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Minimizing frictional resistance and preventing the attachment of marine organisms are extremely
important for global ship navigation to reduce energy consumption and carbon emissions. However,
there is still a lack of an effective and environmentally-friendly drag reduction and antifouling method.
Here, we propose a spontaneous fast-moving air film to resolve this problem. We first developed a serial
brachistochrone-shaped superhydrophobic pattern to easily capture underwater air bubbles and realize
the spontaneous and directional transportation of bubbles with an average velocity of 444 mm s~ that is
the fastest in the whole world. Then, the continuous supply of air bubbles and serial brachistochrone-
shaped superhydrophobic pattern were combined to form a spontaneous fast-moving air film, which not

only prevents the escape of supplied air bubbles but also replenishes the air film on a superhydrophobic
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simultaneous 80% antifouling rate, which was an outstanding capability that had never been reported
DOI: 10.1035/d4ta03343d before. This effective and environmentally-friendly drag reduction and antifouling method will minimize

rsc.li/materials-a energy consumption and carbon emissions and has strong implications for global sustainable development.
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1 Introduction

To protect the future of mankind, 178 countries signed the Paris
Agreement with reduce the emission of carbon dioxide."* Ship
navigation is a major energy consumer and carbon emitter,
which consumed about 320 million tons of fuel and emitted
more than 1 billion tons of CO, in 2022.* Reducing the drag of
a ship is considered to be the most effective method to reduce
its energy consumption and carbon emission.* The frictional
resistance originating from the friction between the surface of
a ship's hull and surrounding water is the major component of
the ship's water resistance.>® In addition, attached marine
organisms originating from biofouling can further increase the
frictional resistance of the ship.”” Therefore, minimizing fric-
tional resistance and preventing the attachment of marine
organisms are of great significance.'®

Constructing microstructures inspired by shark skin is
a popular method to reduce the frictional resistance of
a subaqueous object.” However, due to their lack of antifouling
capability, marine organisms can easily attach to sharkskin-like
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microstructures, which in turn increases the frictional resis-
tance."** Injecting air bubbles onto the ship's bottom is a more
practical method of drag-reduction and has been applied in
many large ships, such as ships carrying ore or liquefied natural
gas. However, air bubbles are difficult to anchor to the ship's
bottom, and there is a heavy escape rate, resulting in a low drag
reduction rate.**™® In recent years, a superhydrophobic surface
has been proposed to reduce frictional resistance because of its
self-air film which is stored in surface microstructures."”°
However, this air film is easily broken and flows away, leaving
a disappeared drag reduction phenomenon.*® For marine
antifouling, many chemical coatings are applied to kill the
fouling organisms.””*® However, those coatings have poor
antifouling capability and show great toxicity to marine organ-
isms, endangering the marine environment.” Therefore,
a more effective and environmentally-friendly drag reduction
and antifouling method still needs to be explored.

In this work, we first optimally designed a serial cycloid-
shaped pattern (SCP) which could spontaneously capture
underwater air bubbles to realize the spontaneous and direc-
tional transportation of bubbles with an average velocity of
444 mm s~ . Theoretical analysis was conducted to analyze the
reason for the fast transportation of air bubbles. We then
combined the continuous supply of air bubbles and SCP to form
a spontaneous fast-moving air film, which not only prevents the
escape of supplied air bubbles but also replenishes the air film
on a superhydrophobic surface, showing an amazing 27% drag
reduction rate and simultaneous 80% antifouling rate. This

This journal is © The Royal Society of Chemistry 2024


http://crossmark.crossref.org/dialog/?doi=10.1039/d4ta03343d&domain=pdf&date_stamp=2024-07-27
http://orcid.org/0009-0001-7788-9624
http://orcid.org/0000-0002-3769-2069
https://doi.org/10.1039/d4ta03343d
https://doi.org/10.1039/d4ta03343d
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA012030

Published on 21 2024. Downloaded on 28.1.2026 20:01:16.

