peptides can be formulated with vitamin E
in antioxidant formulations, addressing structural and oxida-
tive damage. Peptides contribute to the reduction in oxidative
stress in the skin by scavenging free radicals through different
pathways, resulting in delaying the skin's aging process.51,52

Recent research has shied toward evaluating not only the
biological activity of peptides, but also their bioavailability and
formulation stability. While peptides offer multiple advantages
as active ingredients in cosmetic applications, the development
of new formulations is oen constrained by issues related to
stability, solubility, and skin permeability. One of the main
challenges in the manufacturing process is preserving the
structural integrity and bioactivity of peptides, which may be
compromised by factors such as interactions with other
formulation components, pH changes, temperature variations,
and processing methods. To address these challenges, it is
crucial to select excipients that are chemically inert or mini-
mally reactive to reduce the risk of degradation.51,52

Development of bioactive peptides as safe and effective skin-
care products, including dermatological applications such as
wound healing, requires an understanding of their interaction
with the various components present in the skin. Preclinical
formulation of cosmetic and dermatological creams by
observing the epidermal properties aer application allows for
a more complete understanding of the safety and efficacy of the
product.53,55
3 The size of the chemical space of
peptides

Currently, peptides offer many opportunities in therapeutic and
nontherapeutic areas, such as drug discovery, materials science,
1466 | Chem. Sci., 2026, 17, 1461–1479
cosmetics, nutrition, and synthetic biology.5,53 Versatility stems
from the colossal combinatorial diversity of amino acids in
peptides, highlighting the theoretically limitless peptide
sequences conceivable.54 The variety of potentially viable
peptides has escalated by accounting for ncAAs, synthetic
amino acids, and PTMs.

A peptide canonically consists of a linear chain with an “n”
number of amino acids, where each link in the chain comes
from a pool of 20 possible cAAs or proteinogenic amino acids.56

The length of a peptide starts with two amino acids and has an
arbitrary cut-off, typically set below 50 or 100 residues.57–59 The
number of possible sequences for a given peptide length is
obtained by the formula:15

P(n) = An

where P(n) denes the total peptide sequences, A represents the
count of selected amino acids as building blocks (like 20 pro-
teinogenic forms), and “n” designates the peptide's length.

The count of theoretical chains escalates exponentially as the
target protein length augments, and with it the possible
peptides for exploration. This group of peptides displays all the
peptide combinations up to a certain length limit (usually
between 50–100 residues). This chemical space provides
a multitude of potential therapeutic peptides, crucial for drug
discovery.8 However, the number of peptides expands inde-
nitely when we add the non-canonical, synthetic amino acids
and PTMs.60 This trend can be appreciated, for instance, in the
work of Orsi and Reymond,11 who reported a virtual library
comprising approximately 1 × 1060 peptide-like molecules,
which were generated from the assembly of 100 commercially
available peptide and peptoid building blocks into linear and
cyclic oligomers of up to 30 units. This represents nearly 21
orders of magnitude more than the number of theoretical
peptides of equivalent length derived from the 20 cAAs. The
diversity increases even further when considering more
building blocks like those 545 catalogued in the NORINE
database,61 which also currently contains 1744 unique entries of
nonribosomal peptides. As new peptides and monomers
continue to be discovered and incorporated into such data-
bases, the accessible peptide chemical space expands.59 Table 1
summarizes examples of peptide-related databases that provide
a sense of the currenlty explored chemical space of peptides.

3.1 Comparison of theoretical vs. practically synthesizable
peptides

While the theoretical total number of peptides (peptide chem-
ical space) is astronomically large, we can distinguish between
unexplored and explored chemical spaces, each containing
bioactive and non-bioactive compounds.59,88 Comparing the
vast unexplored chemical space with explored or known space,
represented by accessible peptides in libraries;8 uncovers that
the most promising active peptides are still undiscovered, and
eligible for synthesis and experimentation.89 Instead, the variety
of peptides that can be feasibly created is constrained by
numerous variables, which uctuate based on the method of
production and the attributes of the amino acid residues. These
© 2026 The Author(s). Published by the Royal Society of Chemistry
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limitations are present in synthesis methods, folding stability,
cost, and efficiency.

Chemical and enzymatic approaches to synthesizing longer
peptides face limitations related to peptide length, purity, and
complexity. As peptide length increases, yields tend to decrease,
and synthesizing complex sequences oen requires advanced
techniques. Additionally, synthesizing peptides with PTMs is
challenging, for instance, in addressing aggregation issues.
These difficulties can result in low yields, reduced purity, and,
in some cases, failure to obtain the desired peptide.90

Some peptide sequences tend to aggregate or misfold,
making them challenging to synthesize, isolate, and study. The
difficulties associated with synthesizing certain peptides are
encapsulated in the term “difficult peptides”, introduced in the
1980s. These peptides share a common characteristic which is
a high propensity for aggregation. This phenomenon arises
from signicant inter- or intra-molecular b-sheet interactions,
which promote aggregation during synthesis. These structural
interactions are stabilized by hydrogen bonds along the peptide
backbone, making certain sequences prone to aggregation.91

The synthesis of longer and more complex peptides gets
costly and time-consuming, thus restricting the feasible peptide
chemical space. Improvements in peptide synthesis methods
improve their scalability and yield. Advancements in reactive
materials like resins, amino acid derivatives, and coupled
reagents; along with better purication methods, have been
vital for cost-cutting, boosting yield and purity, and facilitating
complex modications. As a result, peptide companies offer
peptides of 15 to 20 amino acids, including those with natural
and non-natural or modied residues, at relatively low costs.92

Thus, while the theoretical number of peptides is nearly limit-
less, practical synthesis and study are constrained by technical
and economic factors.

