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Microplastics, per- and polyfluoroalkyl substances (PFAS), antibiotic resistance genes (ARGs), pharmaceuticals

and personal care products (PPCPs), and pesticides may lead to unintended environmental contamination

through many pathways in multiple matrices. This statewide, multi-matrix study of contaminants of global

concern (CGCs) in agricultural streams across Iowa (United States) is the first to examine multiple CGCs in

water, bed sediment, and fish to understand their occurrence in small streams located in regions of intense

agriculture activity. Iowa plays a pivotal role in agriculture, with more than 85% of Iowa's landscape devoted

to agriculture, making it an ideal location for determining the prevalence of CGCs to provide critical

baseline exposure data. Fifteen sites were sampled across a range of predominant land uses (e.g., poultry,

swine); all sites had detections of microplastics in all matrices. Concentrations of PFAS varied but were

detected in water and sediment; all fish had detections of perfluorooctanesulfonate (PFOS), a type of PFAS.

More than 50% of water and bed sediment samples had detections of ARGs. The most frequently detected

PPCP was metformin. No sites had a cumulative exposure activity ratio greater than 1.0 for chemical

exposures; 13 sites were above the 0.001 precautionary threshold. Toxicity quotients calculated using

Aquatic Life Benchmarks were below the 0.1 moderate risk threshold for chemical exposures for all but one

site. For fish, all sites exceeded the moderate and high-risk thresholds proposed for microplastic particles

for food dilution (both chronic and acute exposures) and all sites exceeded the microplastic moderate

threshold proposed for chronic tissue translocation, and two sites exceeded the threshold for acute tissue

translocation.
Environmental signicance

This statewide, multi-matrix study of contaminants of global concern (CGCs) in agricultural streams across Iowa (USA) is the rst to examine multiple CGCs in
water, bed sediment, and sh to understand their occurrence in small streams located in regions of intense agriculture activity. The CGCs microplastics, per-
and polyuoroalkyl substances, antibiotic resistance genes, pharmaceuticals and personal care products, and pesticides cause unintentional environmental
contamination through many pathways in multiple matrices. Iowa plays a pivotal role in agriculture, with more than 85% of Iowa's landscape devoted to
agriculture, making it an ideal location for determining the prevalence of CGCs to provide critical baseline exposure data.
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Introduction

Mounting evidence indicates that anthropogenic actions and
products intended to improve the quality of life are causing
unintentional environmental contamination on a global
scale.1,2 The persistence, mobility, and bioaccumulation
potential of these materials has translated to their presence in
all physical and biological environmental compartments. Such
contaminants of global concern (CGCs) include microplastics,
per- and polyuoroalkyl substances (PFAS), antibiotic resistance
genes (ARGs), pharmaceuticals and personal care products
(PPCPs), and pesticides. Previous research has documented that
the simultaneous presence of a complex mixture of a wide range
of contaminants oen occurs.3,4 Contaminants can contribute
synergistically to toxicity even if they are present below their
own individual effect threshold.5 In addition, such contaminant
mixtures can cause surface waters to be biologically active (e.g.,
estrogen, androgen, glucocorticoid activity).6,7

Plastics play an important role in many aspects of modern
human life, and their transformation products are oen
problematic. As produced plastics become microplastics (less
than [<] 5 mm in size)8 via physical or mechanical weathering,
they enter the “natural” environment, with a nebulous fate.
Microplastics are ubiquitous in the environment, including in
oceans,8 rivers,9 lakes,10 sediments,11,12 biota,13,14 humans,15,16

atmosphere,17,18 and even remote areas far-removed from
anthropogenic sources.19–21 By 2050, it is projected that 12 000
million metric tons of total plastic waste will have accumu-
lated in landlls or the environment.22 Although much
microplastic research to date has been conducted in marine
settings, growing evidence indicates lotic systems are instru-
mental in transporting microplastics,23,24 with particles prev-
alent in both stream water and bed sediment.25–27 Although
the bulk of freshwater microplastic research is focused on
urban activity, agricultural production also contributes
microplastics to the environment28–30 through various
management practices, including municipal biosolid appli-
cations to farmland.31,32

As with plastics, PFAS play a decades-long role in modern
society with innumerable uses including reghting foams,
water and stain repellents, and PPCPs. Optimization for
consumer and industrial applications also allows them to enter
the environment and be transported through a variety of path-
ways33 and accumulate in plant, animal, and human tissues.34–38

PFAS are linked to a range of deleterious health effects
including low birth weights, hormone interference, reduced
immune response, and various cancers.39–42

Concern regarding antimicrobial resistance (AMR) has
increased due to the extensive use of antimicrobials for both
human and agricultural purposes. Approximately 80% of the
antibiotics used in the United States are for food animal
production.43 Antibiotic overuse has led to AMR now being
recognized as a global threat to human health with the serious
potential of a post-antibiotic era where antibiotics are rendered
obsolete.44 It is projected that resistant bacterial infections
could become the leading cause of global deaths by 2050.44
1402 | Environ. Sci.: Processes Impacts, 2025, 27, 1401–1422
Antibiotic resistant bacteria (ARB) and associated antibiotic
resistance genes (ARGs) are now recognized as environmental
contaminants.45 Numerous mechanisms and pathways for
environmental transfer of ARB and ARGs have been identied,
with water considered an important transmission pathway.46,47