Paper

effective and environmentally-friendly drag reduction and
antifouling method will save a large amount of energy and
promote the sustainable development of the whole world.

2 Experimental section
2.1 Materials

1060 aluminum sheets (Al, surface-free energy of 980 mJ m™>)
were purchased from Shenzhen Hongwang Co., Ltd (China).
Anhydrous ethanol (surface-free energy of 22 mJ m ) was
bought from Tianjin Kemio Chemical Reagent Co., Ltd (China).
Fluoroalkylsilane [FAS, CgF;3H,Si(OCH,CHj3)3, containing a -
CF; group with 6 mJ m~2 surface-free energy and a -CF, group
with 18 mJ m™~? surface-free energy] was provided by Degussa
Co. Ltd (Germany). Marine plants and clownfish were
purchased from the local marine pet market. Seawater (surface-
free energy of 72 mJ m~?) was obtained from the Bohai Sea near
Dalian.

2.2 Fabrication of samples

Preparation of serial brachistochrone-shaped pattern (SBP).
A diagram of the preparation of the SBP is shown in Figure S1.t
The Al sheet after cleaning was etched via a laser (SK-CX30,
Shanghai Sanke Laser Technology Co. Ltd., China) to
construct micro-rough structures. Next, the etched Al sheet was
immersed in a 5 wt% FAS ethanol solution for 1.5 h. After
drying, a superhydrophobic Al surface was obtained. Then, the
exterior surrounding region of the superhydrophobic Al surface
was processed again with the above laser to remove the FAS
(Figure S21). Finally, an SBP composed of an exterior
surrounding a superhydrophilic region and interior super-
hydrophobic region was obtained.

Preparation of rectangular pattern (RP). The fabrication
processes were similar to the above, but the pattern was
rectangular.

Preparation of entire superhydrophobic surface. The Al
sheet was etched by the aforementioned laser first, and then,
a superhydrophobic Al surface was obtained by FAS
modification.

2.3 Sample characterization

The microstructure of the surface was observed by a scanning
electron microscope (SEM, JSM-6360LV, Japan). The corre-
sponding elemental compositions were characterized by an
energy dispersive spectroscope (EDS, JSM-6360LV, Japan). The
water contact angle (WCA) in air and air contact angle (ACA)
underwater were measured by a contact angle meter (DSA100,
Kriiss, Germany) using a water droplet of 4.1 puL and an air
bubble of 3 pL at ambient temperature.

2.4 Underwater air bubble transportation

The equipment for an underwater air bubble transportation
experiment was self-made to evaluate the transportation capa-
bility of the underwater air bubble on different samples
(Figure S371). The water depth of the underwater bubble trans-
portation experiment was 30 mm. To ensure that the air bubbles
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were captured by the pattern, the bubble volume and distance
between the bubble outlet and sample surface were 40 puL and 2
mm, respectively. All air bubble transportation experiments
were pre-covered in an 80 pL air film. The release of air bubbles
was controlled by a precision dispensing pump (LSP02-2A,
Longer Pump). The underwater air bubble transportation
behavior was recorded by a high-speed camera (1000 frames,
DSC-RX10M3, Sony, Japan).

2.5 Underwater drag reduction

The underwater drag reduction experimental system was self-
made to evaluate the drag reduction capability of the different
samples. The sample platform could fix the different experi-
ment samples, and one side of the sample platform was con-
nected to a force sensor (DYX-306, Bengbu Sensing System
Engineering Co. Ltd, China). The underwater free air bubbles
which were generated by a supplier of continuous air bubbles
(ES-3910, Anyuan Huaqun Technology Co. Ltd, China) on one
side of the sample platform were captured by the SBP to form
a constrained air film and were quickly transported to the other
side of the SBP. The underwater drag reduction rate was the
ratio of the underwater resistance of the common Al surface
without bubble supply with the underwater resistance of the
test sample with bubble supply subtracted, to the underwater
resistance of the common Al surface without bubble supply,
where the water flow rate was 0.5 m s~ %, and the air bubble flux

was 0.4 L min~*.

