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The burgeoning field of quantum sensing hinges on the creation and control of quantum bits. To date, the
most well-studied quantum sensors are optically active, paramagnetic defects residing in crystalline hosts.
We previously developed analogous optically addressable molecules featuring a ground-state spin-triplet
centered on a Cr** ion with an optical-spin interface. In this work, we evaluate isovalent V** and Mo**
congeners, which offer unique advantages, such as an intrinsic nuclear spin for V3* or larger spin—orbit
coupling for Mo**, as optically addressable spin systems. We assess the ground-state spin structure and
dynamics for each complex, illustrating that all of these spin-triplet species can be coherently controlled.
However, unlike the Cr*" derivatives, these pseudo-tetrahedral V3* and Mo** complexes exhibit no
measurable emission. Coupling absorption spectroscopy with computational predictions, we investigate
why these complexes exhibit no detectable photoluminescence. These cumulative results suggest that
design of future V3* complexes should target pseudo-tetrahedral symmetries using bidentate or
tridentate ligand scaffolds, ideally with deuterated or fluorinated ligand environments. We also suggest
that spin-triplet Mo**, and by extension W**, complexes may not be suitable candidate optically
addressable qubit systems due to their low energy spin-singlet states. By understanding the failures and
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impressive demonstrations - such as magnetic resonance of
individual proteins,'”* detection of action potentials of indi-

Introduction

The second quantum revolution is driven by the design, crea-
tion, and control of quantum bits, or qubits, the fundamental
units of quantum information processing.’® Harnessing the
power of quantum control, quantum sensors have provided
unprecedented visualizations of nanoscale magnetic and elec-
tric fields in diverse physical environments.''™ In many
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vidual neurons,*® or mapping electron flow in two-dimensional
materials'®'” - optically active, paramagnetic defects embedded
in a crystalline host serve as the qubits.>”'**> The electronic
structure of these color centers provides a valuable platform for
quantum control. First, the ground state spin sublevels of these
defects provide a two-level quantum system to act as the qubit.
Crucially, the spin sublevel populations may be optically
prepared into a non-thermal equilibrium state, i.e. initialized,
while the spin state information may be read out using spin-
dependent optical emission.'®* These combined features
enable remote optical control and single qubit addressability,
both of which are valuable features for quantum sensing
technologies.***

Although solid-state color centers offer incredible coherence
properties and quantum control, deterministic spin localization
and defect tunability remain major challenges.” To complement
existing top-down creation of these solid-state systems, molec-
ular synthesis provides a bottom-up approach, offering
a modular and scalable route to develop emerging quantum
technologies.>”?**" To create bespoke quantum sensors, we
sought to develop molecular analogues of solid-state color
centers that host a similar optical-spin interface, but with their
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molecular nature facilitating bottom-up design and solution
processibility towards specific sensor-analyte interactions.**?*
In recapitulating this optical-spin interface, we needed (i)
a ground state spin that can be coherently controlled, (ii) an
electronic excited state that is ‘connected’ to this ground-state
spin through a spin-selective optical process (e.g., excitation
or relaxation, see ESIt for further discussion), (iii) radiative
decay from the excited state to the ground state for optical
readout, and (iv) a ground-state spin lifetime, or spin-lattice
relaxation time (7j), that is longer than the optical lifetime
(topt)-** These criteria initially led us to spin-triplet (S = 1)
transition metal complexes that share a similar electronic
structure with optically addressable solid-state spins such as the
anionic nitrogen vacancy center in diamond, divacancy defects
in silicon carbide, or more similarly, tetravalent chromium
(Cr*") dopants in silicon carbide.?