Recent investigations found that antibiotic resistant entero-
cocci and staphylococci were common in Iowa streams, with
stream bed sediment an important reservoir for ARGs.48

PPCPs are organic chemicals that have been developed to
enhance the quality of human life; however, evidence indicates
that environmental exposure to PPCPs and their associated
transformation products such as guanylurea can have delete-
rious effects on ecosystems.49,50 PPCP consumption worldwide
is rising due to an increasing global population with a rising
median age.51 As the demand for PPCPs increases, corre-
sponding discharge through wastewater treatment plants
(WWTPs) and manufacturing facilities into the environment
also increases.52–54 PPCPs have both urban and agricultural
inputs to streams55–61 and have been found in streams globally
on all seven continents.1

Pesticides are exceedingly common, particularly in agricul-
tural production in the United States, for which more than 226
million kilograms of pesticides62 were land applied annually
between 2013 and 2017.63 This intensive use and related expo-
sure to nontarget organisms is of increasing global concern.64

Although pesticides have commonly been used in agriculture
since the 1950s, conventional agriculture has increasingly
adopted prophylactic technologies using pesticides at or before
planting65 that is concomitant with a rise in the global use of
pesticides.66 Mixtures of pesticides62 and pesticide trans-
formation products67 are increasingly common in urban and
agricultural streams across the United States, oen with dele-
terious effects to aquatic and terrestrial organisms.68–72

Rural streams have a long history of research on contami-
nants traditionally associated with agriculture. These contami-
nants, oen from land-applications, waste lagoons, and
conned animal feeding operations, include nutrients, pesti-
cides, and bacteria that move into streams and groundwater
through a variety of mechanisms, such as overland ow.73–75 The
ecosystem services of rural lotic environments are oen over-
looked, despite the critical value of the habitat.76 Much research
exists on the presence of non-traditional contaminants such as
pharmaceuticals in streams in agricultural areas.77 Conversely,
there is a paucity of information on contaminant exposures in
non-aqueous matrices and biota. To address the research gap,
we conducted a statewide, multi-matrix study of CGCs in
wadable, agricultural streams across Iowa (United States). Iowa
plays a pivotal role in agricultural in the United States,78 with
more than 85% of Iowa's landscape devoted to agriculture,
leading the nation in corn, soybean, swine, and egg produc-
tion,79 and consequently is ideal for determining baseline
exposure data regarding the prevalence of CGCs in agricultural
streams. To our knowledge, this is the rst study to simulta-
neously examine multiple classes of CGCs in multiple
compartments (e.g., water, sediment, and sh) to better
understand their occurrence in small streams located in regions
of intense agriculture activity.
This journal is © The Royal Society of Chemistry 2025
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Materials and methods
Site selection & sample collection

Fieen stream sites were selected across Iowa based on basin
characteristics, previous water quality data, and proximity to
established U.S. Geological Survey (USGS) gaging stations
(Table S1†). Of the 15 sites sampled, 6 were in basins dominated
by a specic livestock type (2 each for cattle, poultry, and swine),
3 sites had mixed livestock (livestock polyculture), 3 sites had
substantial municipal biosolids applied to farmland in the
basin, 2 sites were affected by WWTPs discharging directly
upstream from sampling points, and 1 site was considered to be
a reference site (dominated by forested land) with minimal
agriculture in the basin (Fig. 1). The streams sampled had
a wide range of characteristics including developed land use80

(1.9–62%), cultivated land80 (14.4–93.3%), animal units81 (AU; 0–
643 AU per square kilometer [km2]), human population82 (2–739
people per km2), and WWTPs83 (0–10).

Water, bed sediment, and sh samples were collected April
through June 2021 from sites during base-ow conditions.
Water samples were always collected rst, sediment was then
collected from areas of deposition upstream from the water
sample, and then netted microplastics samples were collected
in the center of ow. Fish sample collection was opportunistic,
and sh were collected using a seine net with a mesh size of 6.4
millimeters (mm)84 within the sampling reach (within 100 feet
of discrete sampling). Fish sampling was not meant to be an
ecological assessment; rather, samples were meant to be part of
the overall snapshot of the chemical burden of the stream
Fig. 1 Site locations for 15 Iowa streams, 2021.

This journal is © The Royal Society of Chemistry 2025
during the few hours the crew was on-site. Lastly, in situ eld
properties and discharge measurements were made. Water
samples were collected and analyzed for microplastics, PFAS,
bacteria concentrations and ARG presence, pesticides, PPCPs,
total estrogenicity, nutrients, and suspended sediment. Bed
sediment samples were collected and analyzed for micro-
plastics, PFAS, and bacteria concentrations and ARGs. Fish,
typically Cyprinidae minnows, were collected at 13 sites; 2 sites
were netted but did not yield sh. All 13 sites had sh analyzed
for PFAS while only 5 of the 13 were able to be analyzed for
microplastics. Whole sh samples were collected and placed in
jars and/or bags as required by individual laboratories and
analyzed for microplastics, PFAS, three pharmaceuticals, and
one pesticide. The number and size of sh varied by site, with
some sites having as few as two minnows per jar; jars were
immersed in ice in coolers immediately post-collection85 and all
sh sampling was in accordance with the State of Iowa scientic
collector permitting procedures. All samples were stored on ice
at 4 °C in the eld and shipped to arrive within 24 hours of
collection to the various laboratories, as necessary.

