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Addressing climate change requires effective carbon capture and storage (CCS), with 
geological sequestration in saline aquifers offering high potential. A key factor in CCS 
success is understanding interfacial tension (IFT) between CO₂ and brine, which affects 
storage efficiency and leakage risk. Traditional IFT methods are complex and resource-
heavy. This study explores machine learning (ML) as a scalable, data-driven alternative 
for IFT prediction. Beyond performance, it examines why ML models work, their 
limitations, and future challenges. By enhancing IFT modeling, this work promotes safer, 
more efficient CO₂ storage and advances global sustainability through better climate 
mitigation strategies, uniting data science with environmental action.
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A B S T R A C T
The alarming increase in global warming, primarily driven by the rising CO2 concentration in
the atmosphere, has spurred the need for technological solutions to reduce CO2 concentrations.
One widely successful approach is geological sequestration, which involves pressurizing and
injecting CO2 into underground rock formations. Saline aquifers, containing saltwater, are often
used for this purpose due to their large storage capacity and broad availability. However, to
optimize CO2 storage and reduce the risk of gas leakage, it is essential to account for capillary
forces and the interfacial tension (IFT) between CO2 and brine within the formation.

Traditional methods for characterizing CO2-brine IFT in saline aquifers, both experimental
and theoretical, are well-documented in the literature. Experimental methods, though accu-
rate, are labor-intensive, time-consuming, and require expensive equipment, while theoretical
approaches rely on idealized models and computationally demanding simulations. Recently,
machine learning (ML) techniques have emerged as a promising alternative for IFT characteriza-
tion. These techniques allow models of CO2-brine IFT to be automatically “learned” from data
using optimization algorithms. The literature suggests that ML can achieve superior accuracy
compared to traditional theoretical methods. However, in its current state, the literature lacks
a comprehensive review of these emerging methods. This work addresses that gap by offering
an in-depth survey of existing machine learning techniques for IFT characterization in saline
aquifers, while also introducing novel, unexplored approaches to inspire future advancements.
Our comparative analysis shows that simpler ML models, such as ensemble tree-based models
and small multi-layer perceptrons, may be the most accurate and practical for estimating CO2-
brine IFT in saline aquifers.

1. Introduction
Earth’s temperature is rising at an alarming rate of 0.2◦C per decade, and a main contributor to this is the increasing

concentration of carbon dioxide (CO2) in the atmosphere [1]. To limit the concentration of atmospheric CO2, a
process called geologic carbon sequestration is often employed, wherein CO2 is pressurized and injected into porous
underground formations for storage [2]. Typically, these formations are porous rocks that contain saltwater, termed
saline aquifers, such as sandstone [3]. Another common option is to store CO2 in hydrocarbon-bearing formations –
such as oil and gas reservoirs, gas shales, and coal seams [4] – which can also be done as a part of enhanced oil recovery
[5–8], where CO2 is injected into an oil-bearing formation to drive the oil out of it. However, saline aquifers are
estimated to have a significantly larger carbon dioxide storage capacity than hydrocarbon formations [9], and they are
also much more ubiquitous [10], making them a prime target for CO2 storage.

To optimally utilize the CO2 storage capacity of saline aquifers as well as reduce the danger of CO2 leakage out
of them, which can be damaging to the environment and harmful to animal and human life [11], one must consider
the capillary forces at play [12, 13]. These forces are mainly governed by the interfacial tension (IFT) between CO2and the host fluid, brine [13–15]. Accurate characterization of CO2-brine interfacial tension in saline aquifers is thus
of prime importance to the success of geologic sequestration projects.

The methods presented in the literature for characterizing CO2-brine IFT can broadly be classified into three
categories: experimental, theoretical, and data-driven methods. The most widely used experimental methods to
measure the CO2-brine IFT are the pendant drop method [16, 17] and the capillary rising method [18]. The pendant
drop method measures surface or interfacial tension by analyzing the shape of a drop hanging from a needle in a
surrounding fluid. The droplet’s profile, captured as a shadow image, is used in drop shape analysis to calculate tension

∗Corresponding author (Kashif.Liaqat@rice.edu)
ms18ig@my.fsu.edu (M.S.U. Hassan); Kashif.Liaqat@rice.edu (K. Liaqat); Laura.Schaefer@rice.edu (L. Schaefer)

ORCID(s): 0009-0008-3542-1872 (M.S.U. Hassan); 0000-0002-6017-6097 (K. Liaqat); 0000-0002-9351-4910 (L. Schaefer)

Page 1 of 29

Page 2 of 31Environmental Science: Advances

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

3.
10

.2
02

5 
04

:1
4:

52
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5VA00163C

mailto:Kashif.Liaqat@rice.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5va00163c


Saline Aquifer
CO2-Brine IFT

Estimation

Experimental
Methods

Machine Learning
Methods

Theoretical
Methods

Linear
Estimators

Linear
Regression

(Least
Squares)

Ridge
Regression

Support
Vector

Machines
(SVMs)

Non-Linear
Estimators

Less accurate but
more interpretable and
data-efficient

Accurate

Kernel
Methods

Radial
Basis

Function
(RBF)

Decision
Trees

Random
Forests

Boosting

XGBoost

Artifical Neural
Networks (ANN)

but complex

Very accurate
but data-intensive
& compute-expensive

Convolutional
Neural

Networks
(CNNs)

Recurrent
Neural

Networks
(RNNs)

Multi-
Layer

Networks
(MLPs)

T
ransform

ers

Figure 1: Overview of machine learning approaches for estimating CO2-brine interfacial tension in saline aquifers, as
discussed in Section 2. The methods shown in red-shaded blocks – namely CNNs, RNNs, and Transformers – are promising
based on their success in time-series prediction tasks but have not yet been applied to CO2-brine IFT estimation, which
can also be framed as a time-series prediction problem (see Section 2.2.3). Additionally, the green-shaded blocks denote
ensemble tree-based models (random forests and gradient boosting) and MLPs, which the literature survey in Section 3
identifies as currently offering the strongest predictive performance for this application. Nonetheless, the inconsistent use
of datasets across studies underscores the need for caution when generalizing these findings.

based on the balance between gravity and interfacial forces. The capillary rise method determines IFT by observing
the height to which a liquid rises or falls in a narrow tube when in contact with another fluid. The balance between
adhesive and cohesive forces allows calculation of IFT. The experimental procedures, though inherently accurate,
are prone to inaccuracies introduced through measurement noise and experimental errors. Additionally, they can be
time-consuming to carry out, require expensive equipment, and demand extensive experience with the equipment
[14, 19]. The theoretical approaches [20–23], on the other hand, are mainly based on molecular dynamics models [24],
often demanding idealized conditions that are rarely satisfied closely in practice. Furthermore, they rely on computer
simulations that introduce numerical inaccuracies [14, 19].

While experimental and theoretical methods have been invaluable to date for understanding CO2–brine IFT, their
practical application in large-scale carbon storage projects remains challenging. As geologic carbon sequestration
projects expand globally, there is a growing need for predictive tools that are both accurate and scalable across
diverse geologic settings for carbon capture and storage [25–27]. Machine learning (ML) offers a compelling
alternative [28–30]. By leveraging existing experimental and simulation datasets, ML models can capture complex,
nonlinear relationships between fluid properties, environmental conditions, and IFT, without requiring explicit physical
simplifications. ML approaches can be rapidly retrained with new data, adapted to different brine compositions, and
deployed for real-time prediction, making them attractive for both research and operational decision-making. Over
the past decade, interest in applying ML to CO2–brine IFT prediction has grown considerably, producing a scattered
body of work across multiple disciplines. However, no comprehensive review currently exists to summarize these
developments, compare methodologies, or identify open challenges. This article addresses that gap by providing the
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first systematic survey of ML-based approaches for IFT characterization in saline aquifers, alongside a comparative
analysis to guide future research.

In Section 2, we introduce the problem of modeling CO2-brine interfacial tension in saline aquifers using data-based
methods, aiming to formulate the problem in a way that accommodates various machine learning techniques. Building
on this formulation, we then present an overview of various machine learning models for IFT characterization, as
reviewed in Section 3 and summarized in Figure 1. We also present novel approaches for modeling IFT as a time series
using state-of-the-art sequential machine learning models, which present promising directions for future research.
Throughout this section, we strive to establish a standardized mathematical notation for describing the different models,
as the absence of a standardized approach in the existing literature has resulted in works that are difficult to compare.
In Section 4, we provide a brief overview of how IFT relates to different physical parameters. Finally, in Section 5, we
critique the current state of the literature and propose recommendations to incorporate into future research in the field.

