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We evaluate the effectiveness of fine-tuning GPT-3 for the prediction of electronic and functional

properties of organic molecules. Our findings show that fine-tuned GPT-3 can successfully identify and

distinguish between chemically meaningful patterns, and discern subtle differences among them,

exhibiting robust predictive performance for the prediction of molecular properties. We focus on

assessing the fine-tuned models' resilience to information loss, resulting from the absence of atoms or

chemical groups, and to noise that we introduce via random alterations in atomic identities. We discuss

the challenges and limitations inherent to the use of GPT-3 in molecular machine-learning tasks and

suggest potential directions for future research and improvements to address these issues.
Introduction

There has been recent and growing interest in leveraging
machine learning (ML) for diverse applications involving
organic molecules, such as predicting molecular properties1–6

and using inverse design techniques to create new functional
molecules.7–10 Such ML-oriented tasks have facilitated a deeper
comprehension of structure–property relationships, led to the
discovery of new chemical reactivity, and catalyzed the devel-
opment of novel functional molecules and materials, including
drugs and catalysts.

The advent of the latest large language models (LLMs),
notably GPT-3 and GPT-4,11,12 has quickly attracted the attention
and interest of chemists. Indeed, despite inherent limitations
and valid concerns about the way that LLMs operate, GPT
models have emerged as tools that offer the potential to trans-
form the way chemists approach their research. LLMs, which
are trained on vast amounts of text data, can generate human-
like text, answer questions, and even perform tasks that
require understanding and reasoning. Used with caution,
almost any aspect of chemistry research might benet from
such capabilities, while others may require additional
enhancements to the LLMs, such as ne-tuning and the use of
plugins.

One of the most signicant impacts that LLMs may have on
chemistry is their potential ability to accelerate research and
discovery by interacting with human chemists. For example,
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GPT-4 has been integrated into an iterative process of discov-
ering new metal–organic frameworks (MOFs), operating
through a cooperative workow between GPT-4 and a human
chemist.13 Through structured prompting of GPT-4 and in-text
learning informed by human feedback, the human-articial
intelligence (AI) collaboration yielded the discovery of an iso-
reticular series of MOFs, each synthesized using distinct strat-
egies and optimal conditions.

Sophisticated, LLM-powered AI chemistry agents have been
reported to accomplish tasks across organic synthesis, drug
discovery, and materials design. One such example is Chem-
Crow,14 a GPT-4-powered chemistry engine designed to
streamline the reasoning process for various common chemical
tasks, including drug and materials design and synthesis.
ChemCrow combines chain-of-thought reasoning with expert-
designed tools for chemistry. It operates by sequentially
prompting GPT-4 with instructions, guiding it to reason about
the current state of the task, consider its relevance to the nal
goal, and plan the next steps accordingly. ChemCrow has
proven to be an effective assistant to expert chemists, while also
lowering the entry barrier for non-experts by offering a simple
interface to access accurate chemical knowledge.

In addition to their natural language processing and
conversational capabilities, extensively pre-trained LLMs have
demonstrated signicant potential in predicting molecular and
material properties, as well as in the inverse design of func-
tional molecules and materials. Task-specic ne-tuning of
GPT-3 has resulted in surprisingly effective prediction perfor-
mances across a range of chemistry ML tasks, oen surpassing
the performance of dedicated ML models specically developed
for these tasks.15 Notably, the ne-tuning of GPT-3 showed
exceptional strength in low-data ML tasks. Furthermore, the
performance of the ne-tuned GPT-3 models remained robust
© 2024 The Author(s). Published by the Royal Society of Chemistry
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regardless of the representation used, such as chemical names
or line representations like SMILES or SELFIES. This suggests
that GPT-3 is adept at extracting correlations from any form of
text. However, it is crucial to exercise caution when interpreting
the success of such ne-tuned GPT-3 models. Impressive
performance likely indicates that the GPT-3 model has identi-
ed and exploited correlations in the data for predictions. It
does not necessarily imply that these correlations are chemi-
cally meaningful or causal.