While these generic features provide a framework to build
molecular color centers, S = 1 molecular systems pose two key
challenges for spin-dependent optical readout. First, to achieve
a spin-selective optical process and emission in § = 1
complexes, a ligand field that ensures that the first excited state
is a spin-singlet excited state ('ES) is desirable.** For resonant
optical control (off-resonant optical control protocol addressed
in the ESIt), the spin-flip transition from the 'ES to the spin-
triplet ground state (*GS) should exhibit limited vibronic
coupling, allowing for both narrow optical linewidths for spin-
selective optical excitation and radiative decay to the ground
state.>»*° This desired electronic structure requires a sufficiently
strong ligand field around the spin-bearing metal center such
that the first excited state is a 'ES, eliminating lower energy
*ES's that provide non-radiative decay pathways.** Second, the
ground-state spin must be capable of coherent control.
However, the spin of § = 1 transition metal systems often
cannot be coherently controlled with readily accessible micro-
wave frequencies (i.e., 1-40 GHz). The inability to coherent drive
the ground-state spin of these systems arises from both the
integer spin and large zero-field splitting (ZFS) values, requiring
high microwave frequencies (>95 GHz) to probe ground-state
spin transitions.*** This challenge may be overcome by
designing orbitally non-degenerate, S = 1 ground states,
wherein the spin-bearing ion resides in a (near) cubic ligand
field.

Considering these design parameters, we previously
demonstrated that pseudo-tetrahedral (Ty) Cr** molecules in
a strong ligand field exhibit small ground-state ZFS values of
1.8-4.1 GHz for microwave control at X-band frequency (9-10
GHz), and an optical-spin interface.**** Yet, the air-sensitivity,
small spin-orbit coupling, and low percentage of nuclear
spin-bearing isotopes of Cr**-based systems may not be optimal
for every sensing task. Herein, we aim to translate this combi-
nation of features from T4 Cr*" systems into molecular hosts
that offer (i) intrinsic nuclear spins, I, to serve as quantum
memories for prolonged information storage,”**** and (ii) larger
spin-orbit coupling for improved sensitivity to electric
fields.*>* To that end, we turned to Ty trivalent vanadium (V*7)
and tetravalent molybdenum (Mo*") derivatives in the same
ligand fields as their Cr** congeners. The vanadium-51 (i.e., >'V,
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I=7/2,99.8% abundance) center provides a potential nuclear
spin memory that is intrinsically coupled to the electronic spin
through hyperfine interactions,* while the Mo*" center
increases the spin-orbit coupling experienced by the electron
spin, offering enhanced sensitivity of the spin Hamiltonian
parameters to certain external fields through the Zeeman
splitting term (e.g., strain or electric fields).*”** However, the
metal ion substitution should substantially change both the
electronic structure and spin dynamics that dictate the
quantum sensor performance. To initiate our studies with these
ions, we synthesized and evaluated three spin-triplet systems
with V** and Mo"" to compare with previously studied Cr**
congeners. Coupling spectroscopic analysis with computational
predictions, we evaluate how to design these systems,
addressing their advantages and limitations. From these
results, we suggest that reducing nearby high energy oscillators
and using ligand scaffolds could enable both emission and low
frequency microwave control for V** systems while Mo*"
systems may be fundamentally limited by their intrinsically low
lying 'ES.

Results and discussion

We synthesized [Li(THF),][V(o-tolyl),] (1, THF = tetrahydro-
furan), Mo(o-tolyl), (2),* and [Li(12-crown-4),]
[V(trimethylsilylmethyl),] (3) to directly compare with previous
candidate  color centers,***®  Cr(o-tolyl), (4)° and
Cr(trimethylsilylmethyl), (5)** (Fig. 1). Detailed synthetic
procedures for 1 and 3 are outlined in the ESI{ while 2, 4, and 5
were synthesized according to previously reported methods.*-*
We also note that previous efforts to synthesize the molyb-
denum analogue of Cr(trimethylsilylmethyl), resulted in the
hexakis(trimethylsilylmethyl)dimolybdenum species, so we
could not investigate the Mo*" analogue of 5.°2%

We first characterized the solid-state structure of 1 and 3
through single crystal X-ray diffraction, finding that their inner
MC, coordination sphere remains close to ideal tetrahedral
symmetry based on both the 7, and 7, metrics (0.95-1.01).>*°* 2
had been previously characterized at room temperature and

This work
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Fig. 1 Molecular structures of 1, 2, 3, 4 (ref. 34), and 5 (ref. 40)
determined at 100 K. Carbon, silicon, vanadium, chromium, and
molybdenum given in gray, peach, green, pink, and blue, respectively.
Hydrogen atoms and counter ions omitted for clarity.
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shows only a slight contraction in Mo-C bond lengths upon
cooling to 100 K.** As such, these systems should exhibit rela-
tively small, but non-zero, ZFS values. The ground-state struc-
ture may be approximated as a descent in symmetry from ideal
Ta to Cs,, as discussed for [Li(THF),][V(mesityl),] and [Li(THF),]
[V(pentachlorophenyl),].>®