2. Machine Learning Methods for CO2-brine IFT Characterization in Saline Aquifers
Different studies have opted for different sets of features to characterize CO2-brine interfacial tension in saline

aquifers. Some studies have opted for pressure, temperature, and salinity, while others have opted for larger feature
sets. For example, [31, 32] consider CO2-brine IFT characterization in saline aquifers based on six features: pressure,
temperature, molalities of the monovalent cations (Na+, K+) and bivalent cations (Ca2+, Mg2+), and mole fractions of
CH4 and N2 in the CO2 stream. This feature set is the most commonly adopted across studies, based on our review in
Section 3. However, the specific choice of feature set does not impact the exposition below; simply denote  ⊆ ℝ𝑑 as
the feature space, where 𝑑 is the number of features, also called the dimension of the feature space.

The CO2-brine interfacial tension in saline aquifers may generally be modeled as 𝑓 ∶  →  ⊆ ℝ.1 Though this
function is not known analytically, one may experimentally obtain data:

 =
{(

𝐱1, 𝑦1
)

,… ,
(

𝐱𝑁 , 𝑦𝑁
)

|

|

|

𝐱𝑛 ∈  , 𝑦𝑛 ∈ ℝ
}

,

where the sample points (𝐱𝑛, 𝑦𝑛) ∈  are picked independently such that 𝐱𝑛 ∼ 𝑃 () and 𝑦𝑛 = 𝑓 (𝐱𝑛)+𝜖𝑛, to characterize
the input-output behaviour of 𝑓 under noise 𝜖𝑛 ∈ ℝ, and subsequently employ machine learning algorithms to construct
an approximation 𝑓 ∈  to 𝑓 from a hypothesis set  using  (Figure 2).2 In the following, we formally present the
machine learning algorithms for CO2-brine IFT characterization reviewed in Section 3 using this problem formulation.
Additionally, we introduce advanced methods for sequential data processing, which can be adapted for CO2-brine IFT
modeling through a straightforward reformulation of the problem, as we later demonstrate.

𝑥

𝑦

𝑥1

𝑥2

𝑦

ℎ

ℎ

Figure 2: A depiction of linear hypotheses ℎ ∈ lin in one-dimensional (𝑑 = 1) and two-dimensional (𝑑 = 2) feature spaces
[33]. Each black circle represents a data-point (𝐱𝑛, 𝑦𝑛) ∈  in ℝ𝑑 , and the vertical lines depict the error ‖ℎ(𝐱𝑛) − 𝑦𝑛‖2. The
linear regression algorithm designs the hyperplane to be such that the error is minimal on average.

1While our review focuses on saline aquifers, machine learning-based IFT characterization can also be applied to other rock formations.
2We adopt vector notation to formulate machine learning models, as opposed to the scalar notation commonly used in much of the literature

we reviewed. Vector notation offers a more compact and elegant way to express machine learning models, which are high-dimensional objects, and
aligns with the conventions of contemporary machine learning research.
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2.1. Linear Estimators
Many studies on data-driven modeling of CO2-brine IFT have considered linear estimation techniques. These

methods construct a linear hypothesis explaining 𝑓 , despite mathematical and empirical models of CO2-brine IFT
showing that 𝑓 is a nonlinear function [34–37]. While this approach sacrifices accuracy, the simplicity and analytical
tractability of the linear hypothesis class make it more interpretable and computationally efficient to search over.

Formally, the hypothesis class of linear estimators, lin, is the set of hyperplanes in ℝ𝑑 ×ℝ with a surface normal
𝐚𝑇 and offset 𝑏 from the origin:

lin =
{

ℎ ∶ ℝ𝑑 → ℝ |

|

|

ℎ(𝐱) = 𝐚𝑇 𝐱 + 𝑏, 𝐚 ∈ ℝ𝑑 , 𝑏 ∈ ℝ
}

.

This set can be represented more succinctly by embedding ℝ𝑑 in ℝ𝑑+1 as ℝ̃𝑑+1 = ℝ𝑑 × {1} ⊂ ℝ𝑑+1. Then:
̃lin =

{

ℎ̃ ∶ ℝ̃𝑑+1 → ℝ |

|

|

ℎ̃(𝐱̃) = 𝐚̃𝑇 𝐱̃, 𝐚̃ ∈ ℝ𝑑+1} ,

denoting the set of hyperplanes in ℝ𝑑+1 passing through the origin, is equivalent to lin, in that a hypothesis
ℎ̃(𝐱̃) = 𝐚̃𝑇 𝐱̃ ∈ ̃lin can be converted to a equivalent hypothesis ℎ(𝐱) = 𝐚𝑇 𝐱 + 𝑏 ∈ lin, where 𝐚 = (𝑎1,… , 𝑎𝑑),by choosing the surface normal as 𝐚̃ = (𝑎1,… , 𝑎𝑑 , 𝑏). We will use both these representations of the linear hypotheses
set in the exposition below – covering linear regression, ridge regression, and support vector machine regression –
depending on whichever is mathematically convenient.
2.1.1. Linear Regression

The linear regression algorithm3 chooses a hypothesis ℎ̃ ∈ ̃lin that minimizes the error:

𝐸in(ℎ̃, ̃) = 1
𝑁

𝑁
∑

𝑛=1

‖

‖

‖

ℎ̃
(

𝐱̃𝑛
)

− 𝑦𝑛
‖

‖

‖

2

2
, for (𝐱̃𝑛, 𝑦𝑛) ∈ ̃.

Here, ‖.‖2 is the 𝓁2 norm, and ̃ represents the dataset  embedded in ̃ ×  , where ̃ =  × {1} ⊂ ℝ̃𝑑+1:
̃ =

{(

𝐱̃1, 𝑦1
)

,… ,
(

𝐱̃𝑁 , 𝑦𝑁
)

|

|

|

𝐱̃𝑖 ∈
{

𝐱1,… , 𝐱𝑁
}

× {1}
}

.

Using standard matrix calculus, the hypothesis ℎ̃lr ∈ ̃lin that minimizes 𝐸in can be found to be given by ℎ̃lr(𝐱̃) = 𝐚̃𝑇lr 𝐱̃,
where 𝐚̃lr is given by the roots of ∇𝐚̃𝐸in [39]:

𝐚̃lr =
(

𝑋̃𝑇 𝑋̃
)−1 𝑋̃𝑇 𝐲,

where:

𝑋̃ =

⎡

⎢

⎢

⎢

⎢

⎣

𝐱̃𝑇1
𝐱̃𝑇2
⋮
𝐱̃𝑇𝑛

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐲 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1
𝑦2
⋮
𝑦𝑁

⎤

⎥

⎥

⎥

⎥

⎦

and 𝑋̃𝑇 𝑋̃ is assumed to be invertible; that is, det 𝑋̃𝑇 𝑋̃ ≠ 0. Linear regression is one of the few machine learning
algorithms where the analytical formula describing the optimal hypothesis is known: ℎ̃lr(𝐱̃) = 𝐚̃𝑇lr 𝐱̃ [33]. It is important
to realize that this hypothesis is optimal with respect to the in-sample error, 𝐸in, while what is of interest is the out-of-
sample error, 𝐸out, which is a proxy for how well the model would generalize to real-world data. However, 𝐸out cannot
be computed since 𝑓 is unknown, and thus one has no recourse but to work with 𝐸in. This is a theme common to all
machine learning methods, but some methods, particularly linear estimators, are special in that we can often find exact
bounds on the out-of-sample error for the optimal hypothesis.

3Our treatment of linear regression here is from the viewpoint of function approximation. For a more statistical treatment of linear regression,
see the Gauss-Markov Theorem [38].
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2.1.2. Ridge Regression
The linear regression algorithm relies on 𝑋̃𝑇 𝑋̃ being invertible. If 𝑋̃𝑇 𝑋̃ is singular, the optimal hypothesis ℎ̃lr is

undefined.4 An ad-hoc solution to this problem is to define the optimal hypothesis as ℎ̃rr (𝐱̃) = 𝐚̃𝑇rr𝐱̃, where

𝐚̃rr =
(

𝑋̃𝑇 𝑋̃ + 𝜆𝐼
)−1 𝑋̃𝑇 𝐲, for 𝜆 ∈ ℝ+.