Whole water samples were collected as single verticals/
center-of-ow (VCF) samples.86 Filtered inorganic water
samples were processed streamside from water collected in
a high-density polyethylene (HDPE) bottle using a 60-cc
disposable Luer lock syringe and an Aquaprep 0.45 mm disk
lter. Filtered organic water samples were processed by col-
lecting water in the center of ow using a 30 milliliter (mL)
polypropylene Luer lock syringe and were ltered using
a Whatman 0.7 mm, 25 mm glass ber syringe tip lter for
Environ. Sci.: Processes Impacts, 2025, 27, 1401–1422 | 1403
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analysis of 82 pesticides by the USGS. A 1 liter (L) amber glass
bottle was used to collect water for pharmaceutical analysis, and
a 500 mL amber glass bottle was used to collect water for
pesticide analysis at the University of Iowa in Iowa City, Iowa.

Microplastic water samples were collected in duplicate in the
center of ow. Microplastic samples were collected both as
netted and whole water samples as a comparison between the
two methods. Netted samples were collected using a Hydro-Bios
300 mmnet with a 125 mm cod end. Nets were held in ow for 15
minutes or until the net had too much debris (whichever came
rst). Nets were rinsed with deionized water (DI) into the cod
end, which was decanted into a quart-sized mason jar that had
been triple rinsed with DI water, red at 450 °C for 4 hours, and
then wrapped in foil. Whole water samples were collected in the
center of ow in a quart-sized mason jar, prepared as previously
mentioned. Subsequent analysis documented that the net used
for microplastic collection shed substantial amounts of micro-
plastics when using a laboratory method with a lower-than-
standard size detection limit (detailed in the Laboratory
Methods section). Thus, only whole water samples were
analyzed and are presented here. PFAS water samples were
collected in three 2 mL microcentrifuge tubes and submitted to
the USGS National Water Quality Laboratory (NWQL) in Denver,
Colorado, for analysis.

In situ eld properties (water temperature, specic conduc-
tance, pH, dissolved oxygen, and turbidity) were collected in the
center of ow using a Yellow Springs Incorporated (YSI) EXO2
multiparameter sonde. For ungaged sites, discharge measure-
ments were made immediately following sample collection
using a SonTek FlowTracker Acoustic Doppler Velocimeter.

Bed sediment samples were collected with stainless-steel
spoons from three to ve areas of deposition within the
sampling reach with only the top 3 centimeters (cm) of bed
sediment being sampled. Microplastic and PFAS bed sediment
samples were composited in one glass jar each; microbial
samples were composited in sterile plastic specimen cups. All
reuseable eld equipment used for sampling (HDPE bottle and
stainless-steel spoons) was cleaned by dilute phosphate-free
detergent soak, tap water rinse, and DI rinse.
Laboratory methods

Water and bed sediment samples for microplastic analysis were
stored at room temperature, and sh were stored in a freezer; all
samples were delivered to the University of Illinois, Illinois
Sustainable Technology Center in Urbana, Illinois, aer all
sampling was complete. Full microplastic analytical methods
are published in Scott and Green;87 the method is a Modied
NOAA Method88 wherein water samples are concentrated by wet
sieving (5 mm stainless steel sieve), then undergo wet peroxide
oxidation (Fenton reagent), density separation, ltration to 0.45
mm, and then examined with a Zeiss SteREO Discovery V20
microscope for sizing, as well as notation of particle type
(round, ber, or fragment) and color. To measure the area of the
particles, the x and y axes were measured with the Zeiss
microscope and analyzed with the Zeiss Zen Blue soware
package. The z-axis was assumed to be 1 mm, a conservative
1404 | Environ. Sci.: Processes Impacts, 2025, 27, 1401–1422
value; detailed sizing methods are available in Prada.89 Micro-
plastic analysis of bed sediment samples was similar to water,
but started with density separation, wet sieving, wet peroxide
oxidation, density separation, ltration to 0.45 mm, and then
microscope examination as with water samples. Whole sh
sample processing started with wet peroxide oxidation, wet
sieving, and then oxidized and sieved again until free of visual
biological and organic matter. Samples were then sorted by
density, ltered to 0.45 mm, and then examined by microscope
as with water samples. This modied method yields a lower
detection limit (20 mm × 20 mm) and larger densities (greater
than [>] 1.7 grams per cubic centimeter), which allow for more
polymer types than the standard analytical method (Table S2†).