There is a rapidly growing community of researchers who are
exploring ways to leverage LLMs for chemical discovery chal-
lenges. A recent thematic hackathon provided 14 compelling
examples of how LLMs can revolutionize materials science and
chemistry.16 These examples spanned a wide array of applica-
tions, from predictive modeling to the creation of educational
tools, illustrating the models' capacity to go beyond their initial
training parameters. The event highlighted the ability of LLMs
to extract information from unstructured data and to seam-
lessly integrate different tools via natural language interfaces.
The versatility of LLMs displayed in projects for predictive
modeling, interface design, knowledge extraction, and educa-
tional tool development indicates their potential to enhance
workow efficiency, minimize errors, and increase productivity
within scientic elds.

In this study, we hypothesize that the combination of GPT-
3's language understanding capabilities and the inherently
human-readable nature of the SMILES notation17 may enable
effective recognition of signicant patterns within chemical
structures and capture the dependencies of molecular proper-
ties on these structures. To test this hypothesis, we approach
several molecular property prediction tasks by applying GPT-3
to the classication of SMILES strings. Our aim is to explore
GPT-3's ability to discern subtle differences in molecular
structures and to accurately classify compounds into specic
categories, as dened by their molecular properties.

We focus on assessing the efficacy of ne-tuning GPT-3 for
predicting the electronic properties of organic molecules.We use
a dataset of organic molecules extracted from the Cambridge
Structural Database, previously reported by some of the authors
here.18 The dataset consists of 48 182 organic molecules, all with
documented synthetic pathways and stability in the solid state.
Their electronic properties, relevant to semiconductor applica-
tions, were determined by quantum chemical calculations. We
present results for ne-tuned GPT-3 models in predicting ener-
getics of the frontier molecular orbitals; that is, energies of the
Highest Occupied Molecular Orbital (HOMO) and Lowest
Unoccupied Molecular Orbital (LUMO). We compare the
performance of these GPT-3 models with that of message-
passing graph neural networks.19 Additionally, we test the
robustness of our ne-tuned GPT-3 models against ‘adversarial
attacks’, explore the potential explicability of the models in
correlating molecular structure with properties, and the evaluate
the ability of ne-tuned GPT-3 models to make predictions for
‘unknown’ molecules that were not represented in the training
set. Finally, we discuss the limitations and challenges associated
with using LLMs in chemical classication tasks and propose
potential avenues for future research and improvements.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Methods
Background knowledge of GPT-3

Generative Pre-trained Transformer 3 (GPT-3),11 developed by
OpenAI, is a sophisticated large-scale language generation
model. Using a transformer architecture, it employs self-
attention mechanisms to manage long-range dependencies
within text. The model can generate sentences that harmonize
with any given context based on the highest probability. GPT-3
was pre-trained on a wide-ranging corpus of text data, including
internet text, books, and articles, under an unsupervised
learning framework. This pre-training phase empowered the
model to predict the next word in a sentence, thereby facili-
tating the learning of patterns, structures, and representations
in language. With its 175 billion parameters, GPT-3 stands as
one of the largest language models currently available. Post pre-
training, GPT-3 underwent ne-tuning using task-specic data,
preparing it for specic applications such as text generation,
machine translation, and question answering. This process
optimized the model's capabilities and performance for these
specic tasks.

The GPT-3 model incorporates a multi-layered self-attention
mechanism, borrowed from the transformer model, into the
decoder segment of the encoder–decoder architecture. This
allows GPT-3 to capture dependencies among all words in
a sentence simultaneously, thus enabling it to comprehend
long-range dependencies and contextual information. One of
GPT-3's notable features is its ability for zero-shot and few-shot
learning. In other words, it can generate coherent text with little
or no task-specic training data, indicating its comprehensive
understanding of the structure of language. Additionally, GPT-3
exhibits transfer learning, seamlessly applying knowledge from
one domain to another. However, as noted frequently by others,
GPT-3 may also generate incorrect or nonsensical responses
and display biases that are inherent in its training data.