This technique is called ridge regression, where 𝜆, called the regularization rate, is a hyperparameter, i.e., a parameter
whose value is either determined through trial and error or by using a meta-optimization scheme, such as Particle
Swarm Optimization (PSO) [41]. Note that ridge regression is also more numerically stable than linear regression.5
However, unlike linear regression, ridge regression is a biased estimator [42]. This increase in bias is counterbalanced
by a reduction in variance – a phenomenon known as the bias-variance tradeoff [39, 43] – making ridge regression
less prone to the problem of overfitting, wherein a model fits the dataset too closely, thus compromising how well it
fits the desired function 𝑓 [44].
2.1.3. Support Vector Machines

Support vector machines (SVMs) are linear classifiers, originally used to solve binary classification problems by
finding the maximal margin hyperplane [45] separating the space ℝ𝑑 of all data points into two half-spaces. Here,
margin is defined as the distance of a hyperplane to the data point(s) closest to it (called support vectors), and one can
ascertain that it is inversely related to the flatness of the hyperplane [46]. SVMs can be extended to regression problems
[47], where the goal becomes to find a hyperplane ℎ(𝐱) = 𝐚𝑇 𝐱+𝑏 ∈ lin that is as flat as possible and does not deviate
from the targets 𝑦𝑛 by more than 𝜀 [48]. However, as is, the problem can be infeasible if no function ℎ ∈ lin exists that
approximates all points (𝐱𝑛, 𝑦𝑛

)

∈  to within 𝜀. In order to address this issue, the constraints are made “soft” through
the introduction of slack variables 𝜉+𝑛 and 𝜉−𝑛 [48], thus yielding the following constrained optimization problem:

min
𝐚,𝑏

1
2
‖𝐚‖22 + 𝐶

𝑁
∑

𝑛=1

(

𝜉+𝑛 + 𝜉−𝑛
)

s.t. −𝜀 − 𝜉−𝑛 ≤ 𝑦𝑛 −
(

𝐚𝑇 𝐱𝑛 + 𝑏
)

≤ 𝜀 + 𝜉+𝑛 , ∀
(

𝐱𝑛, 𝑦𝑛
)

∈ 

Here, 𝐶 ∈ ℝ controls the 𝜀-insensitivity, i.e., the degree to which one is willing to allow data points to fall outside the
𝜀 allowance (Figure 3 - Left). For details on how to solve this problem using quadratic programming, refer to [48] and
[49].
2.2. Nonlinear Estimators

Linear methods are supported by a well-developed body of mathematical theory [39, 46], which makes them
reliable and robust machine learning techniques. However, linear methods, by their very construction, are limited
to linear hypotheses, and since interfacial tension is a non-linear phenomenon, linear approximations to 𝑓 might not
be desirable, unless one is specifically interested in understanding linear patterns in 𝑓 , or if computational resources
are severely limited, e.g., in the case of a real-time controller deployed on an edge device.

While previous research has explored nonlinear methods for CO2-brine IFT estimation in saline aquifers, the
coverage has been restricted. In particular, advanced neural estimators like convolutional neural networks, recurrent
neural networks, and transformers, which have demonstrated cutting-edge performance in time-series prediction tasks
across diverse scientific and engineering domains, remain untapped in the context of CO2-brine IFT prediction in
saline aquifers. In the following sections, we not only formally present the nonlinear estimators previously applied in
the literature but also present some yet-to-be-applied modern time series prediction methods.

4𝑋̃𝑇 𝑋̃ is singular if the features describing the points 𝐱𝑛 are linearly dependent – a condition known as multicollinearity in Statistics [40].
Multicollinearity is a common occurrence in raw datasets, where there are redundant features. The recommended practice, thus, is to preprocess
datasets to eliminate this before subjecting them to any kind of machine learning analysis, as has been done in the studies reviewed in Section 3.

5The condition number of 𝑋̃𝑇 𝑋̃ is 𝜎max∕𝜎min, where 𝜎max and 𝜎min represent the largest and smallest singular values of 𝑋̃𝑇 𝑋̃, respectively.
Notice that 𝜎max∕𝜎min → ∞ as 𝜎min → 0, making linear regression numerically unstable. On the contrary, the condition number of 𝑋̃𝑇 𝑋̃ + 𝜆𝐼 is
(𝜎max + 𝜆)∕(𝜎min + 𝜆), which remains finite as 𝜎min → 0.
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2.2.1. Kernel Methods
A common way to augment the hypotheses class lin is by transforming the input space  through a non-linear

transform Ψ ∶  →  ⊆ ℝ𝑑′ and constructing a hypotheses set over  [39, 46]:

′
lin =

{

ℎ ∶  → ℝ |

|

|

ℎ(𝐳) = 𝐚𝑇 𝐳, 𝐚 ∈ ℝ𝑑′ , 𝐳 = Ψ(𝐱)
}

.

The 𝑑′-dimensional space  is commonly referred to as the feature space; and since it is related to the input space,
 , through a non-linear mapping, employing linear estimators in the feature space gives non-linear hypotheses in the
input space (Figure 3) [33].

Designing linear estimators in the feature space is computationally expensive if it is high-dimensional, as is usually
the case.6 Take, for example, ridge regression in a feature space  of dimension 𝑑′. To compute the estimator, one
must solve the linear system 𝐚rr = (𝑍𝑇𝑍 + 𝜆𝐼)−1𝑍𝑇 𝐲, which requires (𝑑′3) operations. In such cases, the dual
solution can often be cheaper to compute. For example, the dual solution to ridge regression is 𝐚rr = (𝑍𝑍𝑇 + 𝜆𝐼)−1𝐲,
which requires (𝑁3) operations, where 𝑁 is the number of data points. Thus, for 𝑁 < 𝑑′, the dual solution is
computationally cheaper. Additionally, the entries ⟨Ψ(𝐱𝑖),Ψ(𝐱𝑗)⟩ of the matrix 𝑍𝑍𝑇 , known as the Gram matrix, are
inner products, which can often be computed as a direct function of the inputs, thus further reducing the computational
cost [50].

Kernel methods capitalize on this property by defining a function 𝐾 ∶  ×  → ℝ, called a kernel, that enables
direct computation of these inner products. For instance, the quadratic transform Ψ ∶ 𝐳 = (𝑧1, 𝑧2) ↦ Ψ(𝐳) =
(𝑧21, 𝑧

2
2,
√

2𝑥1𝑥2) leads to the quadratic kernel 𝐾(𝐳𝑖, 𝐳𝑗) = ⟨𝐳𝑖, 𝐳𝑗⟩2. However, it is not necessary to explicitly define
the transformation Ψ; one can specify the kernel function 𝐾 directly, provided that 𝐾 meets Mercer’s conditions [51].
For example,

𝐾(𝐳𝑖, 𝐳𝑗) = exp
(

− 1
2𝜎2

‖

‖

‖

𝐳𝑖 − 𝐳𝑗
‖

‖

‖

2

2

)

is a valid kernel, called the Gaussian Radial Basis Function (RBF) kernel, since it satisfies Mercer’s conditions. Any
machine learning algorithm that can be restated such that the input vectors 𝐱𝑛 appear as inner-products only is amenable
to the “kernel trick." That is, the inner product can be replaced by a kernel function, thus improving the computational
efficiency of the algorithm [52].

𝑧

𝑦′

ℎ ∈ lin

𝜀

𝜉−

𝑥

𝑦
ℎ′ ∈ ′

lin

Ψ

𝜉+

Figure 3: Depiction of a nonlinear hypothesis in -space designed by transforming the problem into feature space 
through a non-linear transform Ψ, and using SVM (a linear method) in the feature space.

2.2.2. Decision Trees
The methods discussed thus far (as well as neural networks, discussed in the upcoming section) result in global

models, i.e., models that describe the whole of input space  using a single rule. However, instead of using a
complicated and difficult-to-interpret model to describe all of  , an alternative is to partition  into subsets, and
then partition those subsets into further subsets, and keep going in this fashion until the subsets are small enough that
they can be described by simple models. Decision trees are machine learning methods that follow this approach to data
modeling [53].

6Many commonly used feature transformations are, in fact, infinite-dimensional. For instance, the popular Gaussian Radial Basis Function
kernel induces an infinite-dimensional mapping.
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Typically, decision trees are constructed in a top-down manner using a recursive partitioning strategy [54], where
the input space is greedily divided into subsets [55]. This process continues until the resulting subsets are sufficiently
small to be represented by constant values.

While decision trees are expressive and powerful, they are also highly prone to overfitting. To control the degree of
overfitting, one usually constrains the maximum depth of the tree (called top-down pruning) or removes leaves from
the tree after it has been built (called bottom-up pruning). Another common strategy is to use an ensemble learning
method [56], such as bagging or boosting.
Bagging and Random Forests. The prediction error of an estimator is generally a function of its bias and variance– the
lower the bias and variance, the lower the prediction error. However, as alluded to earlier, these two factors are linked
by the bias-variance tradeoff [39, 43], meaning that estimators with low bias tend to have high variance. Bagging seeks
to take several deep but largely uncorrelated trees (i.e., estimators with low bias but high variance), and average out
their predictions, which reduces the overall variance without changing the bias, thus reducing the overall prediction
error [39].