2.6 Marine antifouling

The marine antifouling test included an anti-diatom adhesion
test and an antifouling test in a simulated marine environment.

For the anti-diatom adhesion test, we placed the common Al
surface, superhydrophobic surface, SBP without bubble supply,
and SBP with bubble supply in water containing diatoms and
provided light for diatom growth. In the anti-diatom adhesion
test, we recorded the images of the different samples every 2
days and calculated the corresponding diatom coverage rate
which was the ratio of the area covered by diatoms to the test
surface area. After 8 days, all the samples were taken out and
observed with an optical microscope (MV-EM200C, Microvision
Intelligent Manufacturing Technology Co. Ltd., China) to eval-
uate whether the sample surfaces were fouled by the diatoms.

For the antifouling test in the simulated marine environ-
ment, we placed the common Al surface, SBP without bubble
supply, and SBP with bubble supply into seawater from the
Bohai Sea near Dalian. To better simulate the marine environ-
ment, we also added marine plants and some clownfish to the
seawater. After 4 days, all the samples were taken out and
observed by SEM and the elemental compositions of these
samples were characterized by EDS to evaluate their antifouling
capability in the marine environment.
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https://doi.org/10.1039/d4ta03343d

Published on 21 2024. Downloaded on 28.1.2026 20:01:16.

Journal of Materials Chemistry A

3 Results and discussion

3.1 Spontaneous high-speed transportation of a single air
bubble

We proposed that a spontaneous fast-moving air film could
realize underwater drag reduction and antifouling. Thus, the
first problem to be solved here is how to obtain the spontaneous
high-speed transportation of a single air bubble. Actually, there
were several methods to realize the spontaneous transportation
of an air bubble, such as using 3D structures,**>* slippery
grooves,*” rectangular patterns,®** and wedge-shaped
patterns. However, the transportation distance and
velocity for the air bubble on those surfaces were not long or fast
enough. Nepenthes is a superstar in the field of bionic
engineering.*** Its lip shows a serial arch-shaped pattern
which can spontaneously transport a liquid over a long distance
with considerable velocity. Inspired by the Nepenthes lip and
famous brachistochrone curve (Figures 1(a) and S4),*® a serial
brachistochrone-shaped pattern (SBP) with several single
brachistochrone-shaped patterns connected end to end was
proposed, where r, 6;, and 6, were the rotating circle radius,
angle by which the rotating circle rotated from its origin
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position to the starting position of a single pattern, and the
angle by which the rotating circle rotated from its origin posi-
tion to the end position of a single pattern, respectively. The SBP
was composed of an exterior surrounding superhydrophilic
region with a water contact angle of 0° and an interior super-
hydrophobic region with a water contact angle of 164°. The
superhydrophobicity resulted from the combined function of
the micro-rough structures fabricated by the laser and FAS with
a low surface energy.*** After laser etching again to remove the
FAS, the superhydrophobicity was successfully transformed into
superhydrophilicity. Underwater, the exterior surrounding
superhydrophilic region showed superaerophobicity with an air
contact angle of 162°, while the interior superhydrophobic
region showed superaerophilicity with an air contact angle of 0°
(Fig. 1(b) and (c)). The underwater free air bubbles could be
easily captured by the SBP to form a constrained air bubble and
simultaneously be spontaneously and directionally transported
along the SBP (Fig. 1(d), S5 and Video S11). To obtain the critical
parameters for the fastest transportation velocity, we conducted
the single-factor experiment first and later Box-Behnken design
optimization. For the parameters r, 64, 6,, and k, when three of
them were fixed, all the average transportation velocities of the
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Fig.1 Proposal for the SBP, wettability of the SBP in air and underwater, and variation of the transportation distance with the SBP parameters. (a)
This SBP which is inspired by the Nepenthes lip and famous brachistochrone curve was proposed. (b) The wettability of a 4.1 uL water droplet on
the SBP in air. (c) The wettability of a 3 uL air bubble on the SBP underwater. (d) The underwater transportation behavior of an air bubble on the
SBP. (e) The variation of the underwater air bubble transportation distance with r, where the 6, of 160°, 6, of 180°, and k of 0.8 are fixed. (f) The
variation of the underwater air bubble transportation distance with 6;, where the r of 22 mm, 6, of 180°, and k of 0.8 are fixed. (g) The variation of
the underwater air bubble transportation distance with 6,, where the r of 22 mm, 6; of 160°, and k of 0.8 are fixed. (h) The variation of the
underwater air bubble transportation distance with k, where the r of 22 mm, 6, of 160°, and #, of 180° are fixed.
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air bubble increased first and later decreased with an increase
in the unfixed parameter (Figures 1(e)-(h), S6-S8,1 and 7. A fast
transportation velocity of the air bubble of 400 mm s~ was
obtained at r of 22 mm, 6; of 160°, 6, of 180°, and k of 0.8 in the
single-factor experiment. Based on the aforementioned results,
the SBP was further optimized by Box-Behnken design optimi-
zation. As shown in Figure S9, Tables S1-S3, and Video S3,}
a faster transportation velocity of 415 mm s~ ' was obtained at r
of 22.1 mm, 6, of 160.4°, 6, of 180°, and k of 0.8.

