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Self-driving laboratory platform for many-
objective self-optimisation of polymer
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machine learning and orthogonal online analytics†
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The application of artificial intelligence and machine learning is revolutionising the chemical industry, with the

ability to automate and self-optimise reactions facilitating a step change in capability. Unlike small-molecules,

polymer nanoparticles require navigation of a more complex parameter space to access the desired perform-

ance. In addition to the chemical reaction, it is desirable to optimise the polymer molecular weight distribution,

particle size and polydispersity index. To solve this many-objective optimisation problem, a self-driving labora-

tory is constructed which synthesises and characterises polymer nanoparticles (incorporating NMR spec-

troscopy, gel permeation chromatography and dynamic light scattering). This facilitates the autonomous

exploration of parameter space with programmable screens or AI driven optimisation campaigns via a cloud-

based framework. The RAFT polymerisation of diacetone acrylamide mediated by a poly(dimethylacrylamide)

macro-CTA was optimised to maximise monomer conversion, minimise molar mass dispersity, and target

80 nm particles with minimised polydispersity index. A full-factorial screen between 6- and 30-minutes resi-

dence time, between 68 and 80 °C and between 100 and 600 for the [monomer] : [CTA] ratio enabled

mapping of the reaction space. This facilitated in-silico simulations using a range of algorithms – Thompson

sampling efficient multi-objective optimisation (TSEMO), radial basis function neural network/reference vector

evolutionary algorithm (RBFNN/RVEA) and multi objective particle swarm optimisation, hybridised with an

evolutionary algorithm (EA-MOPSO), which were then applied to in-lab optimisations. This approach accounts

for an unprecedented number of objectives for closed-loop optimisation of a synthetic polymerisation; and

enabled the use of algorithms operated from different geographical locations to the reactor platform.

Introduction

Optimising chemical processes is by no means a trivial endea-
vour, with complex responses to changes in inputs and a
whole host of possible (often competing) objectives. However,

with the rapid expansion of the capability in automated syn-
thesis and analysis, coupled with integrated machine learning
algorithms, there are a wide range of opportunities for
innovation.1–5 Automation increases the quality of data, frees
researchers from arduous and time-consuming tasks, and can
identify optima either missed entirely by humans or increase
efficiency in achieving such optima.6

Where automated synthesis, analysis and experimental
selection can be operated without the need for human inter-
vention, in a so-called “closed-loop” fashion, the impact of
such self-driving laboratories can be dramatic and extensive.
While there are a range of effective demonstrations for small
molecule chemistry, the landscape for polymer chemistry is
sparser, especially for more complex problems with greater
than two objectives.7,8 That said, there are some examples
demonstrating the combination of automated experimentation
and machine learning algorithms. Single objective closed-loop
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optimisation has been demonstrated by Junkers and
co-workers for both molecular weight9 and monomer
conversion,10 allowing the targeting of a singular property of
the polymer. Multi-objective problems offer the additional
complexity that instead of a single optimum there are usually
a set of non-dominated optima, where objectives trade-off
against one another. The generation of such a “Pareto front”
requires more sophistication in terms of algorithm and often a
greater number of iterations of experiment to achieve
success.11

Whilst Houben et al. demonstrated the manual multi-objec-
tive AI-assisted optimisation of an emulsion polymerisation
formulation,12 significantly more automation was introduced
by Leibfarth and co-workers, in a human-in-the-loop approach
to optimising RAFT polymerisation.13 Fully closed-loop multi-
objective optimisation was first demonstrated by Warren and
co-workers, elucidating the trade-off between monomer con-
version (α) and molecular weight dispersity (Đ) for a range of
RAFT polymerisations.14

Additional complexity in polymer materials is introduced
by considering that chains are often comprised of multiple,
chemically different blocks, which each impart unique pro-
perties in solution due to spontaneous assembly into nano-
particles. As a result, their performance not only relies upon
the chemical structure of the individual polymer chains, but
the size and morphology of the particles. Aqueous polymeris-
ation induced self-assembly (PISA) is a highly precise and

rational method of controlling both the dimensions of the
polymer chains and the nanoparticle size and morphology.15