Formally, bagging is an ensemble learning method where 𝑀 decision trees are constructed on independent subsets
of the dataset , and at inference time, the final prediction on a given input 𝐱 ∈  , 𝑓 (𝐱), is obtained by averaging the
predictions 𝑓𝑚 (𝐱) from the individual trees:

𝑓 (𝐱) = 1
𝑀

𝑀
∑

𝑚=1
𝑓𝑚 (𝐱) .

Note that even though bagged trees are grown on independent subsets of the dataset, the inputs to the trees can still
be correlated, reducing the benefit that bagging brings. The Random forests approach aims to address this problem by
employing bagging along with feature bagging, wherein each tree is constructed on a subset of the dataset using only
a subset of the possible feature splits [39].
Boosting. Boosting is also an ensemble learning method, combining multiple models to reduce the overall prediction
error. However, unlike bagging and random forests, which seek to reduce the prediction error by reducing variance,
boosting seeks to reduce the prediction error by reducing bias [39]. Boosting iteratively constructs an ensemble of
shallow decision trees (i.e., estimators with low variance but high bias) where each subsequent tree attempts to correct
the error in its predecessor’s prediction [39], thus reducing the overall prediction error.

𝑥1

𝑥2

𝑦

𝑥1

𝑥2

𝑦 = Γ(𝐱,Θ)

Hidden Layers

(A) (B)

Figure 4: (A) Visualization of a neural network with three layers: one input layer, and two hidden layers. To keep the
diagram simple, the connections are shown as undirected, and the input 𝐱 = (𝑥1,… , 𝑥𝑑) ∈ ℝ𝑑 is depicted for 𝑑 = 2. The
white circles depict neurons, where each neuron in the hidden layers is an affine mapping followed by a nonlinearity Ψ.
The grey circle is the output. Though a typical neural network can have several outputs, we only require a single output
(𝑛𝐿 = 1), that is, the inferfacial tension. (B) An example hypothesis of a single-output ReLU neural network visualized as
piece-wise continuous linear function over  ⊆ ℝ2 [57].
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2.2.3. Artificial Neural Networks
Artificial neural networks (ANNs) owe their design to inspirations from the biological brain [58], however, they

are now understood as mathematical functions of the form:
Γ (𝐱; Θ) = 𝐴𝐿Φ

(

𝐴𝐿−1
(

…Φ
(

𝐴1𝐱 + 𝐛1
)

…
)

+ 𝐛𝐿−1
)

+ 𝐛𝐿

where 𝐿 ∈ ℕ, Θ = (𝐴𝓁 ,𝐛𝓁)𝐿𝓁=1, and Φ ∶ ℝ𝑘 → ℝ𝑘 is a non-linear function, often referred to as the activation function
[59]. Common choices for the activation function include the rectified linear unit (ReLU), wavelet basis functions, and
radial basis functions.

In neural networks literature, 𝐱 is called the input layer, and each application of 𝑇𝓁(𝐮) = Φ
(

𝐴𝓁𝐮 + 𝐛𝓁
) is called

a hidden layer, where 𝐴𝓁 ∈ ℝ𝑛𝓁×𝑛𝓁−1 and 𝐛𝑙 ∈ ℝ𝑛𝓁 for 𝑛𝓁 ∈ ℕ and 𝑛0 = 𝑑, are called the parameters or weights of
the 𝓁-th layer. A layer is thought of as made of neurons (Figure 4), and the output 𝑇𝓁(𝐮) ∈ ℝ𝑛𝓁 of a layer is called a
neural activation. It is common to define the depth of a network as the number of layers, 𝐿, and its size as the total
number of neurons in those layers: ∑𝐿−1

𝓁=0 𝑛𝓁 [60].
The hypotheses set of neural networks is very expressive: under minor conditions on the activation function Φ, it

can be shown that every continuous function 𝑔 ∶  → ℝ on a compact set  can be arbitrarily well-approximated
by a fixed-size neural network [61]. One can pose the task of approximating the IFT function, 𝑓 , from the dataset ,
using a neural network Γ as finding parameters Θ such that:

argmin
Θ

(Θ) = in (Γ ( ⋅ ; Θ) ,) + 𝜆 (Θ) ,

where , known as the loss function, is composed of the in-sample loss in (Γ ( ⋅ ; Θ) ,), measuring how well a given
neural network parameterization Γ ( ⋅ ; Θ) approximates 𝑓 over , and a regularization term 𝜆 (Θ), modulated by a
hyperparameter 𝜆 ∈ ℝ+, which constrains the possible parameterizations of Γ [60].

It is important to point out here that even if  is a “simple" function of Γ, obtaining an analytical expression for
Θ∗ = argminΘ (Θ) is generally not possible. Instead, one approximates Θ∗ as Θ𝑇 using an iterative procedure, such
as gradient descent [62]:

Θ𝑡 = Θ𝑡−1 − 𝛾∇Θ 
(

Θ𝑡−1
)

,

where 𝑡 ∈ {1,… , 𝑇 }, for some 𝑇 ∈ ℕ, identifies a step in the algorithm’s execution, and 𝛾 ∈ ℝ is a hyperparameter,
called the step size.7 In practice, Θ0 is chosen to be random non-zero values or set using a weight initialization scheme
[63], and ∇Θ  is computed using the backpropagation algorithm [64], which automatically computes gradients using
an efficient graph-based implementation of the chain rule. However, note that ∇Θ (Θ𝑡−1) is evaluated over all data
points (𝐱, 𝑦) ∈ , which might be computationally expensive. Therefore, it is common to use a variation of gradient
descent called stochastic gradient descent [65], where  is divided into a set of batches, and ∇Θ (Θ𝑡−1) is computed
only over one batch in a given gradient descent step. It can thus take several steps to update Θ over all of , and once
that happens, an epoch of training is said to have been completed [60]. It usually takes several epochs of training to get
a good approximation to Θ∗.

Neural networks have seen wide success in tasks such as computer vision [66, 67], natural language understanding
[68, 69], and reasoning and control [70, 71]. This success has mainly been driven by an increase in compute power
[72] and the availability of large datasets [73–76], which have made training deep networks possible [77], thus starting
the field that is now known as deep learning [78]. Over the years, a number of improvements to the training of deep
networks have been proposed and adopted, e.g., gradient descent with momentum [79], adaptive gradient descent [80],
and regularization techniques [81]. Also, different variations to the base neural network architecture, commonly known
as multi-layer perceptron (MLP) or fully connected network (FCN), have been proposed and adopted to better tackle
practical problems [82–84]. While a complete review of these various neural net architectures is beyond the scope of
this paper, a brief introduction to three particularly important neural architectures follows.
Convolution Neural Networks. Convolutional Neural Networks (CNNs) [85] use a mathematical operation called
convolution in at least one of the layers. This operation can be visualized as sliding a matrix 𝐴—referred to as a
filter or kernel—across an input matrix 𝑈 (Figure 5). The entries of the filter represent the learnable weights of
the convolutional layer. Because the same filter is applied across the entire input, these weights are shared spatially,

7Hyperparameters of a neural network, such as 𝜆, 𝑇 , and 𝛾 , are often selected through trial and error or by using optimization techniques, such
as Grid Search [39].
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𝑝

𝑞

𝑖

𝑗

𝑈𝑖𝑗

𝑈

𝐴

Figure 5: Convolution visualized as sliding a filter (𝐴) over an input (𝑈).

substantially reducing the number of trainable parameters. This weight-sharing mechanism provides an implicit form
of regularization, which makes CNNs less prone to overfitting compared to multilayer perceptrons, where neurons are
densely connected.

𝐱(𝑡)

𝑦̂(𝑡)

⇔

𝐱(1)

𝑦̂(1)

𝐡(0)

𝐱(2)

𝑦̂(2)

…

𝐱(𝑁)

𝑦̂(𝑁)

𝐡(𝑡−1)

(𝑡)
in = in

(

𝑦̂(𝑡), 𝑦(𝑡)
)

(1)
in (2)

in (𝑁)
in

R
ec

ur
si
ve

U
nr

ol
le

d

Figure 6: A recurrent neural network in its recursive form (left) and unrolled form (right), where (𝑡)
in denotes the in-sample

loss at the 𝑡-th time step. In practice, the initial hidden state of a RNN, 𝐡(0), is usually set to the zero vector, and the
expected loss is usually computed as the average loss over all time steps: 1

𝑁

∑𝑁
𝑡=1 

(𝑡)
in .