Moreover, enzymatic synthesis, while potentially more effi-
cient, but costly cofactors limit large-scale production. These
reagents limit the variety of studyable peptides, showing
a signicant gap between the theoretical peptide chemical
space and the subset accessible for experimental exploration.93

Additionally, availability of building blocks, especially non-
proteinogenic amino acids (npAAs), limit the space for practi-
cally made peptides. Not all npAAs have been made yet,94 and
their chemical synthesis have their own challenges due to
several issues such as stereoselectivity and low production
yields. Many amino acids are chiral, with 19 of the 20 canonical
ones containing at least one chiral center, excepting glycine,
which is the only achiral cAAs. Among them, isoleucine and
threonine each have two chiral centers at a- and b-carbons.95

Stereochemistry is key to dening the structural and functional
properties of peptides.96 Variations in the spatial arrangement
of atoms inuence backbone conformation, side-chain orien-
tation, and overall molecular dynamics, which impact biolog-
ical recognition, binding affinity, and functional selectivity.96–98

From a broader perspective, stereochemical diversity represents
an additional dimension of the peptide chemical space
(stereochemical space),99 enabling the exploration of novel
structural motifs and conformational states beyond those
encoded by natural amino acids. Expanding this stereochemical
© 2026 The Author(s). Published by the Royal Society of Chemistry
landscape not only enhances the potential for discovering
peptides with improved stability, bioavailability, or activity but
also provides a richer framework for in silico modeling and
rational design of bioactive peptide scaffolds.100,101

Beyond stereochemical variation, molecular diversity also
arises from the incorporation of non-canonical and chemically
modied amino acids. While stereochemical changes inuence
the conformational landscapes of amino acids, the introduction
of new monomers expands peptide chemical space by adding
novel functional groups, backbone structures, and reactivities.
Together, these complementary strategies—stereochemical
diversication and amino acid development—offer enhanced
opportunities for designing peptide structure, dynamics, and
function.
3.2 Incorporation of non-canonical and synthetic amino
acids, post-translational modications

The chemical space of peptides has greatly expanded through
the incorporation of ncAAs and PTMs as building blocks.92,102

ncAAs, also known as unnatural or npAAs, non-standard amino
acids (nsAAs), or unnatural amino acids (unAAs),14 come from
different types of amino acids not present genetic code.103 Most
ncAAs are synthesized chemically or semi-synthetically, while
only a few can be produced through natural in vivo pathways.103

Their inclusion dramatically expands the chemical space of
peptides, offering unprecedented opportunities to ne-tune
peptide structure-related functions. For example, amino acids
such as selenocysteine and pyrrolysine enhance peptide reac-
tivity and structural versatility.92,104,105 Moreover, modied
amino acids can improve peptide pharmacokinetic properties
and increase thermal stability or resistance to enzymatic
degradation.106

PTMs, like phosphorylation, acetylation, methylation, and
glycosylation, contribute to the expansion of peptidic chemical
space.107 Those modications extend their potential application
by expanding their functions, stability, and interactions.108–112

Thus, the introduction of PTMs is relevant for therapeutic
purposes, mimicking natural alterations by their chemical or
enzymatic addition.110,113 On the one hand, chemical synthesis
provides a uniform introduction of particular modications at
specied sites within a protein or peptide of interest.
Advancements in peptide ligation methods and efficient
coupling agents now enable the synthesis of long peptides with
tailored modication and PTMs, therefore inuencing their
structural integrity, functional properties, and overall
stability.114–117

On the other hand, the in vitro peptide enzymatic modica-
tions oen lead to heterogeneous products due to limited speci-
city and insufficient control over the extent of modication.
Besides, complementary biological strategies, such as genetic
code expansion technology, allow precise incorporation unAAs
into target proteins by utilizing engineered orthogonal aminoacyl-
tRNA synthetase/tRNA pairs.116–119 This technique permits
including diverse site-specic PTMs into recombinant proteins,
including modications such as acetylation, methylation, phos-
phorylation, and nitration. This method relies on the accessibility
Chem. Sci., 2026, 17, 1461–1479 | 1467
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Table 1 Examples of peptide-related databases and computational resources for peptide research

Database or
resource Description Number elements Website Ref.

PDB (protein
data bank)

An open-access repository that
archives three-dimensional structural
data of biological macromolecules
determined mainly by X-ray
crystallography, NMR spectroscopy,
and cryo-EM.