Pre-trained GPT-3 models, such as ‘ada’, can be ne-tuned to
specialize in specic tasks or domains using OpenAI's API. Fine-
tuning refers to the process of adapting a base model, which has
already been pre-trained on a vast corpus of generalized data, to
perform better on a more specic task. During this process, the
model's parameters are adjusted to minimize errors for the new
task. This allows the model to tailor its knowledge for the
specic task, enhancing its performance.
Simplied molecular input line entry system (SMILES)

SMILES is a notation system used in chemistry that provides
a compact, human-readable way to represent a molecular
structure using ASCII strings.18 A SMILES string is composed of
atomic symbols and indications of connectivity and is read from
le to right. Hydrogen atoms are usually not explicitly repre-
sented as it is assumed that they are present as required by the
molecule's standard valences.

In a broad sense, SMILES can be considered a type of
language, designed to provide a standardized method of writing
chemical structures in text form. Like all languages, SMILES has
its own syntax (rules about structure) and semantics (rules
Chem. Sci., 2024, 15, 500–510 | 501
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about meaning). The syntax includes the use of specic char-
acters to represent atoms, bonds, ring structures, and branches,
while the semantics dene how these characters are interpreted
as chemical structures. In this respect, learning to write in
SMILES is somewhat akin to learning a new language where
understanding the rules and conventions is crucial. However,
unlike human languages, the SMILES notation lacks grammar
rules that govern word order and does not convey meaning
through the arrangement of ‘words’ into ‘sentences’. Each
SMILES string represents a single molecule, and in common
usage they are not typically read sequentially to extract addi-
tional meaning.
Fig. 1 Tokenization of SMILES strings for GPT models.
Fine-tuning GPT-3 for molecular ML tasks

When a SMILES string such as ‘c1ccccc1’ for benzene is input
into the chat interface of a GPT model, the typical response
provided is: “The SMILES string c1ccccc1 represents benzene,
a simple aromatic compound with a ring structure.” This
response reects the GPT model's stored knowledge, which
does not extend to predicting the electronic or functional
properties of molecules. To enable the GPT model to predict
such properties, it must be ne-tuned with data that is specic
to the task at hand, such as molecular property prediction.

All our ne-tuned GPT-3 models made use of the “ada” base
model. The training data points were structured as prompt-
completion pairs, following the format given below, and
stored in JSONL les:

{"prompt":"SMILES","completion":"property class label"}.
In this format, the SMILES string of a molecule serves as the

prompt, which is then completed with a class label assigned to
the molecule for a specic property (e.g., its HOMO value). The
property class labels were categorized as 0/1, 0/1/2, and 0/1/2/3
for binary, ternary, and quaternary classications, respectively.

The GPT series of models, like other language processing
models, use a step known as tokenization as part of their pre-
processing. In this process, a text segment is divided into
smaller units known as tokens, which can range in size from
a single character to an entire word. Each token is subsequently
converted into a unique ID using a vocabulary list on which the
model has been trained. Every word or character within this
vocabulary list corresponds to a unique ID. This series of token
IDs is then input into the GPT model for processing. The model
employs these token IDs to comprehend the structure and
semantics of the input text and produce an equivalent output.
This output, also a series of token IDs, is ultimately converted
back into text (that is, detokenized) for user readability.
Throughout this work, the default tokenizer of the GPT API was
used. Fig. 1 provides an illustration of a tokenized SMILES
string and its corresponding sequence of token IDs.
Results and discussion
Machine learning molecular properties

We focused primarily on a dataset of organic semiconductor
(OSC) molecules extracted from the Cambridge Structural
Database (CSD),18 which is referred to as the OSCs dataset
502 | Chem. Sci., 2024, 15, 500–510
hereaer. This dataset comprises 48 182 organic molecules,
each accompanied by its SMILES representation and several
quantum-chemically computed electronic properties. We ne-
tuned the “ada” base model of GPT-3 for multiclass classica-
tion tasks on HOMO and LUMO values. Class thresholds were
determined by values that equally segmented the property
(HOMO or LUMO) value range into the required number of
classes. The entire dataset was randomly split into two sets, with
80% of the data allocated for ne-tuning and the remaining
20% reserved for hold-out validation.