CNNs owe their design to the animal visual cortex [86], and have become a foundation of modern computer vision
[87]. Apart from that, CNNs, particularly 1-dimensional CNNs [88], where 𝑝 = 𝑚, i.e.,𝐶 ∈ ℝ1×(𝑛−𝑞+1), have also found
immense application in modeling time series data [89]. Since the CO2-brine IFT function 𝑓 is implicitly a function
of time, one can create a sequence of points  = ⟨(𝐱(0), 𝑦(0)),… , (𝐱(𝑁), 𝑦(𝑁))⟩ such that (𝐱(𝑡), 𝑦(𝑡)) ∈  represents the
sample obtained at (normalized) time 𝑡. The dataset  casted as a time series  can thus be used to model 𝑓 as a
1D-CNN. However, to the best of our knowledge, no prior work exists investigating this approach.
Recurrent Neural Networks. Recurrent neural networks (RNNs) [90] are a family of network architectures that share
parameters across layers. Mathematically, RNNs are defined as the recurrence:

𝐡(𝑡) = 𝜁
(

𝐱(𝑡),𝐡(𝑡−1); Θ
)

,

where 𝐡(𝑡) ∈ ℝ𝑘 is called the hidden state of the RNN (at time step 𝑡). Various choices are available for the function 𝜁 ;
one being:

𝜁
(

𝐱(𝑡),𝐡(𝑡−1); Θ
)

= tanh
(

𝐴ℎ𝑥𝐱(𝑡) + 𝐴ℎℎ𝐡(𝑡−1) + 𝐛ℎ
)

,
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where 𝐴ℎ𝑥 ∈ ℝ𝑘×𝑑 , 𝐴ℎℎ ∈ ℝ𝑘×𝑘,𝐛ℎ ∈ ℝℎ make up the parameters Θ of the network. Recurrent networks are
trained using backpropagation through time, which works by unrolling the compute graph through time (Figure 6)
and computing gradients using backpropagation [91]. However, backpropagation through the above choice of 𝜁 is
numerically unstable, leading to gradients exploding and/or vanishing as they flow to earlier time steps, which hinders
the modeling of long-term dependencies [92]. One way to address the problem is to define 𝜁 as the long short-term
memory (LSTM) cell [93]:

𝜁
(

𝐱(𝑡),𝐡(𝑡−1); Θ
)

= tanh 𝐜(𝑡) ⊙ 𝐨(𝑡),
where:

𝐨(𝑡) = 𝜎
(

𝐴𝑜𝑥𝐱(𝑡) + 𝐴𝑜ℎ𝐡(𝑡−1) + 𝐛𝑜
)

,

𝐜(𝑡) = 𝐠(𝑡) ⊙ 𝐢(𝑡) + 𝐜(𝑡−1) ⊙ 𝐟 (𝑡),

called output gate and cell state, respectively, are defined in terms of the following gates:
𝐠(𝑡) = tanh

(

𝐴𝑔𝑥𝐱(𝑡) + 𝐴𝑔ℎ𝐡(𝑡−1) + 𝐛𝑔
)

Cell Gate

𝐢(𝑡) = 𝜎
(

𝐴𝑖𝑥𝐱(𝑡) + 𝐴𝑖ℎ𝐡(𝑡−1) + 𝐛𝑖
)

Input Gate

𝐟 (𝑡) = 𝜎
(

𝐴𝑓𝑥𝐱(𝑡) + 𝐴𝑓ℎ𝐡(𝑡−1) + 𝐛𝑓
)

Forget Gate

Here, 𝐴𝑜𝑥, 𝐴𝑔𝑥, 𝐴𝑖𝑥, 𝐴𝑓𝑥 ∈ ℝ𝑘×𝑑 , 𝐴𝑜ℎ, 𝐴𝑔ℎ, 𝐴𝑖ℎ, 𝐴𝑓ℎ ∈ ℝ𝑘×𝑘, and 𝐛𝑜,𝐛𝑔 ,𝐛𝑖,𝐛𝑓 ∈ ℝ𝑘, define the parameters of the
network, and 𝜎 ∶ ℝ𝑘 → (0, 1)𝑘 is the softmax function, defined such that:

𝜎(𝐮)𝑖 =
𝑒𝑢𝑖

∑𝑘
𝑗=1 𝑒

𝑢𝑗
.

RNNs have enjoyed immense success in processing sequential data [94, 95]. One can train an RNN on the sequence
 defining the IFT data as well, for example, by formulating the loss at each time step 𝑡 to be in(𝑦̂(𝑡), 𝑦(𝑡)) =
‖𝑦̂(𝑡) − 𝑦(𝑡)‖22, where 𝑦̂(𝑡) = 𝐴𝜁(𝐱(𝑡),𝐡(𝑡−1); Θ) + 𝑏, for 𝐴 ∈ ℝ1×𝑘 and 𝑏 ∈ ℝ, and (𝐱(𝑡), 𝑦(𝑡)) ∈  . However, to the
best of our knowledge, this line of work remains unexplored in the literature.
Transformers. Transformers [96] have largely superseded RNNs as the go-to architecture for modeling complex
sequential data, especially natural language [68, 97–101]. Instead of operating on a sequence one element at a time, as
RNNs do, transformers operate on the whole sequence at once using a mechanism called attention [95]. At its core,
an attention module is a parameterized function that takes in a sequence of inputs 𝐮(1),… ,𝐮(𝑇 ), where 𝐮(𝑡) ∈ ℝ𝑘,
represented as rows of a matrix 𝑈 ∈ ℝ𝑇×𝑘, and computes a weighted representation of the inputs [69]:

Attention(𝑈 ;𝐴𝑄, 𝐴𝐾 , 𝐴𝑉 ) = 𝜎

(

𝑈𝐴𝑄
(

𝑈𝐴𝐾
)𝑇

√

𝑝

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Attention Scores

𝑈𝐴𝑉 ∈ ℝ𝑇×𝑘.

In the literature, the rows of the matrices 𝑄 = 𝑈𝐴𝑄 ∈ ℝ𝑇×𝑝, 𝐾 = 𝑈𝐴𝐾 ∈ ℝ𝑇×𝑝 and 𝑉 = 𝑈𝐴𝑉 ∈ ℝ𝑇×𝑘 are called
queries, keys, and values, respectively [82]. Intuitively, the attention module produces a representation of each input
𝐮(𝑖) by weighing the value (𝐯𝑇𝑗 ) of each input 𝐮(𝑗) towards the input 𝐮(𝑖) according to how much the 𝑗-th input’s key
(𝐤𝑇𝑗 ) matches the 𝑖-th input’s query (𝐪𝑇𝑖 ). This may be viewed as a mechanism for allowing the network to selectively
focus on the inputs.

By doing away with recurrent processing in favor of attention modules, transformers allow for faster training
through parallelization. They also support a much better gradient flow through their compute graph, thus leading to
better learning of long-term dependencies [69]. However, despite the revolution that transformers have brought about
in neural computing, the authors have not come across any publication featuring transformers to model CO2-brine IFT.

3. Review of Machine Learning for IFT Characterization
A number of machine learning algorithms have been employed in the literature to construct data-driven models of

CO2-brine IFT in saline aquifers. [102] designed a 6-input multilayer perceptron (MLP) with tanh activations [103],
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and trained it against mean-squared error via gradient descent over a dataset of 1202 samples. They tried networks
with one and two hidden layers, with the number of neurons varying between 10 to 20 in each layer, to determine
the best network topology. Table 1 summarizes the performance of their model, as well as other models from the
literature, against three different standard statistical metrics: MAPE, RMSE, and R2.8 Where applicable/available, the
table reports these metrics based on the different dataset splits: the training set, used to fit the model; the validation set,
used as a proxy for real-world data during training; and the test set, used to evaluate the model’s real-world performance.
Additionally, the table includes the performance of a correlation method by [104] for comparison with the machine
learning approaches.

In 2017, [105] proposed a radial basis function network (RBFN) – essentially an MLP with RBF activations –
for estimating IFT between CO2 and brine in saline aquifers. Their model, which includes three input neurons for
pressure, temperature, and brine salinity, and three hidden layers with 80 neurons each, outperformed the tanh-based
MLP proposed by [102]. Despite being trained on a smaller dataset of 302 data points compared to the 1202 points used
by [102], the RBFN demonstrated superior performance. However, it is important to note that [105] utilized a different
dataset than [102], which complicates direct comparisons since model performance is highly dataset-dependent. We
speculate that the performance gain [105] achieved over [102] is primarily from their use of a wider and deeper model,
and less so from their use of the RBF activation over tanh.

Another RBFN model was proposed by [106] in the same year, and though the performance of their model appears
competitive, they only report the performance metrics aggregated over the whole dataset, and not individually for the
train and test datasets, making it difficult to draw a proper comparison to other works. Along with a RBFN model, [106]
also proposes an adaptive neuro-fuzzy inference system (ANFIS) [123], which is a hybrid of MLPs and fuzzy inference,
and is useful to model complex systems. They employed Subtractive Clustering [124] – a clustering algorithm to select
representative data points (cluster centers) from the training data – to determine the membership functions in the fuzzy
rule base of ANFIS. Based on the overall statistics provided in the paper, the ANFIS model performs better than the
RBFN, as it builds on the strengths of both neural networks and fuzzy inference systems.