Several PISA formulations have been conducted in flow, and
a particularly attractive, widely studied formulation is based
on the block copolymer polydimethylacrylamide-poly(diace-
tone acrylamide) (PDMAm-PDAAm).16–20 This all-acrylamide
system facilitates an “ultrafast” approach to the polymer syn-
thesis, reducing reaction times to the order of 10 minutes.
Furthermore, the power of online analysis has previously
been exemplified for this system whereby benchtop NMR was
able to obtain high resolution kinetic data;18 and Guild et al.
used online small angle X-ray scattering (SAXS) to monitor
the evolution of particle size.21 In the case of the latter tech-
nique, access to such (typically facility based) instruments is
limited and expensive, and automated data processing
requires complex workflows within often access limited soft-
ware interfaces. As such, SAXS currently offers limited
utility for closed-loop optimisation. On the contrary, while
offering less comprehensive information (especially for
more complex morphologies), dynamic light scattering (DLS)
provides a much more convenient and accessible method of
characterising particles – with automated data processing,
and at a significantly more affordable cost. DLS has
been demonstrated in flow for a range of systems, either by
accounting for motion of particles during the
measurement22–27 or through a stopped-flow approach,28

including notably in a self-driving laboratory platform for

Fig. 1 Generalised structure of an optimisation experiment, with reference to specific features applied in this work (as found in dashed boxes).
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size targeting of polymer particles, applying a single objec-
tive optimisation algorithm.29

In bringing together analyses that characterise the polymeris-
ation, molecular weight distribution and particle properties, an
unprecedented number of objectives emerge for closed-loop
optimisation of polymer particle synthesis (i.e. Monomer conver-
sion, molar mass averages, molar mass dispersity, particle size,
particle size polydispersity index, DLS count rate. This is
increased further by considering calculable objectives such as
economic cost, environmental metrics such as E-factor.). This
increase in problem complexity requires careful consideration
from an algorithmic perspective, resulting in the need to evaluate
a range of potential machine learning algorithms. Collaboration
with experts in machine learning and artificial intelligence is
essential and can be facilitated by a cloud-based framework.30

The structure of an optimisation experiment relying upon a
machine learning algorithmic foundation (Fig. 1) is as follows:
(A) the inputs and limits of those inputs for the system are estab-
lished, and initialisation experiments selected within these
limits (usually based upon a framework (e.g. Latin Hypercube
Sampling (LHS), Design of Experiments (DoE)). (B) The selected
experiments are performed, followed by (C) analysis of those
experiments, to find the values for the objectives selected for the
experiment. (D) The input variable-objective pairs are given to
the algorithm which gives a new set of experimental conditions.
Steps (B)–(D) are then repeated in the so-called closed-loop until
certain criteria are fulfilled or user intervention halts the
process. There exists a wide landscape of possible algorithms,
with varying performance when applied to different chemical

optimisation problems.31,32 In this work, a range of multi-objec-
tive optimisation algorithms were investigated to give diversity of
behaviour, with Thompson sampling efficient multi-objective
optimisation (TSEMO),11 radial basis function neural network/
reference vector evolutionary algorithm (RBFNN/RVEA) and
multi objective particle swarm optimisation, hybridised with an
evolutionary algorithm (EA-MOPSO)33). The algorithms them-
selves operate with multiple steps (Fig. 1), beginning with (1) the
hitherto obtained data, (2) which are then used to construct a
surrogate model. (3) This can then be called by the optimisation
algorithm to identify the location of the predicted Pareto front,
and (4) an experiment selected using an evaluative methodology
from these candidates. Finally, (5) the success of the optimi-
sation process can be measured by a range of metrics, such as
hypervolume (HV).34

Herein, the implementation of a platform to perform auto-
nomous many-objective self-optimisation for particle synthesis
via PISA, using a range of cloud-based machine learning algor-
ithms is presented.

Results and discussion

The platform used in this work follows from previous work14

and consists of (in brief) a tubular flow reactor, at-line gel per-
meation chromatography (GPC), inline benchtop nuclear mag-
netic resonance (NMR) spectroscopy and at-line dynamic light
scattering (DLS) (Fig. 2; for a fuller description, see Fig. S1, in
the ESI†). Of note is the volume of data available for each experi-

Fig. 2 Overview of the chemistry and autonomous platform integrating a flow reactor and online gel permeation chromatography (GPC), 1H
nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS) used in this work.
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ment using this platform – with monomer conversion from
NMR spectroscopy, molecular weight information (number/
weight average molecular weights, dispersity) from GPC and par-
ticle size information (average size, polydispersity index (PDI),
count rate) from DLS, which gives unparalleled online infor-
mation for a closed-loop autonomous polymerisation platform.