>100 000 entries https://www.rcsb.org/ 62

PeptideAtlas Repository of experimental
proteomics data (mass spectrometry)

6 636 295 537 peptide spectrum
matches, 114 builds

https://peptideatlas.org/ 63

UniProt Comprehensive protein/peptide
resource

253 635 358 entries https://www.uniprot.org/ 64

Peptipedia Integrates >30 peptide databases
(antimicrobial, anticancer, etc.) in
a unied resource

3 983 654 peptides https://peptipedia.cl/ 65

NIST Peptide mass spectral libraries >4 300 000 spectra; 1 260 000
entities

https://chemdata.nist.gov/
dokuwiki/doku.php?
id=peptidew:start

66

IEDB The immune epitope database >1 600 000 peptidic epitopes https://www.iedb.org/ 67
ProteomicsDB Human protein expression and PTM

data
684 691 human peptides https://www.proteomicsdb.org/ 68

PRIDE The PRoteomics IDEntications
database

>500 000 peptides (PRIDE
crosslinking)

https://www.ebi.ac.uk/pride/ 69

SATPdb Structurally annotated therapeutic
peptide database

37 100 entries https://webs.iiitd.edu.in/raghava/
vaxinpad/index1.html

70

DRAMP 4.0 Curated data repository of
antimicrobial peptides

30 260 entries http://dramp.cpu-bioinfor.org/ 71

DBAASP v3 Antimicrobial peptides: Activity and
structure

>23 000 monomer, multimer 420,
multi peptide 236

https://dbaasp.org/home 72

CAMPR4 Collection of antimicrobial peptides >24 000 sequences https://camp.bicnirrh.res.in/ 73
Propedia Database of peptide–protein

interactions
>19 000 peptide–protein
complexes

https://bioinfo.dcc.ufmg.br/
propedia/

74

CancerPDF Cancer peptidome database of
bioFluids

14 367 experimentally validated
peptides

https://webs.iiitd.edu.in/raghava/
cancerpdf/

75

PepBDB Peptide binding database 13 299 structures of peptide-
mediated protein interactions

http://huanglab.phys.hust.edu.cn/
pepbdb/

76

HORDB Hormone peptide database 7390 peptide hormones. Includes
structural, functional, and
bioactivity data

http://hordb.cpu-bioinfor.org/ 77

CancerPPD2 A repository of experimentally veried
anticancer peptides and anticancer
proteins

6521 entries https://webs.iiitd.edu.in/raghava/
cancerppd2/

78

CAD v1.0 Cancer antigenic peptide database 6000 simulated neopeptides; 800
cancer antigens

http://cad.bio-it.cn/ 79

APD6
(antimicrobial
peptide
database)

Comprehensive antimicrobial
peptide database (original version)

5680 peptides https://aps.unmc.edu/ 80

NeuroPep 2.0 Neuropeptides 11 417 unique neuropeptide
entries

http://isyslab.info/NeuroPep/ 81

DADP Database of anuran defense peptides 2571 entries http://split4.pmfst.hr/dadp/ 82
PepLife Half-life information for therapeutic

peptides (experimental data)
2172 entries https://webs.iiitd.edu.in/raghava/

peplife/
83

Norine Database of non-ribosomal peptides 1744 peptides https://norine.univ-lille.fr/norine/ 84
MBPDB Bioactive peptides derived from milk

proteins
691 bioactive peptides sequences https://

mbpdb.nws.oregonstate.edu/
85

THPdb Therapeutic peptide database 852 entries https://webs.iiitd.edu.in/raghava/
thpdb2/

86

BIOPEP-UWM Database of bioactive peptides 7857 entries https://biochemia.uwm.edu.pl/en/
biopep-uwm-2/

87

1468 | Chem. Sci., 2026, 17, 1461–1479 © 2026 The Author(s). Published by the Royal Society of Chemistry
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of an orthogonal tRNA synthetase specically designed for the
intended modication. However, the efficiency of this approach
decreases when incorporating multiple PTMs within a single
peptide or protein, presenting signicant challenges for achieving
large-scale combinatorial modications.116–119

Head-to-tail macrocyclization is a naturally present PTM that
stabilizes the protein and peptide fold, enhancing thermal
stability and resistance to exoprotease proteolytic degrada-
tion.120 In nature, cyclic peptides are present in bacteria, fungi,
plants, and marine species, displaying remarkable diversity in
shape, size, and chemical composition.120,121 Their therapeutic
potential arises from their capacity to inhibit enzymes, interfere
with protein–protein interaction, modulate cell signaling, and
regulate immune responses.121 Their exceptional stability and
selectivity make them ideal candidates for drug design. Addi-
tionally, cyclic peptides serve as crucial tools for drug discovery,
functioning as molecular probes for detecting protein function,
disease mechanisms, or therapeutic targets. Novel develop-
ments in methodologies including solid-phase peptide
synthesis (SPPS), chemoenzymatic synthesis, and orthogonal
protection strategies, have enhanced the specicity and
complexity in the fabrication of cyclic peptides.121

Integration of ncAAs, cyclic peptides, and PTMs notably
widens the peptide chemical multiverse, facilitating the crea-
tion of functional peptides beyond the capabilities of standard
amino acids.
4 Exploration of the known chemical
space of peptides

The exploration and systematic representation of peptide
chemical space have become essential in both bioinformatics
and chemoinformatics. Peptides occupy a unique position
between small molecules and proteins, exhibiting complexity in
their sequences, conformations, and physicochemical proper-
ties, which makes them highly diverse. To enable the rational
exploitation of this diversity, a variety of computational frame-
works, databases, and molecular representations have been
developed. These resources offer standardized notations,
molecular ngerprints, and structural encodings, facilitating
the study and comparison of peptide structures, analog iden-
tication, property prediction, and machine learning-based
modeling. Table 2 summarizes representative tools and
resources, highlighting their main functions and the types of
chemical or structural information they provide. The subse-
quent sections further discuss the principles and applications
of selected methods in the context of peptide informatics and
chemical space exploration.
4.1 Molecular representation