Water samples were analyzed for 34 PFAS at the NWQL using
liquid chromatography-tandem mass spectrometry (LC/MS-
MS).90 Sediment and whole sh samples were analyzed for 28
PFAS using a modied version of EPA Method 533 by SGS Axys
in British Columbia, Canada.91

Water and bed sediment samples were enumerated for
heterotrophic bacteria counts (HPC), total coliforms, Escherichia
coli (E. coli), and enterococci at theUSGSMichigan Bacteriological
Research Laboratory (MI-BaRL) in Lansing, Michigan, using the
IDEXX Quanti-Tray/2000 System (Westbrook, Maine) with either
HPC, Colilert, or Enterolert tests (IDEXX; Westbrook, Maine).
Growth from IDEXX HPC incubations was aseptically extracted
from the tray system and plated on Reasoner's 2A (R2A) agar and
extracted DNA from subsequent growth used to determine the
presence of ARGs (Tables S3 and S4†). Polymerase chain reaction
(PCR) was used to detect the presence of 25 bacterial gene
markers (BGMs), including a Bacteria 16S rRNA gene, 20 ARGs, 3
virulence genes (femA, invA, and spvC), and 1 integrase gene (int)
as described in Givens.48

Water samples were analyzed for pesticides at the NWQL and
UIowa, and water and whole sh samples were analyzed for
PPCPs at UIowa. Water samples submitted to the NWQL were
analyzed for 82 pesticides and transformation products using
direct aqueous injection-LC/MS/MS-(DAI LC-MS/MS).92 Water
samples submitted to UIowa were analyzed for 14 PPCPs and 6
pesticides. The samples were vacuum ltered (Whatman glass
microber lters [GF/F], nominal 0.7 mm) and frozen at −20 °C
until extraction. Water samples were processed with solid-phase
extraction (SPE) to increase detection limits and then analyzed
using an Agilent LC-MS/MS. Whole sh samples were analyzed
for three PPCPs and one pesticide. The sh samples were
solvent extracted using a modied method from LeFevre93 and
analyzed with the same Agilent LC-MS/MS.

Water samples were prepped for total estrogenicity analysis
at the USGS Functional and Molecular Bioassay Laboratory in
Kearneysville, West Virginia, by the USGS Organic Geochemistry
Research Laboratory in Lawrence, Kansas. Samples were
extracted within 36 hours of arrival, 1 L samples were ltered
with a 0.7 mm glass-ber, solid phase extracted to give 100 mL of
extract, and stored at −20 °C until analysis. Sample extracts
were screened for total estrogenicity using the bioluminescent
yeast estrogen screen (BLYES) as previously described by Cipa-
ris94 and Sanseverino.95 In brief, 20 mL of sample extracts were
added in triplicate to the wells of white, solid-bottom 96-well
This journal is © The Royal Society of Chemistry 2025
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microtiter plates and evaporated at room temperature.
Following evaporation, 200 mL of a 48 hour culture of strain
BLYES adjusted to 0.4 (OD600) in Yeast Minimal Media (YMM
leu-, ura-)96 was added to each well. A 12-point standard curve of
17b-estradiol (E2; Sigma-Aldrich Co.) was included on each
plate, and plates were covered and incubated in the dark at
30 °C for 4 hours. Luminescence was quantied using a Spec-
traMax M4 microplate reader (Molecular Devices) in lumines-
cence mode, and estrogen equivalents (E2Eq) of each sample
were determined via interpolation to a 4-parameter curve using
SoMax Pro 7.1.0 (Molecular Devices). The detection limit for
this assay was 0.244 ng L−1 estradiol equivalents (E2Eq)
BLYES.7,97

Quality assurance/quality control

Two eld blanks were processed on-site using Fisher Scientic
organic-free blank water for organic constituents and sterile DI
water for microbial samples. Multiple blanks were processed for
microplastics: a DI machine source blank was processed in the
USGS Iowa City Water Quality Laboratory, a DI blank from
a glass jug used to transport DI water and used in the eld was
processed in the Iowa City laboratory; a eld blank was pro-
cessed using DI water at a sampling site; water and sediment
travel blanks provided by the University of Illinois Prairie
Research Institute were analyzed. As necessary, blank water was
run through the same equipment used to collect the environ-
mental samples. All blank samples had low-level detections of
microplastics (DI instrument: 11 counts per liter (CPL); DI
blank: 3 CPL; eld equipment blank: 10 CPL; travel blank,
water: 9 CPL; travel blank, sediment: 3 counts per gram [CPG]).
All other blanks were free of the target constituents. In addition
to eld quality control samples, three PFAS samples were
randomly chosen and run as duplicates; there were no PFAS
detections in these samples. Microbial laboratory blanks con-
sisting of sterile DI water were processed along with the work-
ow of IDEXX enumeration, DNA extraction, and PCR. Aside
from blanks, microplastic positive control spikes were run on
three DI spike samples analyzed with eachmatrix batch with the
recovery percentages ranging from 88–119.

Statistical analysis and risk assessment

All data analysis was done using RStudio statistical soware,
version 4.4.0.98 Initially, data were evaluated using Spearman's
rank correlation coefficient (rho) to evaluate relations between
laboratory results and basin characteristics including land use,
basin size, and animal units within the watershed. This
nonparametric statistical test was used because the analytical
results contained le-censored data (i.e., non-detections).
Results were considered signicant when p < 0.05 and rho
values were >0.50. The assumptions of normality and constant
variance for the particle size of detected microplastics were
evaluated by examining individual histograms for each site and
sample median. Additionally, the Shapiro–Wilk test was applied
to statistically assess normality, and the Fligner-Killeen test was
used to evaluate homogeneity of variances.99 Because the
normality and constant variance assumptions were not met,
This journal is © The Royal Society of Chemistry 2025
a one-factor permutation test, which does not rely on these
assumptions, was used to assess differences in mean particle
size across sites and primary land use types (based on land use
in the basin) for each sample median. Results were considered
signicant when p < 0.05. A pairwise comparison of particle size
by site and primary land use type between surface water and bed
sediment samples was conducted using the Wilcoxon rank-sum
test, with a Benjamini–Hochberg correction applied to control
the family-wise error rate.100