High throughput screening

A programmed screen of the RAFT polymerisation of diacetone
acrylamide in the presence of a poly(dimethylacrylamide)75
(PDMAm75) macro-chain transfer agent (CTA) was performed,
yielding spherical particles via PISA ranging in size from 34 to
116 nm (Fig. 3). The temperature, residence time and ratio of
monomer to macro-chain transfer agent ratio ([M] : [CTA]) were
changed in a stepwise fashion to yield a 4 × 4 × 4 full factorial
screen.

In this screen, all 67 (64 + 3 repeat centre points) reactions
and analyses were completed in 4 days with no user interaction
besides the loading of reagents, and initial selection of experi-
mental structure following completion of each reaction, the
series of analyses are each triggered once the tubular reactor
reaches steady state (full analysis and details in Fig. S5–8 and
Table S2 – see ESI†).

The programmed screen provides a range of benefits for this
work. Firstly, it facilitated a test of reproducibility, where three
repeats of the centre-point of the explored input space were per-
formed. As is to be expected from flow chemistry, this is demon-
strated to be excellent, with variability across all measured
values to be extremely low, especially for monomer conversion,

molar mass dispersity (Đ) and particle size, with the standard
deviation being 2%, 2% and 1% of the found values respectively
(see Table S2 and Fig. S8 in the ESI†). The greatest variability
observed was for PDI, but this is due to the very low value for
PDI obtained for the given conditions (17.5 min, 74 °C, target
DP = 350), at an average of 0.035. At such low values, any small
error (in terms of magnitude, here, 0.030) will represent a signifi-
cant relative error – in this case, 85%.

Secondly, it provides macro-level understanding of the
system probed, where the generalised responses for the outputs
in terms of the decision variables (i.e. the conditions changed)
can be observed. Briefly, conversion is shown to be primarily
reliant upon temperature and to a lesser extent residence time.
Đ is shown to primarily increase with higher [M] : [CTA], repre-
senting the targeting of longer polymer chains. It is worth
noting that the GPC setup used a rapid column, and the poly-
merisation performed “through” oxygen, both combining to
give a higher measured Đ than might be expected for a typical
RAFT system, though the trend is as expected. In any case, the
particles formed are well-defined throughout – as is clear from
the PDI which is low wherever conversion is greater than 50%.
Finally, as is to be expected, particle size is shown to be primar-
ily dependent on the target degree of polymerisation (quanti-
fied in [M] : [CTA]) for the DAAm block, with larger particles
made where longer hydrophobic polymer chains were targeted.

Finally, the rich dataset created as part of this enabled the
construction of a response surface upon which a series of in-
silico optimisation experiments could be performed, as has
been demonstrated elsewhere.35–37 The response surface was

Fig. 3 Results from the three-input full factorial DoE screen (temperature, residence time (RT) and monomer to CTA ratio ([M]:[CTA])), comprising
64 experiments, for (a) conversion, (b) molar mass dispersity, (c) particle size (nm) and (d) particle size PDI.
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Fig. 4 In-silico multi-objective optimisation for the RAFT dispersion polymerisation of DAAm in pH 2.5 water, using PDMAm74 as the macro-chain
transfer agent and VA-044 as the initiator, in terms of (i) decision space (inputs explored) and (ii) objective space (generated data) using (a) TSEMO,
(b) RBFNN/RVEA and (c) EA-MOPSO as the optimisation algorithm. The objectives were a target particle size of 80 nm, to maximise conversion and
to minimise Đ and PDI. 20 optimisation campaigns were performed, each consisting of 15 initial LHS screening experiments (omitted for clarity) and
15 iterative algorithmically selected experiments. Each transparent datapoint represents a single selection across 300 experiments (duplicates are
possible through repeated selection in each campaign).

Fig. 5 Summary of the optimisation strategies employed: Thompson sampling efficient multi-objective optimisation (TSEMO),11 radial basis function
neural network/reference vector evolutionary algorithm (RBFNN/RVEA) and multi objective particle swarm optimisation, hybridised with an evol-
utionary algorithm (EA-MOPSO).33
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fitted using modified Akima interpolation as part of the
MATLAB fitting toolbox (for more details see ESI†). The
primary purpose of this stage of the work was to evaluate the
general performance of the algorithms and to act as a guide
for future in-lab experiments. The relative economy of per-
forming simulated experiments for a more statistically signifi-
cant comparison of the approaches applied to the system is
the critical feature.