One of the most important considerations for generating
representative chemical spaces that serve the purpose of the
project's goals (e.g., meaningful chemical spaces) is the appro-
priate use of the molecular representation and the descriptors
that will be the basis to dene the (multi) dimensional space.
Towards this end, novel representations have been developed to
© 2026 The Author(s). Published by the Royal Society of Chemistry
condense structural information of complex molecules, like
peptides.122–130 For example, hashed ngerprints (e.g., extended
connectivity ngerprints (ECFP) and MinHashed atom-pair
ngerprint (MAP)) have been distinguished from other unidi-
mensional representations because they can codify the atom
connectivity and neighborhoods of complex molecules.124,126

However, these kinds of representations could be redundant for
polymeric compounds, like large peptides, antibodies, or other
kinds of proteins. For polymeric compounds, there have been
developed sequence-based representations that take advantage
of the molecular redundancy of each compound to simplify
their representations. For example, the CHUCKLES notation
compacts the structural data of each amino acid into a unique
letter, which can codify simple post-structural modications
like cysteine bridges.122 Other notations, such as the Hierar-
chical Editing Language for macromolecules (HELM) and the
Self-Contained Sequence Representation (SCSR), can represent
more complex amino acid-based compounds like large canon-
ical and non-canonical peptides and antibodies.123,127 Interest-
ingly, for polypeptides or proteins with more than 50 amino
acids, the most common representations are the PDB entries
that contain the coordinates of each atom of the polypeptide/
protein and other non-covalent bound atoms (i.e., solvent and
ligands atoms), considering the presence of multiple chains,
subunits, or multi-domain complexes. However, there exist
unidimensional representations to codify protein connectivity
information like Protein Line Notation (PLN) and Boehringer
Ingelheim Line Notation (BILN) which can convert sequence
representation to atom connectivity data without considering
three-dimensionality features.128,138

Similarly, chemo-bioinformatics representations are inno-
vative strategies to codify the atom connectivity of peptides at
the same time as other important features, which has acceler-
ated the development of novel peptide-based molecules with
specic features. For example, the three-dimensional vector of
atomic interaction eld (3D-VAIF) approach captures the
information of electrostatic and steric interaction between
different types of atoms in peptides.129 The macromolecule
extended atom-pair ngerprint (MXFP) can describe molecular
shapes and pharmacophores.17,130 However, one of the major
limitations of these representations is their low interpretability
for the user, as they consist of alphanumeric codes that can only
be understood through mathematical and computational
processes (Fig. 3D).

In addition, hybrid ngerprints inspired by different kinds
of data, like amino acid sequence, atom-connectivity, and
physicochemical properties, have been developed to codify
most strictly the chemo-biological features of peptides.139,140

Consequently, aer the development of more informative
molecular representations for peptides, the thin line between
traditional bioinformatics and cheminformatics approaches to
represent peptides is becoming increasingly blurred. However,
there is an unwritten rule of thumb about the use of molecular
ngerprints to codify the chemical structure of small peptides
(<50 residues) and atom coordinates to represent large peptidic
structures (>50 residues).12 A few representative representations
are illustrated in Fig. 3 for a representative (given) peptide.
Chem. Sci., 2026, 17, 1461–1479 | 1469
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Table 2 Selected bioinformatic and chemoinformatic resources for exploring peptide chemical spacea

Tool name Website (when available)/short description Ref.

CHUCKLES (chirality-oriented
chemical representation)

Method that interconverts peptide or peptoid sequences with
SMILES, enabling both sequence- and structure-based searches,
including branching and cyclic structures

122

SCSR (self-contained sequence
representation)

Method that encodes amino acid sequences with side-chain
chemical info for modeling

123

MAP4 (MinHashed atom-pair
ngerprint up to a diameter of
four bonds)

A molecular ngerprint that combines atom-pair concepts with
MinHashing to efficiently represent both small molecules and large
biomolecules. It captures structural and topological features up to
four bonds apart, enabling fast and scalable molecular similarity
searches across diverse chemical spaces. https://github.com/
reymond-group/map4

124

MAP (modication and
annotation in proteins)

Format extends the traditional FASTA format by enabling annotation
of modied residues, post-translational modications, binding sites,
mutations, and protein metadata. https://webs.iiitd.edu.in/raghava/
maprepo/

125

ECFP (extended connectivity
ngerprint)

A circular molecular ngerprint that encodes atomic neighborhoods
based on connectivity patterns. Widely used in cheminformatics for
similarity searching, clustering, and QSAR modeling, ECFP captures
local structural features around each atom to represent molecular
topology in a compact, numerical form. https://docs.chemaxon.com/
display/docs/ngerprints_extended-connectivity-ngerprint-ecfp.md

126

HELM (hierarchical editing
language for macromolecules)

Enables standardized representation of complex biomolecules,
including proteins, nucleotides, and antibody-drug conjugates

127

PLN (protein line notation) A linear, text-based representation for describing protein and peptide
sequences in a compact, machine-readable format. PLN encodes
sequence information, modications, and structural annotations,
facilitating data exchange, database indexing, and computational
analysis of proteins and peptides. http://www.biochemfusion.com/
doc/PLN_Guide/PLN_Guide.html

128

3D-VAIF (three-dimensional
vector of atomic interaction eld)

Structural descriptor method encoding electrostatic and steric
atomic interactions for 3D peptide representation

129

MXFP (macromolecule extended
atom-pair ngerprint)

A 217-dimensional atom-pair ngerprint designed to encode large
molecules (e.g., peptides, macrocycles, natural-products) by
representing pharmacophore-group atom-pairs and their topological
distances; useful for similarity searching and chemical-space
mapping of non-Lipinski or biomolecular compounds. https://
github.com/reymond-group/mxfp_python