In 2017, [107] used classical machine learning, particularly, Least-Squares Support Vector Machines (LSSVM)
[125] – a variant of regular Support Vector Machines (SVMs) that formulates the optimization problem as a least-
squares problem, which is computationally cheaper to solve than a quadratic program – to model the interfacial tension
of CO2-brine systems. To this end, they developed and analyzed two LSSVM models – one with three inputs and the
other with eight, as described in Table 1 – and optimized their hyperparameters using an algorithm called Coupled
Simulated Annealing (see [126] and [127]).11 Though the predictive performance of these LSSVM models does not
measure up to MLPs, it should be noted that LSSVMs are generally faster to train and less data-intensive than neural
networks. Additionally, they are more interpretable and faster in terms of inference time. [108] also analyzed LSSVMs,
along with other machine learning algorithms (namely decision trees and gene expression programming, see [109]),
and their conclusion too remains that MLPs are more accurate than the classical techniques. However, their results
show that decision trees also perform admirably, and as shown in the work of [110], decision trees in an ensemble can
even outpace MLPs. In particular, [110] used an ensemble of 2707 decision trees constructed using Stochastic Gradient
Boosting [128], where they used 302 data points in the training process, in contrast to the 1372 training data points
used by [108].

8Machine learning models are typically evaluated on a test dataset, which is not used in their training, in order to obtain a reasonable estimate
of the models’ performance on out-of-sample data. If (𝐱𝑛, 𝑦𝑛) is a point in the test dataset test, and 𝑦̂𝑛 = 𝑓 (𝐱𝑛) is the approximation to 𝑦𝑛 obtained
from a machine learning model 𝑓 , then the performance of the model according to the standard error metrics – mean absolute error (MAE), mean
absolute percent error (MAPE), mean squared error (MSE), root mean squared error (RMSE), and the coefficient of determination (R2) – is:

MAE = 1
𝑁 ′

𝑁 ′
∑

𝑛=1

|

|

𝑦𝑛 − 𝑦̂𝑛|| RMSE =

√

√

√

√
1
𝑁 ′

𝑁 ′
∑

𝑛=1

(

𝑦𝑛 − 𝑦̂𝑛
)2 R2 = 1 −

∑𝑁 ′

𝑛=1
(

𝑦𝑛 − 𝑦̂𝑛
)2

∑𝑁 ′

𝑛=1
(

𝑦𝑛 − 𝑦̄
)2

MAPE = 100
𝑁 ′

𝑁 ′
∑

𝑛=1

|

|

𝑦𝑛 − 𝑦̂𝑛||
𝑦𝑛

MSE = 1
𝑁 ′

𝑁 ′
∑

𝑛=1

(

𝑦𝑛 − 𝑦̂𝑛
)2

Here, 𝑁 ′ = |test|. It is important to note that not all studies reviewed reported their models’ performance on a test set.
11The optimization algorithms used to train and fine-tune the models (such as CSA, PSO, FFA, etc.) are discussed in the referenced studies.

Given the wide range of available techniques, an exhaustive review is beyond the scope of this paper. Moreover, these algorithms are typically
bundled with popular optimization and machine learning software packages, making them easy to deploy for model optimization through simple
API calls.
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[13], in 2019, conducted an extensive study on seven different machine learning models. They developed eight
machine learning models in total: LSSVMs optimized with CSA; RBFNs optimized with PSO; MLPs with two hidden
layers and sigmoid/tanh activations, optimized using Levenberg-Marquardt (LM) [129], Bayesian Regularization (BR)
[130, 131], Scaled Conjugate Gradient (SCG) [132], and Resilient Backpropagation (RB) [133] algorithms; and models
based on Group Method of Data Handling (GMDH) [134, 135]. GMDH is a self-organizing neural network that
optimizes both structural and parametric aspects of the model. Each of these models were designed to take in the
same set of five inputs – namely, pressure, temperature, molalities of Na+ and K+, molalities of Ca2+ and Mg2+,
and the critical temperature of the mixture – and they were all trained on the same dataset of 2013 data samples.
Based on the statistical performance reported in the paper, the authors ranked the models as follows: MLP-LM >
MLP-BR > MLP-SCG > MLP-RB > LSSVM-CSA > RBF-PSO > GMDH. These results show that MLPs have the
best predictive performance of all the models tested. Moreover, [13] proposes a committee machine intelligence system
(CMIS) – an ensemble that weights the top three performing models, namely, the MLPs optimized with LM, BR, and
SCG algorithms. The ensemble aggregates the performance of the three MLPs and generally outdoes the individual
MLPs. Later, [14] took the same dataset as [13], and cleaned out any inconsistent data entries. They then trained
an XGBoost model [136], an ensemble of gradient-boosted decision trees optimized for scalability and efficiency on
large datasets, on the cleaned dataset, with hyperparameters optimized using 5-fold cross-validation (see [137]) with
exhaustive grid search. In line with the findings of [110] in regards to gradient-boosted decision tree ensembles, [14]
achieved remarkably low statistical error with their predictions, outperforming MLPs.

In 2020, the works of [112] and [111] sought to draw a detailed statistical picture of how various machine learning
algorithms perform on the task of modeling the CO2-brine IFT. The former work compares MLPs and RBFNs
optimized using various methods, and the latter compares a whole range of techniques, including MLPs, SVMs, ridge
regression with RBF kernels (RR-RBF), decision trees, random forests, adaptive boosting, Gaussian process regression
(GPR) [138, 139], and gradient-boosted trees. Results from [112] were obtained against a dataset of 91 points only;
however, they show that RBFNs optimized with either PSO, Differential Evolution (DE) [140], or the Farmland Fertility
Algorithm (FFA) [141] perform better than MLPs optimized with LM, BR, and SCG. And results from [111] show
that MLPs come second only to gradient-boosted trees. Later in 2021, [19] again conducted a comparative study of
neural network models, including MLPs, RBFNs, and Wavelet Neural Networks (WNNs). They concluded that MLPs
with sigmoid activations perform the best, and MLPs with wavelet activations (WNNs) perform the worst. The same
year, [113] proposed another classical learning technique for the problem – namely, genetic programming (GP) [142].
To that end, they divided the dataset into two subsets: one with data points where the temperature was less than or
equal to 313.15K, and the other with data points where the temperature was greater than 313.15K. After creating the
two subsets, they trained a separate model on each subset using genetic programming. However, as with most other
non-ensemble classical techniques, the performance of their GP models does not stack up to the performance that
neural networks with sigmoid activations have been shown to achieve. Another work comparing different machine
learning methods for IFT was published in 2022 by [114]. They analyzed random forests (RF), GPR, and RBFNs, and
reached the conclusion that random forests perform the best.

The application of AI to IFT prediction gained significant traction in 2024, reflected in the publication of six
research papers: [115], [116], [117], [118], [119], and [120]. [115] uses multiple machine learning algorithms for
IFT estimation, including Gradient Boosting, Extreme Gradient Boosting, Least Squares Boosting, Artificial Neural
Networks, and Genetic Programming. Like most previous studies, [115] employed six input features: pressure, temper-
ature, the salinity of both monovalent (NaCl, KCl, Na2HCO3, Na2SO4) and bivalent salts (MgCl2, CaCl2, MgSO4), and
the presence of impurities such as CH4 and N2. Among their models, the Gradient Boosting approach demonstrated
the lowest MAPE (3.38%) for testing data, outperforming other models, whereas the Genetic Programming model
exhibited the poorest performance. The ANN model achieved a relatively high MAPE of 8.99%, which is significantly
higher compared to similar studies available in the literature. The discrepancy could be due to differences in the
underlying dataset or a poor choice of hyperparameters. As a practical application of their models, the paper uses
predicted IFT to determine the optimal storage depth for a real carbonate saline aquifer located onshore in the UAE.

[116] proposed a novel deep learning-based approach to estimate the IFT, specifically focusing on solutions
containing divalent salts (MgCl2 and CaCl2), where GMDH was used to model IFT. The proposed GMDH-based
model yielded a MAPE of 2.95% for test data, demonstrating high accuracy. A key advantage of the GMDH approach
is its ability to optimize the network structure automatically, thus requiring less hyperparameter tuning.

[117] used an RF model coupled with a Bayesian Optimization algorithm (BO-RF) to predict IFT. The BO-RF
model was compared against three other RF models, which were optimized using Sparrow Search Algorithm (SSA-RF),
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Figure 7: A comparison of methods reported in the literature. For consistency, only studies based on the 1716-sample
dataset are included. Reported metrics correspond to test sets where available, or to the full dataset otherwise. Differences
in feature sets, data processing, and optimization schemes contribute to some variability. Full details are provided in Table
1 and the accompanying text.