We then studied the mechanism of influence of the SBP
parameters (7, 64, 6, and k) on the transportation process of the
air bubble. The force acting on the air bubble is shown in
Fig. 2(a). Once the air bubble comes into contact with the SBP, it
will be subjected to the Laplace force Fy, capillary force Fc, water
resistance force Fy, and pinning force Fp, which can be
expressed as follows:

F:FL+FC—FW—FP (1)

where F is the resultant force, Fy, is the Laplace force, Fc is the
capillary force, Fyy is the resistance force from the water to the
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transported air bubble, and Fp is the resistance force from the
junction to the transported air bubble. For Fg, the F¢ of the air
bubble on the SBP can be ignored. For F, it is derived from the
unbalanced Laplace pressure between the air bubble of the
front and rear sides, which is the main driving force and can be
given by:

Fy ~ ylrcos As — vl cos Ay, (2)

where v is the interfacial gas-water tension, I is the front
contact line length of the air bubble, A¢is the front ACA of the air
bubble, [, is the rear-side contact line length of the air bubble,
Ap is the rear-side ACA of the air bubble.** For the Fy, it can be
described as:

Fy ~ 3 Cpr(x)’S(x) 3)

where C, p, v(x), and S(x) are the water drag coefficient, water
density, instantaneous velocity of the air bubble at any trans-
portation position x, and the cross-sectional area of the air
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Fig. 2 Force analysis of the air bubble on the SBP, junction optimization of the SBP, and SBP can transport the bubble in various complex
conditions. (a) Force analysis of the air bubble on the SBP. (b) Schematic of junction optimization. (c) Average transportation velocity of the air
bubble on the SBP with different first arc transition radii. (d) Average transportation velocity of the air bubble on the SBP with different second arc
transition radii, where the first arc transition radius is 0.1 mm. (e) Average transportation velocities for different air bubble transportation methods.
The details of the air bubble transportation velocity are included in Table S4.7 (f) The air bubble transportation process on a curved SBP track. (g)
The air bubble transportation process on the SBP with an inclination angle of —4°. (h) The transportation distance of a 40 pL air bubble on the SBP

with inclination angles of 0°, —2°, and —4°.
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bubble at any transportation position x. Fp can be demonstrated
as follows:

Fp ~ y(wy — wy)(cos A, — cos A,) (4)

where w,, and w,, are the wide width and narrow width of the
SBP, and 4,, and A, are the advancing contact angle and
receding contact angle of the air bubble at the junction. As
shown in Figure S6,1 decreasing r, increasing 6, decreasing 6,,
and increasing k led to an increase in the number of junctions,
which meant that the air bubble was subjected to larger Fp,
resulting in a decreasing average transportation velocity.
Although increasing r, decreasing 6,, and increasing 6, could
decrease the junction number, they would increase the SBP
area, meaning that the air bubble would be more spread out on
the SBP with a larger area than that on the SBP with a smaller
area, showing the decreasing difference of the Laplace pressure
between the front and rear sides of the air bubble, decreasing
Fi, and decreasing average transportation velocity (Figure S107).
In addition, according to eqn (4), decreasing k would increase
Fp, resulting in decreasing average transportation velocity. If &
was further decreased, the air bubble could not even achieve
long-distance transportation (Figure S87).

From the above force analysis, it can be seen that the air
bubble was subjected to Fyw and Fp, where Fy was difficult to
decrease by optimal design. Therefore, we optimized the junc-
tion shape, using an arc to replace the wedge angle of the
junction, which achieved decreasing Fp and increasing average
transportation velocity (Fig. 2(b)). We first optimized the first
arc transition radius R;. The results showed that the average
transportation velocity first increased and further decreased
with increasing R;, as shown in Fig. 2(c). When R; was 0.1 mm,
the average transportation velocity increased from 415 mm s~
to 428 mm s~ ' (Video S4t). We then optimized the second arc
transition radius R,, where R, was 0.1 mm. The results showed
that when R, was 0.15 mm, the average transportation velocity
was the fastest, reaching 444 mm s~ (Fig. 2(d) and Video S4t).
To confirm that our proposed SBP had faster transportation
velocity than existing spontaneous air bubble transportation
methods, we compared the SBP with these methods, as shown
in Figures 2(e) and S11.>*** It was surprising that the trans-
portation velocity of the air bubble on the SBP was almost 1.4-
296 times as high as those on 3D structures, slippery grooves,
rectangular patterns, or wedge-shaped patterns, which meant
that the transportation velocity of the air bubble on the SBP was
the fastest among the existing spontaneous air bubble trans-
portation methods. Specifically, the details of the above spon-
taneous air bubble transportation methods are shown in Table
S47. In addition, besides a straight SBP, the air bubble could
realize fast transportation on a curved SBP, as shown in Fig. 2(f)
and Video S57. Moreover, buoyancy had a significant influence
on underwater bubble transportation: when ¢ > 0°, the buoy-
ancy would promote air bubble transportation; when ¢ < 0°, the
buoyancy would hinder air bubble transportation (Figures S12
and S137). It was amazing that the air bubble could even over-
come the buoyancy and be spontaneously transported on the
SBP with a transportation distance of 67 mm under a ¢ of —4°,
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(Fig. 2(g) and (h)). The aforementioned results showed that our
proposed SBP is not only the fastest in the spontaneous bubble
transportation field but can also transport the bubble in various
complex conditions.