Cumulative-exposure effects of potential human-health
interest were screened using two bioactivity-weighted
approaches: the cumulative Exposure-Activity Ratios (SEAR),
and the cumulative toxicity quotient (STQ). Both approaches
are (1) constrained by the analytical scope of this study, which
greatly underestimate the organic chemicals in commercial use
and, by extension, in the environment;101 (2) limited to the
available weighting-factors of ToxCast activity concentration at
cutoff (ACC) and human-health benchmarks;102 and (3) assume
cumulative effects are reasonably approximated by concentra-
tion addition.103–105 The SEAR were computed using chemical
analytical results for pesticides, pharmaceuticals, and PFAS
water samples by site using toxEval version 1.3.0 106 to deter-
mine potential biological effects of contaminants found in each
sample. The SEARs were of potential concern when results were
greater than or equal to ($) 0.001. Lastly, toxicity quotients (TQ)
were calculated using chemical results for pesticides as well as
the physical results for microplastics for the stream water
samples. Toxicity quotients were calculated in RStudio98 using
Aquatic Life Benchmarks (ALB) established by the U.S. Envi-
ronmental Protection Agency's Office of Pesticide Program to
determine risk to freshwater sh from acute and chronic
exposure to pesticides and their transformation products.107

Benchmarks do not currently exist for microplastics data, so
thresholds proposed in Mehinto108 were adjusted for the
purposes of this study. Mehinto108 proposed four thresholds for
two sh health outcomes (food dilution and tissue trans-
location); this study used thresholds 1 and 2 as the benchmark
criteria for chronic health issues and thresholds 3 and 4 for
acute health issues for each health outcome. For food dilution,
this study followed Mehinto108 using a benchmark of 0.3
microplastic particles per liter (PPL) for chronic health issues
and 5 microplastic PPL for acute health issues with a particle
size threshold of less than 25 000 000 square micrometers
(mm2), to be referred to as 0.25 centimeters squared (cm2) in this
study. Still following Mehinto,108 this study used a tissue
translocation benchmark of 60 microplastic PPL for chronic
health issues and 890 PPL for acute health issues with a particle
size threshold of 83 mm, which is <6,889 mm2 when converting
to area. Toxicity quotient results of $1 were considered signif-
icant. For the purposes of this study and these data, all esti-
mated data values were included in all analyses.

Results and discussion
Contaminants ubiquitously present in stream water

Complex mixtures of chemical and microbial contaminants
were present in the rural agricultural streams sampled in this
Environ. Sci.: Processes Impacts, 2025, 27, 1401–1422 | 1405
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study, which indicate unexpected anthropogenic sources.
Microplastics, PFAS, ARGs, PPCPs, and pesticides were found in
all streams sampled with 86 of 164 (about 52%) target
contaminants being detected in water from at least one
stream.109 Additionally, 28 target contaminants were detected in
at least 50% of water samples, and 8 contaminants were
detected in water from every stream sampled. Contaminants
detected in every stream were E. coli, enterococci, heterotrophic
bacteria, total coliforms, microplastics, atrazine, 2-hydroxya-
trazine (OIET), and metolachlor sulfonic acid (SA). The number
of contaminants in individual stream water samples ranged
from 17 to 54 (Tables 1, S5 and S6†).109 Although the presence of
pesticides (including pesticide transformation products),
nitrate, and bacteria and ARGs was expected based on known
agricultural inputs48,67,73,75 and previous research indicates that
transport of PFAS and ARGs to streams does occur,48,90 such
ubiquity for microplastics, PFAS, ARGs, and PPCPs in these
small agricultural streams was unexpected (Fig. 2).

The PPCPs metformin and sucralose have previously been
associated with urban wastewater;61,110 thus, their presence in
agriculturally dominated streams is particularly notable. For
example, metformin, detected in 13 of 15 sites (Table S5†), had
detections in the Little Floyd and Storm Creek at estimated
values of 9,000 ng L−1 and 5500 ng L−1, respectively.109 In
WWTPs, roughly 90% of metformin is microbially transformed
to guanylurea;111 the Little Floyd has a single WWTP in its
watershed, and Storm Creek has ve. Neither site had note-
worthy guanylurea detections (40 ng L−1 at Little Floyd Creek
and no measurable concentrations at Storm Creek109). This
indicates that metformin (and presumably detected PPCPs) is
Fig. 2 Sum of compound class values in nanograms per liter by site fo
polyfluoroalkyl substances; PPCP, pharmaceuticals and personal care pro
R, River].

This journal is © The Royal Society of Chemistry 2025
not likely derived from the WWTPs in the watershed, but
instead may be from substandard septic systems in these
areas.112,113 Consistent with this hypothesis, two sites that were
sampled directly downstream from WWTPs had substantial
concentrations of both metformin and guanylurea of
2435 ng L−1 and 2038 ng L−1, respectively (Muddy Creek), and
4820 ng L−1 and 2009 ng L−1, respectively (Cardinal Creek).109

Sucralose was detected at several sites (8 of 15), with detections
ranging from about 134 ng L−1 to about 782 ng L−1. Although
the presence of sucralose does not generally conrm the pres-
ence of untreated sewage (such as through a septic system or
other point source) as with metformin, sucralose may be used
as an indicator of human waste.114 These detections may point
towards leaking or ineffective/substandard septic systems115 as
sources of PPCPs detected at sites other than those directly
associated with WWTPs in this study.