In-silico self-optimisation

The differences between the algorithms investigated here
(Thompson-sampling efficient multi-objective optimisation
(TSEMO),11 radial basis function neural network/reference
vector evolutionary algorithm (RBFNN/RVEA) and a hybridised
evolutionary algorithm/multi objective particle swarm optimi-
sation (EA-MOPSO)), are outlined in Fig. 5. The key differences
lie in steps 2 and 3, with the model and optimisation algor-
ithms used. The algorithms selected use models which can
handle the relatively small datasets and uncertainty associated
with chemical process optimisation, based on either Gaussian
process (GP)38 or RBFNN.39 A range of multi-objective optimi-
sation algorithms were investigated to give diversity of behav-
iour, from the bio-inspired, heuristic particle swarm optimi-
sation,33 to more conventional approaches with RVEA40 and
non-dominated sorting genetic algorithm-II (NSGA-II).41 This
diverse set of algorithms was able to be accessed by the plat-
form via a cloud-based framework – that is the algorithms
could be operated remotely from a different geographical
location to the experiment. This approach allows more appro-
priate hardware to perform the (potentially) computationally
complex algorithmic processes, and in cases where there is
intellectual property sensitivity in the case of either data or
algorithm, facilitates optimisations that might otherwise not
be possible.

For the evaluation of the algorithms in this in-silico testing,
the approach to optimisation selected was a direct simulation
of the proposed in-lab approach in terms of methodology. The
objectives for this optimisation were to maximise conversion,
to minimise dispersity and PDI and to target a particle size of
80 nm. As such, this problem can be classified as a many-
objective optimisation problem (MaOP). A single optimisation
campaign consisted of an initial screening of 15 points using
Latin Hypercube sampling (LHS) within the input space for
which the responses were obtained (here, from the response
surface based on the experimental data). This dataset was then
provided to the selected algorithm which in turn generated a
new set of inputs for the next experiment. This closed-loop
methodology then proceeded iteratively until a selected end-
point was reached, after a total of 30 experiments were per-
formed. 20 optimisation campaigns were conducted in this
manner, for each of the three algorithms. A limitation of our
implementation of TSEMO was that it would only accept as
many objectives as there were input variables. Therefore, PDI
was omitted as an objective for the running of the optimis-
ations, since the response surface from the screen showed this
was a featureless surface, as generally the particles formed

were monomodal and well-defined. The exception to this was
at low conversions, but this would be punished by the algor-
ithm aiming to maximise the conversion. However, PDI was
maintained as an objective in any evaluation metrics of the
optimisation to allow direct comparison of plausible
approaches.

The data from these optimisation runs qualitatively shows
variations between the three algorithms in both the decision
space (Fig. 4(i)) and, in turn, the resultant mapped Pareto
front (Fig. 4(ii)). In particular, RBFNN/RVEA (Fig. 4b) clearly
places emphasis on exploiting higher temperature experiments
for lower [M] : [CTA], yielding a more detailed Pareto front
where molar mass dispersity and PDI are low and conversion
high, at the expense of the desired particle size (between 30
and 40 nm from the optimum).

TSEMO is more generalised (i.e. balancing exploitation with
exploration) in its approach, which is illustrated by greater
diversity in the decision space explored (Fig. 4a). There
remains discrimination of experimental selection (e.g.
[M] : [CTA] > 500 is almost completely dismissed by the algor-
ithm), but a more even distribution of inputs results in a more
evenly explored decision space and thus Pareto front. The

Fig. 6 Mean evolution of hypervolume and inverse ratio of net aver-
tence angle (IRNA) for the 20 optimisation campaigns for TSEMO,
RBFNN/RVEA and EA-MOPSO. For hypervolume, the mean for 20 cam-
paigns of 30 experiment Latin Hypercube sampling (LHS) of the decision
space is also shown. The shaded area represents one standard deviation.
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EA-MOPSO results (Fig. 4c) show greater exploration in terms
of the [M] : [CTA] input but is more exploitative in terms of
temperature. Performance metrics are employed to assess the
effectiveness of MaOP algorithms and assist decision-makers
in evaluating the efficiency of optimization algorithms.42

Despite performance indicators potentially leading to infor-
mation loss by condensing data to evaluate candidate solu-
tions, their primary objective is to reliably and accurately
capture essential information, which is crucial for MaOP pro-
blems as the number of objectives increases.