130

KNIME (the konstanz information
miner)

An open-source, modular platform for end-to-end data analytics that
enables users to visually build, execute and monitor data
workows—covering extraction, transformation, modelling and
visualization—without needing extensive coding. https://
www.knime.com/

131

Datawarrior Soware for data analysis and visualization. https://
openmolecules.org/datawarrior/

132 and 133

PepINVENT Peptide design tool extending the REINVENT platform https://
github.com/MolecularAI/PepINVENT/

134

PepSMI A web-tool provided by NovoPro bioscience Inc. that converts
a peptide amino-acid sequence (using one-letter codes) into
a SMILES (simplied molecular Input line entry system) string,
enabling computational representation of the peptide's molecular
structure. https://www.novoprolabs.com/tools/prot-sol

135

SignalP Signal peptide prediction tool. https://services.healthtech.dtu.dk/
services/SignalP-6.0/

136

Unipept Peptide-based metaproteomics tool (biodiversity, biomarker
discovery). https://unipept.ugent.be/

137

a Websites are provided when available; otherwise, a short description is included, along with the reference.

Chemical Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

8.
1.

20
26

 0
8:

36
:1

2.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
4.2 Visual representation of the chemical space of peptides

Based on the advances in molecular representations of peptides
and the development of novel bio-chemoinformatics
1470 | Chem. Sci., 2026, 17, 1461–1479
descriptors, recent visual representations have enabled illus-
trating efficiently and intuitively peptidic structure–function
relationships and activity-based clusters. This has allowed the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Molecular representations commonly used for peptides. (A) Peptide example. Their chemical structure contains amino acids in a specific
order (alanine, cysteine, alanine, cysteine, and threonine), in which their cysteines form a disulfide bond; (B) examples of hashed fingerprints.
ECFP4 represents data of each atom in the structure and their connectivity with 2 atoms of distance from these, which is condensed bits after
collision methods to avoid redundant connectivity information. A similar example is the MAP4 fingerprint, which uses this same strategy but
captures the information on the connectivity of paired atoms; (C) amino acid-based notations. HELM and PLM use the conventional one-letter
notation to represent implicitly the amino acid connectivity and use specific codifications to represent out-peptide bonds, like disulfide bonds.
However, examples like SCSR, PLN, and BILN representations offer an alternative to represent explicitly the atom connectivity of peptides; and
(D) three dimensional-based representations. For example, 3D-VALF uses conformational data to create new vectors from dimensional
reduction methods capable of condensing the atom connectivity and property data of whole peptides; MXFP uses fingerprint-based repre-
sentation to codify the presence of pharmacophoric features. The peptide representations shown in B and D panels are illustrative of the type of
data generated by each representation.
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creation of intuitive representations to make smart decisions
about prospective evaluations for peptide-based
compounds.141,142 For example, advances in the visualization
of atom connectivity similarity–activity relationships have op-
ened new horizons for the optimization process of non-
canonical peptides.143
4.3 Mapping bioactive peptides in chemical space

An illustrative example of the chemical space mapping to decode
complex biological properties is shown in Fig. 4. This landscape
offers the possibility to study systematically underexplored
peptides, like de-extinted peptides, i.e., peptides from the
“extinctome” (the proteomes of extinct organisms), which recently
has covered particular relevance to developing novel antimicrobial
agents.144,145 Fig. 4 remarks on the exibility of the chemical space
techniques (e.g., using network-based approaches) to identify rapid
structure–property relationships in peptides. For example, Fig. 4A
illustrates scaffold relationships between each pair of ancient and
hemolytic (or non-hemolytic) peptides, and Fig. 4B illustrates
chemical space localizations ancient and anti-MRSA (methicillin-
© 2026 The Author(s). Published by the Royal Society of Chemistry
resistant Staphylococcus aureus) peptides. Thus, remarks about
how it is possible to establish structure–hemolytic relationships in
peptides and quickly identify the potential anti-MRSA activity of
underexplored peptides. Here, it is possible to identify that peptide
1 (Fig. 4C) could have anti-MRSA activity without hemolytic side
effects.
4.4 Development of machine learning models

Recent advances in machine and deep learning technologies
have led to the creation of network-based chemical space
representations based on peptidic sequences, which opens up
new perspectives on the smart identication of “privileged”
scaffolds and representative conserved moieties against specic
chemical and biological endpoints. For example, solubility, type
of tridimensional folding, cell permeability, bioactivity, toxicity,
and hemolysis.149–151