Microwave addressability remains a challenging parameter
to design and tune in § = 1 compounds.***> Thus, we initiated
our investigation by probing the ground-state spin structure of
these systems to determine if they are capable of ground-state
spin control. We characterized 1-3 with both continuous-wave
(cw) and pulsed electron paramagnetic resonance (EPR) to
understand their ground-state spin structure and dynamics. To
reduce decoherence from electron spin-electron spin interac-
tions, we cocrystallized 1-3 in their corresponding isostructural,
diamagnetic analogues, [Li(THF),][Al(o-tolyl),] (1-Al), Sn(o-
tolyl), (2-Sn),”” and [Li(12-crown-4),][Al(trimethylsilylmethyl),]
(3-Al), respectively (see ESIT for details). We denote the cocrys-
tallized samples as 1'-3’ for all subsequent experiments with
relative electron spin concentrations of 0.36-3% (Table S87).
From the X-band cw-EPR spectra in Fig. 2a-c, we find that the
axial ZFS values, D, are larger for the V** and Mo*" derivatives
than the corresponding Cr** congeners.*® 1’ and 2’ exhibit |D|
values of 5.62 GHz and 7.3 GHz, respectively, while |[D| for 4’ at 5
K is 3.63 GHz.** The largest contribution of the two-fold increase
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in |D| for 2’ likely arises from the increased spin-orbit coupling
of the heavier Mo*" ion, where the free ion spin-orbit coupling
parameter, 1, is ~425 and 167.5 cm ™' for Mo*" and Cr**.*® Given
the similarity in A for V*" and Cr*", the increase in |D| for 1’ more
likely results from symmetry lowering around the V** center due
to crystal packing with the [Li(THF),]" cation. For example, |D| =
5.62 GHz for 1’ is similar to the |D| value of 5.55 GHz for Cr(o-
tolyl), (4) diluted in a lower symmetry (orthorhombic) host
matrix.>

While 1’ and 2’ show modest increases in |D| relative to their
Cr*" analogue (4'), 3’ exhibits a dramatic increase to 16.6 GHz,
which is ~13 times greater than its Cr*" analogue (5') where |D|
= 1.23 GHz.* To understand this order-of-magnitude increase
in |D| for 3', we quantified the deviation from ideal T4 symmetry
using the 7, and t, parameters®* for 3’ and 5'. Between 3’ and
5/, the 7, and 7 values vary by only 0.004 and 0.015, respec-
tively. While these geometric deviations are small, the absolute
spin splitting energies of 3’ and 5’ vary by only 63 peV, sug-
gesting that subtle structural changes may result in significant
variations in |D|. However, variations in |D| may also arise from
a convolution of competing effects, such as changes in SOC,
ligand field strength, symmetry-driven coupling to excited
states, and electron delocalization.®®®* Thus, to maintain
microwave addressability across diverse host media for sensing,
it will be key to accurately predict and measure how growth on
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Fig. 2 (top) cw-EPR spectra of (a) 1/, (b) 2/, and (c) 3’ at 5 K and 9.37-

Temperature (K)

Temperature (K)

9.39 GHz with resulting D and E values. * denotes V** impurity in 3/,

representing 1% of spin density in the sample. (middle) Magnetic field dependence of T,,, (hollow symbols) at 6 K for (d) 1/, (e) 2/, and (f) 3 overlayed
on the echo-detected field swept spectrum. Error bars are within the data points. (bottom) Temperature dependence of T; (filled circles) and T,
(hollow circles) for (g) 1, (h) 2, and (i) 3" at X-band frequency and measured at the magnetic field indicated by the arrow in the (d-f).