3.2 Underwater drag reduction

We then confirmed the importance of spontaneous high-speed
transportation of air bubbles on improving the drag reduction
rate. We designed an underwater drag reduction experiment
system which included a supplier of continuous air bubbles and
samples with different patterns (Fig. 3(a)). Every sample with
40 mm width and 200 mm length had 9 rectangular patterns
(RPs) or 9 SBPs. For the common Al surface, we found that the
supplied underwater free air bubbles were not captured by the
surface and touched the surface only under the influence of
buoyancy, but eventually escaped mostly without any sponta-
neous moving air film, which resulted in a low bubble capture
rate of less than 5% (Fig. 3(b), (¢) and Video S67). For the sample
with RPs, some underwater free air bubbles were captured by
the RP to form constrained air bubbles and a spontaneous
moving air film (Fig. 3(d)). Although the constrained air bubbles
on the RP could harvest some surrounding air bubbles, it is
hard for them to catch up and harvest the air bubbles in front of
them, still leaving some escaping bubbles with a bubble capture
rate of 74%. For the sample with SBPs, many underwater free air
bubbles were captured by the SBP to form constrained air
bubbles which were bigger and moved faster than those on the
RP and not only harvested the surrounding air bubbles but also
caught up and harvested the air bubbles in front of them with
a bubble capture rate of 95%, leaving a spontaneous fast-
moving air film (Fig. 3(e)). Therefore, compared with RP, the
constrained air bubbles on the SBP moved faster and captured
more air bubbles (Fig. 3(f)). In addition, a bigger bubble
provided a greater contact area to capture the underwater free
air bubbles (Fig. 3(g)). Eventually, a virtuous cycle of fast
movement-capture more bubbles-get bigger-fast movement was
created on the SBP to guarantee a spontaneous fast-moving air
film. We next recorded the underwater resistance force curves of
the common Al surface, common Al surface with bubble supply,
9 RPs with bubble supply, and 9 SBPs with bubble supply and
calculated their drag reduction rates compared with the
common Al surface using MATLAB software, as shown in
Fig. 3(h), S14, and S15. The drag reduction rates for the
common Al surface with bubble supply, 9 RPs with bubble
supply, and 9 SBPs with bubble supply were 4.5%, 12.7%, and
17.5%, respectively. The higher drag reduction rate for the 9
SBPs with bubble supply resulted from the spontaneous fast-
moving air film, which offered a heterogeneous slip boundary
to reduce the drag experienced by water flowing on it.*> More-
over, increasing the number of SBPs can increase the coverage
of spontaneous fast-moving air film over the whole substrate
surface. Under the condition of maintaining the presence of
a spontaneous fast-moving air film, the maximum number of
SBPs for the sample with 40 mm width and 200 mm length was
13, and the corresponding maximum drag reduction rate was as
high as 27% (Figure S167).

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 The SBP has superb underwater drag reduction capability. (a) Schematic of the underwater drag reduction experimental system. (b)
Bubble capture rate of the common Al surface, RP, and SBP. (c) Images of the bubbles on the common Al surface with a bottom view and a side
view. (d) Images of the bubbles on the RP with a bottom view and a side view. (e) Images of the bubbles on the SBP with a bottom view and a side
view. (f) Schematic of bubbles on the RP and SBP with a bottom view. (g) Schematic of bubbles on the RP and SBP with a side view. (h) Drag
reduction rate of the common Al surface with bubble supply, RP with bubble supply, and SBP with bubble supply. The water flow rate and air

bubble flux were 0.5 m s~*and 0.4 L min~%, respectively.

3.3 Marine antifouling

The marine fouling of the surface of a ship's hull first needs
primary colonizers, such as diatoms or bacteria, to adhere on
the surface, and then, other marine organisms use these
primary colonizers as food to grow and breed. If the sponta-
neous fast-moving air film can prevent the attachment of
primary colonizers, antifouling is expected to be realized. We
first conducted an anti-diatom adhesion test using the experi-
mental system shown in Fig. 4(a). We placed four samples, the
common Al surface, superhydrophobic Al surface, the SBP
without bubble supply, and the SBP with bubble supply in water
containing diatoms. After 8 days of immersion, the common Al
surface was thickly covered with many diatoms (Fig. 4(b), (b1)),
and the superhydrophobic surface and SBP without bubble
supply were thinly covered with some diatoms. However, the
SBP with bubble supply remained clean without any diatom
coverage (Fig. 4(b2)). In addition, we calculated the diatom
coverage rate with immersion time for the different samples.
The diatom coverage rate for the common Al surface, super-
hydrophobic Al surface, and SBP without bubble supply grew
very fast and exceeded 90% for 4 immersion days and exceeded