The integration of high-throughput screening (HTS) technolo-
gies has transformed the early stages of peptide discovery. By
enabling the rapid and parallel evaluation of thousands of
compounds, HTS platforms generate extensive multidimensional
Chem. Sci., 2026, 17, 1461–1479 | 1471
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Fig. 4 Chemical space representations to study ancient peptides. (A) Structure–activity relationships based on scaffold similarity of represen-
tative peptides with hemolytic and non-hemolytic activity. Chemical space based on coordinates and the structure of molecular scaffolds was
constructed using a network-based protocol implemented in KNIME software and visualized using Datawarrior software, version
06.04.01.132,133,146 Each compound is represented by dots, and their distinctive biological property is represented by different colors. Finally, each
compound was linked with other molecules that share a scaffold relationship; (B) visual representation of the chemical space of 223 anti-MRSA
non-canonical and canonical peptides. The visual representation was constructed by dimensional reduction (t-SNE coordinates) of the ECPF4
fingerprint. Each data point in the graph represents a peptide, and the color in a continuous scale represents the activity values in pMIC from low
(red) to high (green). Data points in grey represent peptides with unknown pMIC value (ancient peptides). The dotted line illustrates the chemical
space localization of 1 (panel A); (C) representative examples of peptides are illustrated in panel A of this figure (1, HWITINTIKLSISLKI; 2,
ALLHHGLNCAKGVLA; 3, GFFTLIKAANKLINKTVNKEAGKGGLEIMA). The atoms colored in grey in each peptidic structure represent the not-
aligned moiety with the peptide 1.147,148
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datasets that can be mined to extract patterns linking peptide
features with biological responses. These large-scale datasets
constitute a critical substrate for the training and validation of AI-
based models capable of predicting pharmacologically relevant
properties.152 Additionally, the implementation of robotic labora-
tory systems has further advanced this paradigm by ensuring the
precision, scalability, and reproducibility of experimental work-
ows.152 Automated liquid-handling robots and integrated
analytical instruments can execute complex assay cascades with
minimal human supervision, thereby reducing experimental bias
and facilitating the generation of standardized, high-quality data
amenable to algorithmic modeling.153 Complementary to experi-
mental acceleration, virtual screening protocols have become an
indispensable component of contemporary peptide discovery
pipelines. Virtual screening based on molecular docking, phar-
macophore modeling, and quantitative structure–activity
1472 | Chem. Sci., 2026, 17, 1461–1479
relationship (QSAR) analyses enable the rapid triage of chemical
libraries, prioritizing peptides with predicted high affinity against
specic receptors, favorable physicochemical properties, and
adequate ADMET or sensory proles.154,155 Finally, molecular
dynamics and quantum chemistry simulations provide a comple-
mentary, physics-based dimension to data-driven modeling,
which allow the integration of conformational free-energy land-
scapes, binding stability, and interaction ngerprints—into deep
learning frameworks, enhances the capacity to predict structure–
function relationships at atomic resolution level.156 These hybrid
approaches bridge mechanistic simulation and statistical infer-
ence, enabling amore comprehensive understanding ofmolecular
determinants underlying pharmacological efficacy and selectivity,
as well as the decoding of properties with application beyond
pharmacological disciplines.157–159
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc04465k


Review Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

8.
1.

20
26

 0
8:

36
:1

2.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
The emergence of AI-powered pharmaceutical laboratories is
a paradigm shi toward closed-loop, autonomous discovery
ecosystems. These laboratories combine robotic automation
with AI to establish self-optimizing experimental frameworks in
which predictive models continuously learn from experimental
feedback. Such adaptive systems can autonomously design,
execute, and analyze experiments, thereby expediting the
identication of lead peptides and optimizing their chemical
space exploration.160
4.5 Expansion

Exploring peptide chemical space has emerged as a strategy to
identify novel bioactive compounds with enhanced stability,
specicity, and pharmacokinetic proles. Recent advancements
have focused on expanding this chemical space through various
methodologies, including the design of synthetic combinatorial
libraries, incorporation of non-canonical amino acids, the gener-
ation of “small-peptidic chemical chimeras”, and generative (de
novo) computational approaches.161 These efforts aim to traverse
previously underexplored regions of peptide chemical space,
facilitating the discovery of compounds with unique biological
activities, higher selectivity, and improved drug-like
properties.162–164
4.6 Peptide enumeration and de novo generation

Peptide enumeration and de novo generation have generated
important contributions in modern peptide science, particu-
larly with the advent of generative models capable of producing
diverse and biologically relevant molecules. These approaches
leverage advancedmachine learning architectures, such as deep
generative models and language-based neural networks, to
systematically explore and expand the peptide chemical space
beyond known structures and/or sequences. For instance, deep
generative models can be trained to create novel candidates
with desired biological or physicochemical properties, offering
a powerful alternative to traditional combinatorial enumeration
methods.165 Other protocols now incorporate multi-objective
optimization strategies, enabling simultaneous design for
multiple properties such as structural stability, bioactivity, and
membrane permeability, allowing the decodication of
sequence-structure–function relationships;166,167 Collectively,
these methods represent a paradigm shi toward intelligent,
data-driven design of peptide therapeutics, enabling the rapid
identication of high-potential candidates with tunable prop-
erties. To this end, Geylan et al. introduced a novel approach,
PepINVENT, designed to expand the landscape of peptide
therapeutics by incorporating both natural and non-natural
amino acids into de novo peptide design. PepINVENT enables
the generation of peptides with enhanced properties such as
binding affinity, plasma stability, and membrane permeability,
which are crucial for therapeutic efficacy. This example inte-
grates reinforcement learning algorithms to create and navigate
novel regions of the peptide chemical space, incorporating
multi-objective optimization strategies inspired by a holistic
molecular design approach.134
© 2026 The Author(s). Published by the Royal Society of Chemistry
The systematic enumeration of peptide sequences within
dened molecular property ranges, such as quantitative esti-
mate of drug-likeness (QED) and toxicity, has become a focal
point in computational peptide design. Articial intelligence
algorithms now integrate predictive models that assess key
physicochemical properties, enabling the generation of peptide
libraries tailored to specic therapeutic proles, generating the
rst generation of “focused peptide libraries”.168,169 These types
of libraries are characterized by their enriched content of bio-
logically relevant and synthetically feasible sequences, typically
constrained by user-dened lters such as solubility, stability,
net charge, hydrophobicity, and low off-target toxicity. Unlike
random or exhaustive combinatorial libraries, focused peptide
libraries are constructed to maximize the probability of bioac-
tivity while minimizing redundancy and undesired pharmaco-
kinetic features.170,171 In practice, this allows researchers to
streamline screening efforts by working with a smaller, high-
quality subset of candidates more likely to translate into ther-
apeutic success. Furthermore, the incorporation of domain-
specic constraints, such as protease resistance, membrane
permeability, organ targeting, and endpoint-specicity into the
library generation process allows these datasets to be aligned
with specic applications.172