14018 | Chem. Sci., 2024, 15, 14016-14026

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc03107e

Open Access Article. Published on 05 2024. Downloaded on 06.2.2026 08:09:20.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

different surfaces or substrates affects local structure around
the spin center and, consequently, |D|.*>

The two V** complexes, 1 and 3’, also exhibit two advanta-
geous features. First, the crystal symmetries of 1’ and 3’ result in
non-zero transverse ZFS, |E|, values of 0.8 and 2.2 GHz,
respectively. Non-zero |E| should result in clock-like transitions
around zero magnetic field at frequencies of |D — E|, D + E| and
2|E|, resulting from mixing of the Mg = +1 and —1 states
(Fig. S11).*® Clock-like transitions show little variation in their
transition frequency with small changes in applied magnetic
field.**** As a result, the clock transitions at zero magnetic field
should exhibit longer coherence times, T, than typical Zeeman
transitions, which exhibit a linear dependence on the external
magnetic field.******% Second, the cw-EPR spectra in Fig. 2a
and c exhibit hyperfine coupling to the >V nucleus of 155 and
165 MHz for 1’ and 3/, respectively. Thus, the built-in *'V
nuclear spin and relatively large hyperfine coupling to the
electron spin provides a potential nuclear spin memory to
prolong the storage time of quantum information.****% For
example, previous work with § = 1/2 V** as well as *"?*Yb*"
molecular spins suggested that the coherence of strongly
coupled nuclear spin may be prolonged beyond electronic spin
coherence time by increasing the magnetic field strength.*®” As
a result, both the clock-like transitions around zero field and
the intrinsic nuclear spin of the V*'-based systems provide
potential routes to lengthen coherence lifetimes.

To then determine the spin dynamics of these Mo** and V**
systems in their isostructural matrices, we examined the
temperature and magnetic field dependence on spin-lattice
relaxation (7y) and coherence (T,,) times for 1'-3’ at X-band
frequency (9-10 GHz). In each case, these complexes exhibit
shorter T; times (10-15 us) at low temperature than 4’ or 5/,
where we previously measured T; times of 2-3 ms at 5 K.*
However, the concentration of both 1’ and 3’ were 1.5 and 3% in
the spin-diluted lattice, which we have previously shown leads
to a reduction in T; at low temperatures for 4'.* Thus, T, for 1/
and 3’ may likely be improved with further dilution. Notably, 1/
and 3’ exhibit T; times of >0.5 ps up to 30 K while 2’ shows
a steep decline in T; < 0.5 ps by 18 K (Fig. 2g-i). These con-
trasting temperature dependencies likely arise from the larger
spin-orbit coupling of the Mo**-based spin centers, as well as
lower energy phonon modes arising from the heavier metal
center.”"”*

Turning to the T, times, a key metric to evaluate the
performance of qubit candidates, we find relatively similar
temperature dependencies for 1'-3'. In general, each compound
exhibits Ty, times of approximately 1 ps at 6 K, likely limited by
the high density of "H nuclei on the ligands.**”*7 To verify that
the nuclear spin environment inhibits T;,,, we also performed
power-dependent Hahn-echo experiments to mitigate the
influence of instantaneous diffusion from nearby paramagnetic
spin centers in relatively spin concentrated samples.**”> We find
that the T, times of 1’ and 3’ show no significant change with
decreasing power (Fig. S21), suggesting that the nuclear spin
environment of the matrix limits Tj, in these samples. In
contrast, the T,,, time of 2’ approaches ~2 ps at decreasing small
microwave powers, which is similar to the T;, time previously

© 2024 The Author(s). Published by the Royal Society of Chemistry
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measured for 4’ at similar concentrations* (see ESI{ for further
details). This analysis does not result in large increases in T,
times, indicating that coherence times reported here are likely
limited by the "H nuclear spin environment. The T, times then
decrease with increasing temperature until the Ty, times are
limited by T;. The larger spin-orbit coupling in 2’ likely leads to
Ty-limited Ty, times by 18 K while the V**-based systems are
measurable up to at least 30 K. However, both the T; and Ty,
times in 1’ and 3’ are shorter than their Cr** congeners, 4' and
5'.% We posit that in these low field measurements, we may be
either simultaneously driving multiple overlapping spin tran-
sitions (Fig. S1t) or driving a highly mixed spin transition,
which has previously resulted in decreased spin-lattice relaxa-
tion times for an S = 5/2 Fe*" complex.”® However, this assertion
requires a multifrequency EPR study for validation, which will
be the subject of future work. Additionally, we note that the T;
and Ty, times reported here for 1'-3’ will vary substantially when
measured in other matrices as the matrix tends to most strongly
influence the spin dynamics of molecular qubits.”