All overall accuracy values, reported in Table 1, are for
predictions on the hold-out validation set. For the ternary
classication of HOMO and LUMO, the ne-tuned GPT-3
models achieved high prediction accuracies of 0.92 and 0.94
respectively. However, as the number of classication classes
increased from 3 to 5, the performance of ne-tuned GPT-3
models was noticeably impacted, as indicated by the signi-
cantly lower prediction accuracies for HOMO predictions (Table
1). This suggests inherent limitations in the applicability of ne-
tuning GPT-3 for molecular ML tasks. For example, suchmodels
might be applicable for inexpensively sorting large numbers of
candidate molecules into batches for subsequent electronic
structure calculations—for example, to identify molecules that
are likely to have ‘high’ or a ‘low’HOMO (or LUMO) energies, or
a narrow optical gap (e.g., high HOMO, low LUMO pairs), but
such models are unlikely to be useful for near-quantitative
predictions, for which a much larger number of classications
classes would be required.

A graph neural network (GNN) was chosen to be a baseline
model for benchmarking the performance of ne-tuned GPT-3
models on the same molecular ML tasks. All GNN-based
results reported here were obtained using the Chemprop
package, which implements a directed message passing neural
network (D-MPNN).20 Chemprop's D-MPNN has demonstrated
robust capabilities in predicting molecular properties across
a range of topics, from computed electronic properties to
protein binding affinities and to molecular toxicities. We used
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc04610a


Table 1 Fine-tuning GPT-3 for molecular ML tasks

Dataset Size
Prediction
task Data splita Number of classes GPT-3 accuracyb GNN accuracy Descriptors accuracyc

OSCs 48 182 HOMO Train : test = 0.8 : 0.2 3 0.92 0.94 0.87
OSCs 48 182 HOMO Train : test = 0.8 : 0.2 4 0.68 0.75 0.47
OSCs 48 182 HOMO Train : test = 0.8 : 0.2 5 0.60 0.68 0.40
OSCs 48 182 LUMO Train : test = 0.8 : 0.2 3 0.94 0.94 0.91
AMPs 572 HER Stratied 10-fold 2 0.88 0.86 0.87

a For each of the ML tasks on the OSCs dataset, the same training and test (hold-out validation) data were used by GPT-3 and GNNmodels. b GPT-3
was independently ne-tuned for eachML task. c The RDKit function CalcMolDescriptors() was used to calculate all available descriptors. Molecules
for which signicantly fewer descriptors were calculated were excluded; descriptors with missing values for any molecule were also discarded.
Aerwards, feature selection was done using the SelectKBest (K = 20) method in scikit-learn. The resultant features were scaled individually to
the range of [0,1]. Finally, an SVM classier was trained for the specic task.

Fig. 2 Learning curves for ternary classifications of HOMO and LUMO
by fine-tuned GPT-3 and trained GNN models. The inset provides
a close-up view of the curves for training data sizes that comprise 20%
or more of the complete OSCs dataset.
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the default molecular graph representation generated by
Chemprop, without augmenting it with any additional atom-,
bond-, or molecule-level features.

Table 1 shows that for ternary classication of HOMO and
LUMO on the OSCs dataset, the ne-tuned GPT-3 models per-
formed on par with the trained GNN models. However, GPT-3
slightly underperformed compared to the GNN models on the
4-class and 5-class classication tasks for HOMO. This is
perhaps unsurprising, as essentially both the SMILES repre-
sentation input into GPT-3 and the molecular graph represen-
tation input into the GNN encode the same information
regarding a molecule's atoms and their connectivity.