The presence of complex mixtures of contaminants in water
may drive biological endpoints, including total estrogenicity.
One-third of the stream water samples (5 of 15) for this study
had measurable estrogenicity with 20% (3 water samples, one
each from South Fork Iowa River, Muddy Creek, and Cardinal
Creek) having estrogenicity within the range of potential envi-
ronmental concern (exceeding 0.5 ng E2Eq/L).109 Estrogenicity
in surface water may be inuenced by various organic
contaminants including but not limited to steroidal estrogens
(e.g., estrone), phytoestrogens, and mycotoxins.6,116 These
estrogenic compounds are known to be present in streams in
this area through land application of animal manure and
multiple mechanisms of transport such as overland ow and
tile drainage, among others.117–119 Additionally, the presence of
r 15 Iowa streams, 2021 [ng L−1, nanograms per liter; PFAS, per- and
ducts; refer to Table S1† for full site names and information; Cr, Creek;
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Fig. 3 Size distribution of microplastic particles by medium at Deer
Creek, Iowa, 2021 [mm2, square micrometers].
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plastics in streams may inuence estrogenicity, as phthalates
are known to leach from plastics.120 Phthalates may also be
present in other personal care products and are known to
accumulate in the environment.121
This journal is © The Royal Society of Chemistry 2025
The number of ARGs present in individual water samples (2–
10) and bed sediment samples (2–13) (Table S6†) was highly
variable by site. Storm Creek (n = 9) and Camp Creek (n = 10)
had the highest number of ARGs detected in the water, whereas
the highest number of ARGs detected in the bed sediment (n =

13) were from the Little Floyd River, Big Bear Creek, and Burr
Oak Creek. As in Givens,48 a higher number of ARGs were
detected in the bed sediment than the water, indicating that
bed sediment may enhance the environmental persistence of
antibiotics, ARB, and ARGs in the environment.48 The integrase
(int) gene was detected in bacteria growth cultivated from either
bed sediment or water from all samples except one site (HM-2).
The prevalence of this ARG occurrence is notable as this gene
indicates a potential for horizontal gene transfer between
environmental bacteria and consequently the spread of envi-
ronmental antibiotic resistance.122–124

The presence of PFAS in water samples was not unexpected
and found in 9 of 15 sites, with concentrations ranging from
6.70 to 36.8 ng L−1 (Table 1).109 Additionally, PFAS were detected
in 12 of 15 sediment samples (40.5–2600 nanograms per kilo-
gram [ng kg−1]) and all sh samples collected at 13 sites (101–
9620 ng kg−1). PFAS detections in water were found to be
signicantly positively correlated to detections of an insecticide,
imidacloprid, specically, as well cumulative insecticide detec-
tions (Table S7†). Both inert ingredients in pesticide formula-
tions and leaching from containers can contribute to
associations between pesticide and PFAS concentrations.125–127
Microplastics prevalent in all physical and biological
compartments

Microplastics were detected at all sites in water and bed sedi-
ment samples and in sh samples from ve sites (Table S8†).
Statistically signicant relations were observed between water
clarity (eld turbidity), suspended sediment mass, and sus-
pended sediment concentration and microplastic counts in
water samples (Table S7†). While counts and sizes of particles
varied by site and medium, the bulk of the particles were
smaller than 5000 mm2 (Table 2); the percentage of water sample
microplastic particles <5000 mm2 ranged from about 49 to 91 by
site (median 72; Table 2). Microplastics were generally smaller
in sediment samples, with about 78 to 99.9% (median 98.6%)
<5000 mm2 (Table 2). The water sample with the lowest number
of particles <5000 mm2 was North Cedar Creek at about 49% (55
of 112 particles), but the associated sediment sample had about
97% of particles <5000 mm2 (51 788 of 53 437 particles; Table 2).
For all ve sh samples analyzed for microplastics, the
percentages of particles <5000 mm2 was more comparable to the
water samples with a range of about 60 to 95% (median 79.4;
Table 2).

Had the microplastic analysis been conducted using the
standard NOAA method,88 the particle counts by sample would
have been fundamentally different. For all sites and results
across matrices, the standard NOAA method would have only
detected 2% of particles compared to the modied methods.
Similarly, the standard NOAA method would have only
accounted for up to 0.4% of particle mass (only quantied for
Environ. Sci.: Processes Impacts, 2025, 27, 1401–1422 | 1411
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Fig. 4 Log transformed areas of microplastic particles by site for water samples for 15 Iowa streams, 2021. Red line denotes NOAA method
threshold (90 000 mm2).
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water samples). For example, the water sample for Deer Creek
had a total count of 246 with particle sizes ranging from 433–63
700 mm2 (Table S7†).109 The size threshold for the standard
NOAA method is 0.3 mm (90 000 mm2), which would have
missed all 246 particles at this site. Likewise, the bed sediment
sample from Deer Creek had particle sizes ranging from 41.9–
556 000 mm2, and all but 119 of 35 589 particles would have been
missed by the standard NOAA method (Table 2). Fish samples
from the same site had all 1,168 particles below the standard
NOAA method threshold. The standard NOAA method would
have resulted in a gross underestimation of the inuence of
1412 | Environ. Sci.: Processes Impacts, 2025, 27, 1401–1422
microplastics at Deer Creek (Fig. 3 and S9†).88 These numbers
are similar for all sites (Table 2) and matrices (water 2%, sedi-
ment 0.33%, sh 1.5%). Notably, recent research has docu-
mented that microplastics below the standard NOAA threshold
can have signicant environmental effects.128 Using a micro-
scope, all sample particles were evaluated for their shape and
identied as either a ber, fragment, or round. When evaluating
by shape, most sites were dominated by plastic fragments, with
bers as secondary (ranging from 2–31%). The exception to this
was the Little Floyd River, which had only fragments (64%) and
particle rounds (35.7%) identied.109 For perspective, the
This journal is © The Royal Society of Chemistry 2025
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Table 3 Sum of exposure activity ratios (
P