We further evaluate the magnetic field dependence of these
T, times. Similar to the behavior of 4/, we find local maxima in
T for 2/ at 170, 460, and 620 mT, where the applied field is
parallel or perpendicular to the principal axis of the ZFS tensor
(Fig. 2e). Across this field range, Ty, changes by a factor of ~4.
For 1’ and 3’ where E > 0 and I = 7/2, the field dependence of T,
is less exaggerated since these systems exhibit are more tran-
sitions over a similar field range (Fig. S1f). As a result, Ty,
changes by less than a factor of 2 for 1’ over a similar field range
to 2/. While the variation is less significant for 1’ and 3’, these
data still highlight that no single value of T,, provides
a complete picture of the spin relaxation, especially for aniso-
tropic metal complexes. We similarly expect T; to show a strong
magnetic field dependence for 1'-3’, as demonstrated with Cr(o-
tolyl),.”®

Most importantly, even the maxima in 7}, times measured
here still fall well short of coherence times for state-of-the-art
quantum sensors, such as anionic nitrogen vacancy centers in
diamond (e.g., from 10 s to 100 s of microseconds).” In fact, low
temperature (=10 K) Ty, times across most transition metal-
based systems to date are =15 us, regardless of spin
state,>”*778%81  ligand nuclear spin environment,””** or
magnetic field,*** illustrating how the surrounding matrix
promotes decoherence. Thus, introducing clock-like transitions
(e.g., Fig. S1f) into molecular sensors while be critical to
improve their coherence properties, and consequently their
sensitivity,** in magnetically noisy matrices.*>*

Turning to the excited state structure, we initially measured
optical absorption spectra of these systems in solution at room
temperature. The solution-phase UV-visible near-infrared
spectra in Fig. 3a illustrate that the Mo*" ion in 2 leads to
both higher energy and more intense transitions than either of
the first row congeners, 1 and 4. The UV-vis-NIR spectrum of 2
also appears qualitatively similar to 4, but the transitions in 2
are shifted to higher energy (Fig. S61). This spectrum suggests
that, similar to 4, the 'ES of 2 is the lowest energy excited state,
which should yield the correct energy level structure for optical-
spin control.** Conversely, the V** ion in the pseudo-T, o-tolyl

Chem. Sci., 2024, 15, 14016-14026 | 14019
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Fig. 3 (a) Solution-state electronic absorption spectra of 1 and 2

compared with Cr** analogue, 4 (ref. 40). Green highlighted region
indicates low energy absorption present for [V(aryll,]~ anions. (b)
Solution-state electronic absorption spectra of 3 compared with Cr**
analogue, 5 (ref. 40). Blue shaded region highlights energy of C-H
stretching overtones that can mediate non-radiative decay.

ligand field of 1 leads to lower energy transitions than both 2 or
4. In fact, 1 exhibits absorption extending well into the NIR,
leading to substantial spectral overlap with aromatic C-H
overtones (see green and blue shaded regions in Fig. 3a), which
may provide a multi-phonon mediated non-radiative decay
pathway.**

When replacing the aryl ligands in 1 with (trimethylsilyl)
methyl ligands in 3, we find that the absorption features from
1100-1400 nm are suppressed while the shorter wavelength
transitions from 400-1000 nm appear similar between 1 and 3.
The reduction in absorption between 1100-1400 nm for 3
suggests that either the stronger alkyl ligand field increases the
transition energy of the *ES manifold or the c-only alkyl ligands
do not mix with the lowest energy *ES metal-centered transi-
tions, resulting in very low oscillator strengths of the d-d tran-
sitions. We observed similar behavior in tetraaryl- and tetralkyl-
Cr'" systems. For example, 4 exhibits intense absorption
between 600 and 800 nm while those transitions are present,
but much weaker, for 5.*

To determine if 1-3 exhibited emission from a 'ES, we then
performed steady-state photoluminescence measurements.
When exciting pure, single-crystalline samples of 1-3 at 4 K with
660 or 785 nm excitation, we observe no emission in the range
of 900-1700 nm. Even performing photoluminescence experi-
ments on dilute single-crystalline samples of 1'-3’ or films of 5-
10% (w/w) of 1-3 in polystyrene at 4 K yielded no emission. The
lack of emission prevents optical readout of the ground-state
spin, the essential component for molecular color centers. We
sought to understand why some systems emit and other similar

14020 | Chem. Sci, 2024, 15, 14016-14026
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ones did not, to see if failure might serve as a guide for future
systems.