On the other hand, maximizing coverage and diversity in
peptide chemical space is essential for discovering novel
peptides, particularly those residing in underrepresented or
unexplored regions. Strategies to enhance this exploration oen
involve generative and evolutionary algorithms designed to
produce peptide libraries with broad structural and functional
diversity. For example, Capecchi et al. proposed using genetic
algorithms to populate peptide space by generating over one
million unique sequences, revealing that evolutionary compu-
tation can effectively sample distant regions of sequence space
that are inaccessible through traditional design methods.17 In
addition, sequence-based deep generative models have emerged
as powerful tools for learning complex peptide sequence patterns
while ensuring the generation of novel candidates with diverse
scaffolds and biological potential.173 These approaches collectively
contribute to a more comprehensive exploration of peptide
chemical space, supporting the discovery of functionally rich and
previously overlooked molecules.
5 Perspectives and outlook on
peptide design

One of the major challenges in peptide design (Table 3) is the
limited availability of standardized and curated datasets
encompassing both canonical (cAAs) and non-canonical amino
acids (ncAAs). Existing repositories oen lack comprehensive
structural, physicochemical, and bioactivity data, which
restricts the exploration of peptides beyond conventional
pharmacological applications. To address this gap, the devel-
opment of open-access, high-quality peptide databases is crit-
ical. Such repositories should integrate data from diverse
contexts, including nanomaterials, diagnostics, and biosensors,
thereby enabling broader applications and more informed
Chem. Sci., 2026, 17, 1461–1479 | 1473
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peptide design strategies. Additionally, the necessity to develop
more efficient metrics and approaches which allow the
systematic study of peptides continues to be one of the great
contemporary challenges in drug design.174,175

Another signicant hurdle involves incomplete information
regarding peptide chirality and monomer conguration,
particularly at asymmetric centers such as sulfoxides or
hydroxyproline. Systematic annotation protocols incorporating
chiral descriptors, for instance through MAP4c ngerprints,176

could substantially improve the interpretability and predictive
accuracy of in silico models. Ensuring detailed stereochemical
information is essential for accurately modeling peptide
folding, activity, and interactions.

The expansion of peptide chemical space remains a key
opportunity, especially through the inclusion of ncAAs, post-
translational modications, and backbone alterations. Gener-
ating libraries of peptides with modied backbones, peptido-
mimetics, and macrocycles could reveal novel folding motifs
Table 3 Future challenges and opportunities in peptide design

Category Challenge

Data availability Lack of standardized and curated
datasets containing information
canonical (cAAs) and non-canoni
acids (ncAAs)

Incomplete information on pepti
and monomer conguration, inc
asymmetric centers (e.g., sulfoxid
hydroxyproline)

Data analysis The quantity and diversity of ava
compounds are constantly and ra
increasing

Chemical space study Limited exploration of the chemi
derived from ncAAs, post-translat
modications, and backbone alte

Identify representative descriptor
chemical, physical, and biologica
peptides with cAA and ncAA.

Synthesis of canonical and
non-canonical peptides

Synthetic constraints for peptides
ncAAs or chiral sulfur atoms

AI-based modeling approaches Fragmented use of structure-base
based predictive models without
multimodal data

Low interpretability of deep learn
representations of peptide activit

The activity of a peptide must be e
a holistic perspective that integra
physical, and/or biological data

1474 | Chem. Sci., 2026, 17, 1461–1479
and unique biological properties, opening new avenues for
therapeutic and functional applications.

Synthetic challenges also persist, particularly for peptides
containing ncAAs or chiral sulfur atoms, which are oen diffi-
cult to incorporate with precision. Advancements in automated
solid-phase synthesis and biotechnological platforms can
facilitate the stereochemically dened incorporation of these
building blocks, enabling the efficient production of complex
peptide structures.178

Finally, the application of AI in peptide design presents both
opportunities and challenges. Current predictive models are
oen incomplete or non-integrative, relying separately on
structure-based or ligand-based approaches. Integrating these
models within deep learning frameworks, such as graph neural
networks or attention-based transformers, could generate
consensus predictions with improved interpretability.179