Particle Swarm Optimization (PSO-RF), and Improved Grey Wolf Optimization (IGWO-RF), respectively. Among
these, the BO-RF model demonstrated the best performance, achieving a MAPE of 2.07% when evaluated on the entire
dataset. The predicted IFT values were then utilized to determine the CO2 sequestration capacity of saline aquifers in
the Tarim Basin of Xinjiang, China.

[118] introduced heterogeneous ensemble learning to predict IFT by combining XGBoost and Light Gradient
Boosting Machine (LightGBM). The performance of the ensemble learning model was compared to the individual
performances of XGBoost and LightGBM. The results showed that the ensemble learning model achieved a lower
MAPE of 2.01%, compared to 2.31% for XGBoost and 2.45% for LightGBM. [119] also investigated the use of
Gradient Boosting and LightGBM with a slightly smaller dataset compared to [118]. The gradient boosting model
achieved the best performance, reporting an error of 2.23% on the test data. While the gradient boosting model in this
study outperformed the individual models of Shen et al., it still underperformed compared to the ensemble learning
model proposed by [118].

[120] introduced a dung beetle optimization-based backpropagation neural network (DBO-BPNN) for IFT
modeling. The model’s performance was compared to particle swarm optimization-based BPNN (PSO-BPNN) and
grey wolf optimizer-based BPNN (GWO-BPNN). DBO-BPNN achieved the best accuracy, with an error of 3.35% on
the whole dataset, outperforming PSO-BPNN, which had the next best performance with an error of 3.61%. However,
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despite its improved accuracy, DBO-BPNN has higher computational complexity and requires a larger dataset to
perform optimally, making it less suitable for IFT applications. Moreover, previous studies have demonstrated that
less complex models can achieve even better results.

So far in 2025, at the time of writing, we have identified two research papers published this year on AI-driven IFT
modeling. [121] introduced a multibranch convolutional neural network (MBCNN) for predicting CO2-brine IFT across
varying temperature and pressure conditions. Unlike conventional single-branch machine learning models such as
Random Forests and Support Vector Regression, their proposed MBCNN architecture integrates multiple convolutional
layers and fully connected layers to capture inter-attribute relationships. While the MBCNN achieved a MAPE of
2.49%, outperforming the RF, GEP (Gene Expression Programming), and SVR models used for comparison in this
study, previous research has demonstrated that simpler models can achieve similar performance under comparable
conditions. For example, [111] reported a MAPE of 2.37% using XGBoost, while [118] achieved 2.31% with XGBoost
and 2.01% with an ensemble learning approach combining XGBoost and LightGBM.

Deviating from the oft-used set of six input features, the work by [122] in 2025 utilized three input features –
temperature, pressure, and NaCl salinity – to predict IFT. The study explored a range of models, from simple linear
regression to more complex architectures such as Multilayer Perceptron (MLP), striking a balance between accuracy
and interpretability. Among the five models evaluated, Support Vector Machine (SVM) and MLP performed the best,
achieving MAPE values of 0.97% and 0.99%, respectively, on the test data. These findings demonstrated that even
relatively simple ML models with good data processing and hyperparameter tuning could accurately predict IFT,
outperforming several complex models examined in previous studies.

From Table 1, several trends can be noticed. Among all ML algorithms surveyed, gradient-boosting consistently
achieves the highest performance metric, such as high 𝑅2 scores, often outperforming more complex architectures
such as deep neural networks in this domain. Support vector machines also show competitive performance, where they
sometimes match or exceed the accuracy of gradient boosting. Among the models evaluated, gradient boosting variants
(e.g., XGBoost, LightGBM) consistently show minimal signs of overfitting, with train and test metrics remaining very
close in terms of 𝑅2, MAPE, and RMSE. In contrast, models such as Gaussian Process Regression and Decision Trees
tend to exhibit larger discrepancies between training and testing performance, reflecting susceptibility to overfitting.
Neural network–based models also show signs of overfitting in some cases.

Most studies, as seen in Table 1, focus on common input variables such as pressure, temperature, and bulk salinity.
However, several important conditions remain underexplored. High-salinity brines rich in divalent ions (Ca2+, Mg2+,
SO42 – ), which are typical of deep saline aquifers, are only sparsely represented. Similarly, datasets covering extreme
pressures and temperatures relevant to supercritical CO2 storage are limited, reducing model generalizability. While
some studies have included impurities such as CH4 and N2, other common impurities (e.g., H2S, O2) are rarely
considered. Furthermore, most models rely solely on fluid-phase properties, leaving out potentially important features
related to rock–fluid interactions, such as mineral composition and wettability.

4. Feature Selection and Understanding IFT from ML Modeling
The ML modeling approach primarily focuses on the accuracy of prediction, and these models (e.g., neural

networks) are often considered “black-box” when it comes to understanding and interpreting IFT behavior. However,
IFT datasets, whether derived from laboratory measurements or molecular simulations, are subject to uncertainties
stemming from measurement noise, instrument limitations, operator variability, and idealized modeling assumptions.
These uncertainties can propagate through ML models, potentially leading to misleading predictions if not accounted
for or understood. For geologic sequestration applications, where IFT predictions may influence large-scale storage
design and risk assessment, it is crucial for domain experts to comprehend not only the predicted values but also the
underlying physical relationships between IFT and controlling parameters such as temperature, pressure, and brine
composition. This need for physical interpretability motivates the use of model explanation techniques. To this end,
various methods for model interpretation or for analyzing the influence of input features on the predicted IFT have
been studied in existing research. Some of the key methods used for investigating the impact of different parameters on
IFT include ML-based techniques such as Feature Importance Analysis and Shapley Values, and statistical methods
such as the Akaike Information Criterion and Pearson coefficients [13, 82, 120, 122].

Feature analysis not only provides interpretability by offering insights into both the model and the underlying phys-
ical process, but it also improves predictive performance by guiding feature selection. Well-chosen features eliminate
redundancy and reduce the influence of irrelevant or highly correlated variables, which can otherwise introduce noise
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and degrade a model’s generalization performance. Moreover, high-dimensional input spaces exacerbate variance and
increase the risk of overfitting, particularly in data-constrained settings.

In practice, the sensitivity of a model to feature selection depends on its underlying learning mechanism. For
example, Linear Regression and Least Squares models are especially vulnerable to irrelevant or collinear features,
making manual feature screening and dimensionality reduction techniques such as Principal Component Analysis
critical for stable and accurate predictions. SVMs are also sensitive to feature quality, as irrelevant or noisy features
dilute the kernel similarity measure and reduce the model’s ability to identify meaningful decision boundaries. RBFNs
are particularly susceptible to the “curse of dimensionality,” since their performance depends on distance-based
similarity; irrelevant or redundant features can therefore severely impair accuracy unless carefully pruned. Models
based on non-linear architectures such as tree ensembles (e.g., Random Forests and Gradient Boosting) and deep neural
networks are generally more robust to feature redundancy, as they can implicitly down-weight or ignore uninformative
inputs. Nevertheless, even for these models, careful feature selection can improve accuracy, accelerate training, and
mitigate overfitting—particularly when the dataset size is limited.

We use the most commonly used input features for IFT prediction to analyze and understand their influence.
First, we plot the trend analysis of IFT with respect to each of the input features: pressure, temperature, monovalent
cation molality, and bivalent cation molality. The dataset used for this analysis is obtained from the study by Li et al.
[120]. Figure 8 shows the trend analysis for each input feature. The IFT appears to decrease with increasing pressure.
Regarding temperature, IFT increases until approximately 100°C, after which it begins to decline. For the cations,
while the overall trend suggests a direct relationship with increasing IFT, there is significant variation in IFT values for
some cation concentrations. Bivalent cations show a more pronounced nonlinear effect at higher concentrations. The
increase in IFT for monovalent cations tends to plateau, while for bivalent cations, it accelerates beyond 2 mol/kg.

Figure 9 presents the Pearson correlation coefficients for the same set of input features. This analysis indicates that
pressure is the most influential feature affecting the ML model’s predictions, followed by cation molality, with bivalent
cations having a more dominant impact. Temperature has the least effect on IFT. The feature importance rankings
observed here align with the findings reported in the literature using methods discussed earlier [13, 82, 120, 122].
While commonly used trend analysis and feature importance methods provide some insight into the underlying physics,
the interpretability of ML-based IFT modeling remains a challenge. This will be explored in greater depth in the next
section.