This journal is © The Royal Society of Chemistry 2024

97% for 8 immersion days (Fig. 4(c)). However, the diatom
coverage rate for the SBP with bubble supply after 8 immersion
days was almost 0, showing a superb anti-diatom adhesion
capability. To further investigate the marine antifouling capa-
bility of the SBP with bubble supply, we then conducted an
antifouling test in the simulated marine environment,
including seawater, sea fish, and marine plants, as shown in
Fig. 4(d). After 4 days of immersion, the whole common Al
surface was corroded by the seawater and contaminated by the
marine organisms (Fig. 4(e) and S177). The SBP without bubble
supply was also contaminated by the marine organisms.
Chemical analysis indicated that the contaminant could be
corrosion products, microorganisms, marine plant debris, and
fish faeces (Figures S18 and S19t). However, the macroscopic
and microscopic morphology of the SBP with bubble supply
remained unchanged, indicating that the primary colonizers in
the seawater could not adhere to the surface, indirectly pre-
venting the adhesion of other marine organisms. It is worth
noting that the exterior surrounding region of the SBP with
bubble supply is still easily fouled. Similarly, to maintain the
presence of a spontaneous fast-moving air film, for the sample

J. Mater. Chem. A, 2024, 12,19268-19276 | 19273
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Fig. 4 The SBP has excellent marine antifouling capability. (a) Schematic of an anti-diatom adhesion test device. (b) Images of the different
samples after the anti-diatom adhesion test for 8 days. (b1) Enlarged view of the common Al surface. (b2) Enlarged view of the SBP with bubble
supply. (c) Diatom coverage rate for the common Al surface, superhydrophobic surface, SBP without bubble supply, and SBP with bubble supply
at different immersion times. (d) Image of the antifouling test in the simulated marine environment. (e) Images and SEM images of the common Al
surface, SBP without bubble supply, and SBP with bubble supply after the antifouling test for 4 days. The air bubble flux for the SBP when the air

supply was 0.4 L min™™,

with 40 mm width and 200 mm length, the maximum number
of SBPs was 13, and the corresponding maximum marine
antifouling rate was as high as 80% (Figure S167).

4 Conclusions

In conclusion, a spontaneous fast-moving air film, which orig-
inated from the spontaneous and directional transportation of
underwater air bubbles on a serial brachistochrone-shaped
pattern (SBP), was proposed for drag reduction and anti-
fouling. We first investigated the variation of the underwater air
bubble transportation processes with the SBP parameters. The
experimental results and theoretical analysis showed that the
decreasing rolling circle radius r, increasing start rotation angle
0,, decreasing end rotation angle 6,, and increasing ratio of the
narrow width to the wide width k led to an increase in the
junction number. In addition, the increasing r, decreasing 6,
and increasing 6, resulted in an increased SBP area. However,
the increasing number of junctions and increasing SBP area
would result in a decreased transportation velocity. Moreover,
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the decreasing k even meant that the air bubble could not be
transported over a long distance. We then obtained the fastest
transportation velocity of 444 mm s ' after the Box-Behnken
design optimization and junction optimization strategy, which
was faster than the existing underwater spontaneous bubble
transportation method. Since the air bubble could be quickly
transported on the SBP, the supplied underwater air bubbles
could form a spontaneous fast-moving air film, which offered
a heterogeneous slip boundary to reduce the drag experienced
by water flowing on it. In addition, the spontaneous fast-moving
air film could prevent the attachment of primary colonizers and
achieve antifouling. Eventually, under the condition of main-
taining the presence of a spontaneous fast-moving air film, we
simultaneously achieved 27% underwater drag reduction and
80% marine antifouling by setting a suitable number of SBPs.
This finding could maximize energy saving for ships and facil-
itate sustainable development for humans.

This journal is © The Royal Society of Chemistry 2024
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