Furthermore, employing explainable AI techniques will allow
researchers to uncover key structural determinants that govern
Perspectives

peptide
about
cal amino

Development of open-access, high-quality
peptide repositories integrating structural,
physicochemical, and bioactivity data across
pharmacological and non-pharmacological
contexts e.g., nanomaterials, diagnostics, and
biosensors

de chirality
luding
es,

Implementation of systematic annotation
protocols including chiral descriptors e.g.,
MAP4c ngerprint176 to improve the
interpretability and predictive accuracy of in
silico models

ilable
pidly

The development of metrics and tools that
enable the massive analysis of peptides will
allow the correct identication of complex
patterns associated with their biological activity

cal space
ional
rations

Generation of peptide libraries encompassing
modied backbones, peptidomimetics, and
macrocycles to discover new folding patterns
and biological properties

s of the great
l diversity of

The construction of complementary
representations (e.g., based on chemical
multiverses) will facilitate the study of peptides
from different perspectives177

containing Development of automated solid-phase
synthesis and biotechnological platforms
enabling the precise incorporation of
stereochemically dened ncAAs

d or ligand-
integration of

Coupling of structure- and ligand-based models
with deep learning frameworks e.g., graph
neural networks, attention-based transformers,
to generate consensus and interpretable
predictions

ing
y and folding

Application of explainable AI techniques to
uncover key structural determinants driving
peptide function and stability

xplained from
tes chemical,

The use of AI-based tools that allow for the
correct fusion and interpretation of different
types of data will aid in the correct decoding of
peptide activity

© 2026 The Author(s). Published by the Royal Society of Chemistry
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peptide function, stability, and folding, ultimately enhancing
the rational design of bioactive peptides.180

6 Conclusions

The peptide chemical space represents a vast and continuously
expanding landscape shaped by the remarkable structural and
functional diversity of peptides. This diversity arises not only from
canonical amino acid sequences but also from the incorporation
of non-canonical residues and post-translational modications,
which collectively generate an immense array of molecular
architectures. Accurately navigating and characterizing the
peptide chemical space demands a comprehensive suite of
molecular descriptors, ranging from sequence-based and
connectivity-driven features to 3D structural and physicochemical
representations. The availability and integration of diverse
descriptors are essential for designing, analyzing, and predicting
peptide behavior across different applications. Furthermore, the
growing number and complexity of peptide datasets145,181 under-
score the critical need for robust chemoinformatics and bi-
oinformatics methodologies, whose synergy enables a deeper
understanding of peptide function, structure–property (activity)
relationships, and the rational design and generation of novel
peptide libraries. Moving forward, the development of unied,
open-source frameworks and consensus-driven computational
standards will be pivotal in capturing the full extent of peptide
chemical space and leveraging it for innovation in therapeutics,
materials science, nutrition, cosmetics, and beyond.
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D. N. Beratan, J. Am. Chem. Soc., 2013, 135, 7296–7303.

3 J.-L. Reymond, J. Cheminf., 2025, 17, 6.
4 B. J. Pepe-Mooney and R. Fairman, Curr. Opin. Struct. Biol.,
2009, 19, 483–494.

5 M. D. T. Torres, J. Cao, O. L. Franco, T. K. Lu and C. de la
Fuente-Nunez, ACS Nano, 2021, 15, 2143–2164.

6 P. E. Saw, X. Xu, S. Kim and S. Jon, Acc. Chem. Res., 2021, 54,
3576–3592.

7 I. W. Hamley, Chem. Rev., 2017, 117, 14015–14041.
8 K. Sato, J. Agric. Food Chem., 2018, 66, 3082–3085.
9 Y. Tang, T. Nie, L. Zhang, X. Liu and H. Deng, Cosmetics,
2025, 12, 107.

10 M. Muttenthaler, G. F. King, D. J. Adams and P. F. Alewood,
Nat. Rev. Drug Discovery, 2021, 20, 309–325.

11 Y. Zhao, Chem.–Eur. J., 2018, 24, 14001–14009.
12 A. Capecchi and J.-L. Reymond, Med. Drug Discovery, 2021,

9, 100081.
13 S. B. Kent, J. Pept. Sci., 2025, 31, e70013.
Chem. Sci., 2026, 17, 1461–1479 | 1475

https://github.com/EdgL2/PepChemSpace
https://github.com/EdgL2/PepChemSpace
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc04465k


Chemical Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

8.
1.

20
26

 0
8:

36
:1

2.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
14 L. Chen, X. Xin, Y. Zhang, S. Li, X. Zhao, S. Li and Z. Xu,
Molecules, 2023, 28, 6745.

15 J. L. Hickey, D. Sindhikara, S. L. Zultanski and
D. M. Schultz, ACS Med. Chem. Lett., 2023, 14, 557–565.

16 M. Orsi and J. Reymond, Mol. Inf., 2025, 44, e202400186.
17 A. Capecchi, A. Zhang and J.-L. Reymond, J. Chem. Inf.

Model., 2019, 60, 121–132.
18 J. L. Warthen and M. J. Lueckheide, Biomacromolecules,

2024, 25, 6923–6935.
19 C. M. Li, P. Haratipour, R. G. Lingeman, J. J. P. Perry, L. Gu,

R. J. Hickey and L. H. Malkas, Cells, 2021, 10, 2908.
20 O. A. Musaimi, D. AlShaer, B. G. de la Torre and F. Albericio,

Pharmaceuticals, 2025, 18, 291.
21 I. S. Johnson, Science, 1983, 219, 632–637.
22 L. Diao and B. Meibohm, Clin. Pharmacokinet., 2013, 52,

855–868.
23 P. K. Lund, Regul. Pept., 2005, 128, 93–96.
24 L. B. Knudsen and J. Lau, Front. Endocrinol., 2019, 10, 155.
25 L. Anthony and P. U. Freda, Curr. Med. Res. Opin., 2009, 25,

2989–2999.
26 J. Pless, J. Endocrinol. Invest., 2005, 28, 1–4.
27 E. W. Iepsen, S. S. Torekov and J. J. Holst, Expert Rev.

Cardiovasc. Ther., 2015, 13, 753–767.
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