We performed spin polarized density functional theory
calculations using VASP (Vienna Ab initio Simulation Package)
6.3.2 (ref. 86-89) with projector augmented wave pseudopo-
tentials®>** and the PBE exchange correlation functional®** (see
ESIY for further details). For calculations of the charged mole-
cules 1 and 3, we explicitly included counterions but, for clarity,
we only highlight spin-bearing orbitals here. Fig. 4 shows the
electronic structures of 1-3, highlighting the d character of the
molecular orbitals. We visualized the highest occupied molec-
ular orbital (HOMO) and spin up and down lowest unoccupied
molecular orbital (LUMO) orbitals. Similar to 4 and 5,* all
molecules have a HOMO and LUMO with significant d char-
acter. Thus, the qualitative picture of all five compounds is
similar, yet only 4 and 5 exhibit measurable emission.

To evaluate where the 'ES lies relative to the *GS manifold,
we performed excited state calculations using the ASCF (delta
self consistent field) method.***> We calculated the 'ES->GS gap
by subtracting the total energy of a constrained occupancy
calculation, where the electron in the spin-up HOMO is
promoted to the spin-down LUMO, from a standard ground-
state DFT calculation (see ESIT for further details). We calcu-
late "ES->GS gaps of 0.355 eV, 0.319 eV, and 0.407 eV, eV for 1, 2,
and 3, respectively. Previously, we estimated the 'ES-*GS gap is
0.537 eV for 4 using the same methodology.®* Thus, the calcu-
lated 'ES energies for 1, 2, and 3 are only 66, 59, and 76% of 4.
Although these values have limited quantitative accuracy, the
trend suggests that the 'ES energy of 1 and 2 is significantly
lower than 4. These results align with the expectation that the
spin-pairing energetic penalty decreases with increasing ionic
radii, such that the 'ES energies should be Mo*" < V** < Cr*" in
the same ligand field. We further find that 3 also exhibits
a lower calculated 'ES value than 4, despite the stronger alkyl
ligand field of 3.

If we estimate hypothetical emission wavelengths by
assuming the ratio between the calculated 'ES and experi-
mental emission energies is similar to 4, where calculated "ES/
emission energy = 0.537/1.209 eV,**** we find that 1, 2, and 3
would emit at roughly 1550, 1800, and 1400 nm. Considering
this wavelength range, the lack of measurable emission may
therefore be rationalized by four possible effects. First, any
photons emitted at longer wavelengths than 1700 nm are
outside of the range of commercially available InGaAs NIR
detectors that are optimal for typical NIR emission measure-
ments. Second, if any emission occurs in the measurement
window, the higher strain sensitivity of 1-3 with lower symmetry
or larger spin orbit couplings could result in broader emission
than Cr? derivatives, resulting in fewer photons counted per
pixel in the CCD measurements, rendering the measurement
less sensitive. Third, the posited lower energy 'ES (>>1200 nm)
may exhibit significant spectral overlap with high energy C-H
stretching overtones (e.g., Fig. 3) that provide highly favorable
non-radiative decay through multi-phonon mediated relaxation
pathways. This potential explanation for the lack of emission
could be ameliorated through selective deuteration or fluori-
nation of the ligands.”® Further experimental and theoretical

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Visualizations of selected molecular orbitals for 1 (a—c), 2 (e—g), and 3 (i—k). The color of the box around each molecular orbital visu-
alization corresponds to the quantitative molecular orbital diagram for 1 (d), 2 (h), and 3 (). The LUMO; and LUMO orbitals represent the first

spin-triplet (°ES) and first spin-singlet (*ES) excited states, respectively.

studies are required to investigate this pathway. Fourth, the
energy-gap law suggests that as the emissive state becomes
lower in energy, non-radiative decay rates will increase.®”*® In
each compound, a combination of these effects may be opera-
tive, leading to no detectable emission. Based on the literature
and our studies of similar compounds, we hypothesize that the
C-H overtones are critical for quenching emission in this energy
region.”>**** These results suggest a pathway forward for the
design of molecular color centers featuring depleted C-H
modes for compounds that emit in the near-IR or telecom
region.