One such measure is the hypervolume, which is an essen-
tial metric in multi-objective optimisation that assesses the
performance of a set of solutions by quantifying the volume of
the objective space that is dominated by these solutions, rela-
tive to a reference point.34,43 More specifically, in this case, it
measures the volume dominated between the utopian point
(in this case, conversion = 100%, Đ = 1, particle size = 80 nm,
PDI = 0) and an anti-utopian point at the opposite end of these
scales (conversion = 0%, Đ = 3, PDI = 1 and where the loss
function used for the size objective = 2; for more details see
eqn (S1) (ESI)†). The hypervolume metric quantifies the quality
and diversity of the Pareto front by producing a single scalar
number. A higher hypervolume score indicates a more accurate

approximation of optimal solutions. The calculation of this
metric can be computationally costly, particularly in higher
dimensions. However, it is crucial for comparing various
optimisation strategies and promoting a wide range of
solutions.

The average evolution of hypervolume across the 20 runs
for each algorithm (Fig. 6) shows similar performance across
each of the algorithms, i.e. all (as expected) improve on a 30
experiment Latin Hypercube sampling (LHS) of the decision
space. TSEMO was found to slightly underperform in terms of
hypervolume, but the performance is shown to be similar
when accounting for uncertainty, with overlapping uncertain-
ties (which show standard deviation). Furthermore, caution
must be applied in interpretation here, not least because of
the four-dimensional nature of the data, meaning hypervo-
lume is not trivially visualised. In addition, the measurement
does not tell the whole story, as in higher dimensions the dis-
criminative power of HV is significantly reduced.44

Another aspect in measuring the effectiveness of each algor-
ithm is the diversity of the Pareto front generated. Inverse ratio
of net avertence angle (IRNA) is a metric of purely this diver-
sity.44 It is important to use more than one metric to measure
the success of optimisations when considering four or more

Fig. 7 Comparison of the three optimisation algorithms selected for this work in targeting 80 nm particles (a) TSEMO, (b) RBFNN/RVEA and (c)
EA-MOPSO, while maximising conversion and minimising dispersity and PDI. The initial 15 experiments are identical in each of the cases, generated
by Latin Hypercube Sampling (shown as empty squares), with the algorithmically selected experiments shown as filled triangles. Row (i) shows the
experiments in terms of decision space (i.e. conditions used), with those of the Pareto set circled and row (ii) shows the data in terms of objective
space (i.e. measured properties). In row (ii), dominated solutions are shown only as small dots, with only those points on the Pareto front shown as
squares/triangles.
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objectives, as hypervolume may be misleading in these
cases.44 Here, IRNA gives a similar trend to that seen for hyper-
volume, supporting the conclusions already drawn. It is worth
noting the high level of error across the range of experiments
for IRNA, which is intrinsic to the relatively data-poor nature
of a 30-experiment optimisation, where a relatively small
number of experiments may make up the Pareto front.

In light of the above, it is important to consider the visual-
ised data and available metrics (HV, IRNA) in concert to
provide a well-rounded characterisation of each optimisation
campaign.

In-lab self-optimisation

In any case, the data in its entirety shows promise for each of
the algorithms which outperform the pure LHS and exhibit
qualitatively observable diversity of behaviour, making all
three suitable candidates to be taken forward for application
in-lab. A new batch of PDMAm macro-CTA was synthesised,
and successful exploration of the Pareto front using closed-
loop optimisation demonstrated across the three examples
(Fig. 7). It is worth noting that since a new starting material
was used, the results are expected to be comparable to those
from the screen, but not identical.

There were again notable variations in algorithmic behav-
iour across the three optimisations. For example, the distri-
bution of the experiments with regards to input space is
shown to be more focussed on a narrower search space for the
EA-MOPSO optimisation, with increasing diversity for TSEMO
and even more so for the RBFNN/RVEA. The results in terms
of objective space qualitatively reflect this input diversity –

where the more clustered search by the EA-MOPSO algorithm
yields a larger number of non-dominated solutions in a
smaller space.