EAR) for water samples and toxicity quotients (
P

TQ) for chronic and acute chemical exposures using
the Aquatic Life Benchmarks (U.S. Environmental Protection Agency, 2023) by site (chemical exposures only) for 15 Iowa streams, 2021

Site
P

EAR water
P

TQ sh chronic
P

TQ sh acute

Big Bear Creek at Ladora, Iowa 0.001 0.010 0.010
Burr Oak Creek near Perkins, Iowa 0.002 0.022 0.010
Camp Creek near Runnells, Iowa 0.001 0.015 0.022
Deer Creek near Coralville, Iowa 0.004 0.018 0.015
Elk River near Almont, Iowa 0.000* 0.000 0.018
HM-2 0.003 0.029 0.000
Little Floyd River near Sanborn, Iowa 0.005 0.007 0.029
Mud Lake near Jewell, Iowa 0.006 0.054 0.007
Muddy Creek near Coralville, Iowa 0.004 0.006 0.054
North Cedar Creek near Clayton, Iowa 0.000* 0.002 0.006
Pilot Creek at County Highway P15 near Rolfe, Iowa 0.020 0.095 0.002
Cardinal Creek below Newton, Iowa 0.007 0.053 0.095
South Fork Iowa River near New Providence, Iowa 0.007 0.050 0.053
Storm Creek near Glidden, Iowa 0.005 0.015 0.050
South White Breast Creek near Osceola, Iowa 0.009 0.299 0.015
EAR $0.001 potential concern 1.0 high risk
TQ 0.1 moderate risk 1.0 high risk

* Rounded values
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highest percentage of rounds for other sites was 0.8% at South
White Breast Creek and 0.4% at Storm Creek.

All sites, in all sample mediums, had right-skewed distri-
butions in the particle size of detected microplastics (Fig. S10,
Table S11†). Results from Fligner-Killeen tests also found
statistically signicant differences in the variance across sites,
with p < 0.05. Using a one-factor permutation test,99 statistically
signicant differences in the mean particle size were found in
water samples for both site and primary land use type. Similar
results were found for bed sediment samples by both site and
primary land use type. The mean microplastic particle size in
surface water samples was signicantly larger than that of the
bed sediment samples for all primary land use types and all but
two sites, with p values <0.05. There were not statistically
signicant differences in water versus bed sediment samples at
the Little Floyd River and Storm Creek. Further, the size of
particles found in water samples from the Little Floyd River
were smaller than all other samples (Fig. 4).
Potential biological effects using exposure activity ratios (EAR)

As an assessment of the potential for biological effects from
pesticide, pharmaceutical, and PFAS concentrations for water
samples, EAR values were computed by site (Tables 3 and S12†).
No sites exceeded the cumulative EAR (

P
EAR) (sum of EAR for

each contaminant) threshold of 1.0, a level at which biological
effects may be expected. Thirteen sites did have

P
EAR of

$0.001, a conservative threshold used to document samples of
potential concern,129 with

P
EAR values ranging from 0.001–

0.020. Pilot Creek had the highest
P

EAR value (0.020) and Elk
River and North Cedar Creek had the lowest

P
EAR values

(0.000003 and 0.00003, respectively). Individual EAR values
were >0.001 for acetochlor (9 sites), metformin (3 sites), pronil
(2 sites each), and atrazine and metolachlor (1 site each) (Table
S12†). Notably, of the 128 chemicals detected for this study, only
This journal is © The Royal Society of Chemistry 2025
40 had available toxicity data necessary to calculate EAR. Thus,
this assessment is likely conservative as it does not account for
potential biological effects of chemicals without relevant
toxicity data or for chemicals not in our suite of targeted
analysis.
Potential biological effects using toxicity quotients (TQs)

To assess potential cumulative-exposure effects from organic
contaminants, STQs were calculated using ALBs.107 A single
site, White Breast Creek, exceeded the moderate risk TQ
threshold of 0.1 for chronic and acute chemical exposures
using the ALB analysis of pesticides and their transformation
products in water samples. The highest

P
TQ using pesticide

data was 0.299 at White Breast Creek, well below the estab-
lished criteria (Tables 3 and S13†). When computing