5. Challenges, Critique and Future Directions
The literature demonstrates that, similar to other fields, data-driven modeling is an effective approach for

characterizing IFT. The studies reviewed in Section 3 show that ML models can reliably predict IFT across different
scenarios by leveraging diverse input features. However, several challenges and limitations persist in applying ML to
IFT prediction, and many critical questions remain unanswered. This section provides an in-depth discussion on these
challenges and explores potential future directions for improving ML-based IFT modeling.
5.1. Data Limitations

The accuracy and reliability of ML-based IFT prediction depend significantly on the availability of large, high-
quality datasets. Achieving generalizability requires diverse and extensive data, yet a key challenge in IFT modeling
is the limited and often incomplete nature of experimental datasets. Many existing datasets lack sufficient variation,
which can lead to overfitting, where models perform well on training data but fail to generalize to new conditions.

There is also a lack of a standardized, publicly available, high-quality, and expansive data set for interfacial tension
that ML models can reliably be trained on. It’s crucial to recognize that machine learning methods, particularly neural
networks, are highly dependent on the quality and quantity of data available. We believe that efforts to collect a
comprehensive, high-quality IFT dataset – at least for saline aquifers, but ideally covering multiple underground rock
formations to leverage common patterns12 – would significantly advance the adoption of modern machine learning
techniques for modeling interfacial tension. As shown in Table 1, the available datasets are limited in size. For studies
aimed at developing and testing novel ML models for IFT prediction, we recommend adopting the most widely used
dataset, as employed in studies [102, 104, 106, 108], as a baseline for standardized model performance comparison,
and subsequently extending the analysis using larger datasets when available.

12One can make rock type an input feature, or one can employ techniques such as transfer learning to allow for physics-induced common data
patterns across rock formations to be learned by a neural network and improve its prediction.
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Figure 8: IFT trend analysis with respect to different input features. A confidence interval (95%) around the trend line is
also shown to indicate the spread of data.

Figure 9: Pearson correlation coefficients for feature importance analysis.

5.2. Model Complexity
The landscape of ML models for IFT prediction encompasses a broad spectrum, ranging from simpler statistical

approaches to highly complex architectures. This variety raises a fundamental question: which model is best suited
for IFT prediction? The choice of an optimal model depends on several factors, including model complexity, data
availability, computational efficiency, and the trade-off between accuracy and interpretability. Given that existing
IFT datasets are relatively small and lack stochastic variability, simpler models may not only suffice but could also
outperform complex architectures. Unlike deep learning models, simpler approaches are less prone to overfitting in
data-limited scenarios and provide greater interpretability—an important consideration in IFT modeling. Furthermore,
as shown in Table 1, a comparison of different models suggests that simpler architectures often generalize better on
unseen testing data, whereas more complex models tend to overfit due to the lack of diverse and extensive datasets. This
underscores the need for carefully balancing model complexity with dataset size to ensure both accuracy and robustness
in ML-based IFT predictions. It is important to note, however, that “simple” ML models are not simplistic. Even the less
complex architectures are capable of capturing intricate, nonlinear interactions among multiple input features—going
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beyond what traditional single-parameter correlations can offer. Thus, ML methods retain their superiority by learning
richer representations of the underlying physics, even when model complexity is deliberately constrained.

While simpler models have demonstrated strong generalization in data-limited scenarios, the potential of modern
deep learning architectures for IFT prediction remains unexplored. If large, high-quality datasets with sufficient
variability become available, more complex models—such as CNNs, RNNs, and transformers—could offer state-of-
the-art performance, particularly when framing CO2-brine IFT prediction as a time-series modeling task. Given the
increasing complexity and scale of CO2 storage projects, there is an urgent need to explore advanced architectures
capable of capturing long-range dependencies and intricate parameter interactions in IFT prediction. Transformer-
based models, originally developed for natural language processing, have demonstrated promising performance in
diverse sequence modeling domains. Leveraging transformers with data availability and computational resources could
accelerate predictive capabilities and reduce uncertainty in large-scale sequestration planning. Furthermore, modern
techniques to aid the training of deep neural networks also remain unexplored. For example, ReLU activations have
shown great promise in improving the performance of deep networks in a variety of tasks, yet, to the best of our
knowledge, they remain unappreciated for the task of CO2-brine IFT modeling. Similarly, transfer learning [143–145],
also known as domain adaptation, has proven revolutionary towards several applications concerning deep learning
[68, 146–149], and one can employ transfer learning for the problem at hand, too, where one would pre-train a network
to model the general IFT function, and then adapt that network to model the IFT of CO2-brine systems. However, to
date, there has been no work on this approach.
5.3. Hybrid Models

In scientific applications of ML, it is crucial to ensure that models adhere to fundamental physical principles
to prevent unrealistic predictions. Integrating domain-specific physics into data-driven models enhances both their
accuracy and reliability. A prominent method in this context is the use of Physics-Informed Neural Networks (PINNs)
[150], which embed physical laws, typically represented by partial differential equations, into the neural network’s
loss function. This approach constrains the model’s outputs to align with known physical behavior, thereby improving
generalization, interpretability, and trust. PINNs have demonstrated significant success across various engineering and
physics domains. Despite the extensive application of purely data-driven ML models in predicting the CO2-brine IFT,
the integration of physics-informed approaches remains underexplored in this area. Incorporating physical constraints
specific to IFT phenomena into ML models could enhance their predictive performance and ensure consistency with
established physical laws. Future research should prioritize the development of hybrid models that seamlessly combine
physics-based information with advanced ML techniques.
5.4. Standardization of Evaluation Methods

There is a need to adopt a standardized notation in the literature: when different studies use different symbols or
terms for the same concepts, it makes it harder to compare and integrate findings from the various sources. But more
critically, we feel that there is a need to adopt a systematic methodology to test and evaluate different machine learning
models. Currently, in most of the literature, the datasets used for evaluation between the various publications are not
the same, making it difficult to compare the models proposed in these publications against each other. Moreover,
variations in training datasets further contribute to uncertainty, making it challenging to discern whether observed
performance improvements are due to the models themselves or simply a result of using more or higher-quality data.
Additionally, most publications compare their models against other data-based models only and lack a comparison of
how these models fare against analytical and numerical models. Adding such comparisons in any future work would
prove helpful.
5.5. Practical Relevance for Geologic Storage

While most ML-based IFT models have been developed and tested on laboratory-scale datasets, their potential
implications for large-scale carbon capture and storage projects are significant. Accurate and computationally efficient
prediction of CO2-brine IFT can directly inform reservoir simulation workflows, wellbore integrity assessments,
and leakage risk analysis. In particular, ML models can provide rapid sensitivity analyses under varying pressure,
temperature, and salinity conditions, allowing engineers to explore a wider range of operational scenarios than would
be practical with experiments or molecular simulations alone. Moreover, integrating ML-based IFT prediction into
existing carbon capture and storage decision-support tools could improve estimates of capillary trapping capacity and
residual saturation, thereby reducing uncertainty in storage efficiency forecasts. The ability to retrain models with site-
specific data also offers adaptability for different geologic settings, enabling more tailored project designs. Ultimately,
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bridging the gap between laboratory ML models and field-scale carbon storage engineering will be essential to ensure
that predictive accuracy translates into safe, reliable, and cost-effective CO2 storage.

6. Conclusions
The data-driven approach to modeling CO2-brine IFT in saline aquifers offers a cost-effective alternative to

traditional methods. Numerous studies have demonstrated the feasibility of this approach using a range of ML models,
from simple to advanced architectures. In this work, we provided a comprehensive review of the existing literature and
critically examined the opportunities and challenges associated with this data-driven approach.

Due to variations in training and evaluation datasets, as well as a lack of information on computational effi-
ciency—such as time and memory footprint—we refrain from making definitive claims about the best model in the
reviewed literature. However, based on predictive performance metrics, it seems reasonable to suggest that simpler ML
models, such as gradient-boosted decision trees and support vector machines, may be the most accurate and practical
for estimating CO2-brine IFT in saline aquifers. While previous studies have explored advanced and complex neural
network architectures, the currently available datasets appear to be a limiting factor, preventing these models from
achieving more robust performance, thus giving an advantage to simpler ML approaches.

Nonetheless, we emphasize that multilayer perceptrons (MLPs) warrant further evaluation to fully assess their
potential, as they have demonstrated state-of-the-art performance in similar tasks, often surpassing classical methods
like decision trees. We believe that the MLPs reviewed in this study may have been constrained by their size, and that
deeper MLP architectures trained on larger datasets could potentially yield even better results.

Future work could extend this review by conducting a meta-analysis on a substantially larger, standardized CO2-
brine IFT dataset collected across diverse saline aquifer conditions. This dataset will enable the benchmarking of
more advanced architectures such as transformers and physics-informed neural networks, which may capture complex,
nonlinear relationships beyond the capabilities of current models. Lastly, we propose that efforts should be made by the
research community to make source codes and datasets openly accessible. This would facilitate the practical adoption
of the proposed methods and provide a foundation upon which future research can be more easily built.
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