Designing emissive V** systems with a microwave addressable
ground-state spin

The aggregate of these results provides us with a series of new S
= 1 molecules featuring coherent control over their ground-
state spin and a set of design principles for next generation
quantum sensors. Previous data illustrate that emissive V"
systems may be achieved using trigonal bipyramidal or octa-
hedral geometries.'*'** However, trigonal bipyramidal or octa-
hedral geometries with d*> metal ions result in either a non-
cubic (e.g., Csy, Dsp,) Symmetry or an orbitally degenerate (°T,)
ground state, respectively. These features result in |D| values
that well exceed frequencies of conventional microwave sour-
ces, making their ground-state spin control more challenging.
Thus, we attempted to unify the emissive nature of five and six
coordinate V** with the low |D| values of pseudo-T4 by intro-
ducing the V*' jon into sufficiently strong ligand fields.
However, we never observed emission for V** systems, even with
the strong-field alkyl donors of 3. These results suggest that
a stronger ligand field should be enforced through a rigid ligand
coordination with, for example, C; symmetric ligand scaffolds
(e.g. tris(pyridyl)methane, tris(N-heterocyclic carbene)borate) or
C,-symmetric bidentate ligand scaffolds (e.g. 1,1’-binaphthyl-
2,2'-diamine).'** Notably, increased rigidity is often ascribed to

© 2024 The Author(s). Published by the Royal Society of Chemistry

improved radiative efficiency of Cr*" systems.®® However, the
hard nature and high charge of early transition metals likely
necessitates using suitably hard, anionic ligand donors,
precluding the use of softer strong field ligands such as phos-
phines. Additionally, the lower energy transitions in V** systems
likely undergo rapid non-radiative decay mediated by nearby
C-H groups. Thus, the spectral overlap of these modes with
excited states may be mitigated through deuteration or fluori-
nation, also demonstrated with Cr** systems to greatly enhance
emission.”®**'® A similar approach may be employed with
future systems to realize emission from these V*>* systems that
feature generally small (e.g., <30 GHz) |D| values.

Designing emissive Mo/W systems with microwave
addressable ground-state spin

In contrast to the V" analogues, Mo*"-based systems pose
a unique challenge. The energy gap between the 'ES and *GS is
generally quite small given the large size of the Mo*" center.
Additionally, to unlock the full potential of large spin-orbit
coupling from the Mo*" center to achieve enhanced sensitivities
of the spin to electric field perturbations, the ion should sit in
a polar molecular symmetry, such as Cs,.** For Mo*" systems,
these symmetries may simply yield an S = 0 complexes or
prohibitively large |D| values. Thus, for Mo- and even W-based
quantum sensors, an alternative spin-state may be better
suited to enable strong spin-electric field coupling.*”'* For
example, Mo>" S = 1/2 defects in silicon carbide have demon-
strated NIR emission'*® and may be capable of coherent optical
control, similar to anionic tin vacancies in diamond.'” Thus,
future investigations with § = 1/2 Mo>"/W>" systems may
provide a more suitable framework to achieve a ground-state
spin capable of coherent control connected to an emissive
optical state than the S = 1 derivatives with second or third row
metal ions.
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Conclusions

In this work, we examined the electronic structure and spin
dynamics of three novel V** and Mo** molecular color center
candidates that could feature valuable spectroscopic handles
for sensing. Notably, each system showed appropriately small
ground-state anisotropy for coherent spin control. We demon-
strated this control over a series of molecules, including a rare
example of spin control in a second row transition metal with
a spin-triplet ground state. We also suggest that the transverse
anisotropy (i.e., |E| > 0) and nuclear spin of the V** analogues
may offer two avenues to extend quantum coherence. Despite
these potential advantageous features, none of the systems
investigated here exhibited measurable emission, likely result-
ing from a combination of a low energy 'ES and rapid non-
radiative decay mediated by the C-H-rich ligand environment.
Coupling experimental and computational insight, we suggest
that the use of ligand scaffolds and deuteration/fluorination
may result in emissive V** while maintaining ground-state
spin control, while larger transition metal ions, such as Mo
and W, in S = 1/2 states may be better suited for optical-spin
control. Thus, we offer design considerations that will hope-
fully lead to the realization of V- or Mo-based molecular
quantum sensors in future studies.
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