The metrics from the in-lab testing show a different trend
in hypervolume compared to the initial in-silico testing (Fig. 8).
TSEMO in this case outperforms both the other two algor-
ithms, largely due to a single experiment at iteration 20
(28 min, 78 °C, [M] : [CTA] = 135). RBFNN/RVEA particularly
gave a lesser improvement in hypervolume than might be
expected given the prior mean in-silico data, but at least a
partial justification is found in the magnitude of the uncer-
tainty in those in-silico plots. The number of runs permissible
from a cost perspective in-lab is clearly much lower than that
with an emulated approach; and so, the possibility of finding
one of the less successful pathways for a single run remains.
Furthermore, from post-experiment analysis, this can be attrib-
uted to poor performance in modelling on the real-life data,
and as such, in-lab, the algorithm selected experiments from
across the reaction space rather than giving the same exploita-
tive performance observed in-silico.

Another important consideration is to weigh the merit of
solely evaluating the success of a given optimisation in terms
of hypervolume. In terms of the objectives of the experiment,
each of the optimisation campaigns here are successful in
giving a skilled user much of the necessary information to
select conditions which provide them with a polymer particle

with a set of desired properties. There are subtle differences,
and to an extent we see an algorithm with more emphasis
placed upon exploitation in EA-MOPSO compared to algor-
ithms which appear to show more exploration in TSEMO and
in the in-lab example, RBFNN/RVEA – though for the land-
scape provided by the in-silico model, this is not demonstrated
for RBFNN/RVEA. This then enables the user to select an algor-
ithm based on their needs. For example, the balance between
exploration and exploitation achieved by TSEMO may make
this algorithm more suited to manufacturing applications,
since its exploration gives a greater idea of the size of regions
of stable output. Where exploitation is of more interest to the
user than the balanced approach described, the application of
EA-MOPSO over TSEMO in-lab may be of more interest.
Despite struggling in-lab, the successful exploitative perform-
ance of RBFNN/RVEA on the smoother, continuous in-silico
surfaces suggests that this algorithm is suitable for optimi-
sation on models generated by full-factorial screens, or indeed
other such datasets – such as those from computational flow
dynamics (CFD) simulations.

Given this diversity of algorithmic behaviour, we would
emphasise the opportunity that the platform technology pro-
vides in terms of the diversity of possible approaches and the
understanding that the different approaches might offer. For

Fig. 8 Hypervolume and IRNA evolution for the three in-lab optimi-
sation approaches selected for this work in targeting 80 nm particles (a)
TSEMO( ), (b) RBFNN/RVEA( ) and (c) EA-MOPSO( ),
while maximising conversion and minimising dispersity and PDI.
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example, a 67-experiment screen would in many cases be a too
time-consuming affair; but given that the user time to produce
the data here was less than a single day’s work, the compre-
hensive nature of the data would well be attractive in cases
where the feedstock chemicals were relatively affordable.
Conversely, were the raw materials more expensive, an algorith-
mic approach may be more desirable, with much of the infor-
mation available after a campaign of fewer than half the
number of experiments. This is not to say these two extremes
are the only viable approaches – a less detailed screen, or a
hybridised approach, using a screen as the basis for further
self-optimisation offer additional plausible strategies.

Conclusions

In this work we have demonstrated a range of approaches to
explore and optimise the complexities of a particle-forming
polymerisation system. The platform gave unprecedented
diversity of information for automated polymer synthesis, facil-
itating days-long unsupervised experiments with accompany-
ing 1H NMR spectroscopy, GPC and DLS data. A screen of 67
experiments gave a rich dataset in just four working days.
From the resultant dataset, in-silico optimisation studies were
performed, confirming the validity of AI-guided optimisation.
Machine learning algorithms (TSEMO, RBFNN/RVEA and
EA-MOPSO) were accessed via a cloud-based framework, and
used to target a particle size, while maximising conversion and
minimising both molar mass dispersity and particle PDI, both
in-silico and in-lab – providing elucidation of the Pareto front.
A range of algorithmic behaviour was observed, and example
applications for each algorithm identified. As such, a signifi-
cant step towards particles-on-demand is taken, which could
find application across polymerisation techniques.

This work highlights key challenges faced by the chemists
engaging with automation, AI-guided optimisation, and
further, the complications that are introduced for many-objec-
tive problems. It is imperative that we engage with effective
characterisation of the optimisation process, using appropriate
performance indicators in conjunction with clear visualisation
of the experimental data. Furthermore, we must be careful to
consider the range of approaches which are made possible by
autonomous platforms, comparing the relative merits of auto-
mated screens, AI-guided optimisation, and hybridised
methodologies.
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