P
TQs

using microplastics data in water, however, the results are very
different. Food dilution or false satiation may result from sh
ingesting microplastic particles, which then may modify
foraging efficiency. Insufficient nutrition including physical
issues and depressed immune function can also result from
the ingestion of non-food items.130 As the analysis of micro-
plastic samples for this study allows for detection of very small
particles, all particles were included in the analysis of TQs for
food dilution (all particles under the method detection limit
were considered estimated values; no particles were
censored). All particle detections were under the threshold
criteria for size and PPL for each site. As such, the TQs for both
chronic exposure (37.3–5680, median 82) and acute exposure
(3.29–501, median 7.24) are very high, all above the 1.0
threshold for high risk (Table 4). Tissue translocation is
a scenario where particles can potentially cross organ
boundaries, or create physical stress such as inammation,
which can lead to longer term health issues.131 When assess-
ing tissue translocation, only the smallest fraction of particle
Environ. Sci.: Processes Impacts, 2025, 27, 1401–1422 | 1413
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sizes was included. In this instance, all particles larger than
6889 mm2 were censored out of the analysis. Two sites, Big
Bear Creek and Camp Creek, had extremely high microplastics
counts in water samples (4120 and about 17 000, respectively,
Table 2), which did not allow for the computation of particle
sizes. To compute TQs for these two sites, we made inferences
on the percentage of particle sizes that would t the size
criteria to arrive at estimated (E) values. Of the 13 sites that did
have particle size information, the percentage of particles in
the smaller fraction ranged from 74 to 96% (Table 4). To
remain conservative and allow for error, the lowest percentage
(74%) was used to estimate the number of particles within the
size criteria at Big Bear Creek and Camp Creek. All tissue
translocation TQs for chronic exposure and two tissue trans-
location TQs for acute exposure exceed the high-risk threshold
of 1.0. For chronic exposure, this range was 1.38–E210,
median 3.1; for acute exposure, those values were 14.2 and
3.43. All other tissue translocation TQs for acute exposure
exceed the moderate risk threshold of 0.1, with values ranging
from 0.09–14.2, median 0.21 (Table 4).

As this study collected sh opportunistically, there was
some variation between species, trophic levels, and feeding
zones. All sh were small, with the largest sh not exceeding
about 127 mm in length. Most sh were Cyprinid minnows,
but white sucker (Catostomus commersonii) were also collected.
Whole sh were analyzed, so information on where in or on the
body the microplastics particles had accumulated is not
available. All ve sh samples analyzed had microplastics
present, with particle counts ranging from 199 to 1168 per
individual.109 Without information on the health of the sh
analyzed (e.g., inammation presence/absence, location of the
particles, abnormalities) and if we extend the proposed
benchmarks to apply to these sh, 100% of all particles found
would be within the proposed benchmark cutoff for food
dilution (<0.25 cm2). The tissue translocation results would be
similar to the food dilution results for sh; using the particle
size benchmark for tissue translocation of <6889 mm2, 74 to
97% of the particles found within the individual sh would fall
within the benchmark.
Potential future work

As the target analytes were not identical between water, bed
sediment, and sh samples due to method and funding avail-
ability, it would be benecial for future work to include as much
analysis cross-over as possible. For this study, microplastics and
PFAS were measured in all three matrices (i.e., stream water,
stream bed sediment, sh). Water sample results show that
microplastics and PFAS were prevalent in wadable Iowa streams
inuenced by diverse agricultural activities and human waste-
water contributions. A more complete understanding of envi-
ronmental exposures, however, is obtained when additional
environmental matrices are included. For example, the trends
between sample types were substantially different for micro-
plastics (bed sediment > water > sh) compared to that observed
for total PFAS (sh > bed sediment > water). Although these two
classes of CGCs are very different—microplastics are physical
This journal is © The Royal Society of Chemistry 2025
particles, PFAS are chemicals—they both were found to be
ubiquitous in environmental compartments in wadable streams
across Iowa. In future research, the collection of additional
aquatic and terrestrial species to better understand their
trophic transfer through the food web is warranted.35,132,133

Additionally, the present study has limitations based on the
duration, scope, and resources available that may make future
work valuable to build on the ndings herein. For example,
although this work focused on wadable streams throughout the
agriculturally intensive state of Iowa, consideration of other
land uses across different land use types and other regions, as
well as other aquatic species to consider for biological
endpoints is benecial. For example, including ecological
assessment of other aquatic species relevant to the trophic
structure of wadable streams may expand the understanding of
effects in agroecosystems. Specically, the inclusion of addi-
tional biological endpoints, such as assessing the health of sh
(e.g., inammation or immune function), may enhance our
understanding of the ecological impacts of these contami-
nants.134 Finally, more detailed assessments of potential sour-
ces of CGC and exposure routes in wadable streams in
agroecosystems, including potential for eventual human expo-
sure through water, food, and contact may also be benecial.
We frame this current work as the rst concurrent, multi-matrix
study of wadable streams in Iowa as a representative agricul-
turally intensive water system, but future efforts as described
may improve the detailed understanding, implications, and
generalizability of the ndings.

Data availability

All data are available in the ESI,† a data release,109 and/or the
U.S. Geological Survey National Water Information System
(NWIS) database.135 All data from analyses for water done at the
NWQL (pesticides, PFAS, and nutrients) and PFAS analyses for
bed sediment and sh done at SGS Axys are available in NWIS
using the site numbers in Table S1.† Data are presented as
rounded to 3 signicant gures in this publication.
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