We also explored the dependence of GPT-3's prediction
performance on the size of the data used for ne-tuning. We
ne-tuned GPT-3 for ternary classications of HOMO and
LUMO using various fractions of the complete OSCs dataset,
ranging from 1% to 80% of the 48 182 data points. For
comparison, GNN models were trained on the same classica-
tion tasks using the same training data as for the ne-tuning of
GPT-3. The learning curves obtained for the various machine
learning tasks and models are shown in Fig. 2. With fewer than
1000 training data points (1% and 2% of the OSCs dataset), the
ne-tuned GPT-3 models performed poorly, achieving accura-
cies below 0.6 on the hold-out validation data. However,
signicant improvements in prediction performance were
observed when the size of the training data increased to 20% of
the complete OSCs dataset, with prediction accuracies
exceeding 0.9 for both HOMO and LUMO classications.
Further expanding the training data size up to 80% of the OSCs
dataset only marginally improved the prediction performance
of the ne-tuned GPT-3 models, achieving accuracies of 0.92
and 0.94 for HOMO and LUMO, respectively. The GNN's
prediction performance was nearly equivalent to that of GPT-3
when the training data size was 20% or larger. However, GNN
outperformed GPT-3 in the low-data region. This may in part be
attributed to two factors: (1) the molecular graph representation
being chemically more expressive than SMILES for the ML
tasks, and/or (2) the ne-tuning of GPT-3 necessitating a suffi-
cient amount of data to capture the patterns in SMILES relevant
to the ML tasks.

In addition to the results from the OSCs dataset, Table 1 also
presents results from both ne-tuned GPT-3 models and GNN
© 2024 The Author(s). Published by the Royal Society of Chemistry
models for a second molecular dataset. This dataset includes
572 aromatic organic molecules that were experimentally
assessed by some of the authors here for sacricial photo-
catalytic hydrogen evolution.21 Employing the same procedures
and setups as for the OSCs dataset, we ne-tuned GPT-3 models
and trained GNN models to predict hydrogen evolution rates
(HERs) for these aromatic molecular photocatalysts (AMPs). To
compare the performances of these GPT-3 and GNN models
with the ML studies from the original work, we implemented
stratied 10-fold cross-validation. The ne-tuned GPT-3 ach-
ieved an accuracy score of 0.88, slightly outperforming the
GNN's score of 0.86 and closely matching the highest prediction
performance (0.89 accuracy) reported in the original work. It is
interesting that GPT-3 is competitive here with ML models in
the original work21 that made use of engineered, domain-
specic features to encode molecular electronic properties.

Another baseline was established to benchmark the perfor-
mance of the ne-tuned GPT-3 on the molecular ML tasks, as
shown in Table 1. This involved calculating all available molec-
ular descriptors for the molecules in the dataset (either OSCs or
Chem. Sci., 2024, 15, 500–510 | 503
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AMPs) from SMILES using the RDKit package, which yielded over
200 descriptors for most molecules. Molecules for which signif-
icantly fewer descriptors were calculated were excluded. Simi-
larly, descriptors with missing values for any molecule were also
discarded. The resulting complete matrix was subjected to
a feature selection process using the SelectKBest method within
the scikit-learn package, retaining the top 20 descriptors as
determined by univariate statistical tests. A support vector
machine (SVM) classier was then trained for each specied ML
task. Table 1 shows that the descriptor-basedmodels consistently
underperformed in the molecularML tasks compared to the ne-
tuned GPT-3 and GNN models.

These results indicate that ne-tuning GPT-3 could be an
effective approach for ML tasks related to molecular properties.
It may be particularly advantageous given that ne-tuning GPT-
3 requires minimal effort in preparing ML inputs, compared to
the effort required in designing and calculating molecular
features or, to a lesser extent, generating molecular graphs.
However, GPT-3 functions as a “black box” with only a few
parameters available for adjustment, and as such it does not
provide physical insight or explainability like ML models
trained on engineered, physicochemical features. Nor does it
offer the same level of explicability that is possible with GNN
models.
Ablation study 1: single-atom removal

We next conducted a series of ablation tests, where certain
sections of the SMILES prompts were systematically removed or
‘ablated’ to assess the robustness of the ne-tuned GPT-3
models against information loss. By comparing the predic-
tions using the complete prompt (i.e., complete SMILES strings)
to those of the ablated versions (with certain parts of the
SMILES strings removed), we aimed to (i) determine if the ne-
tuned GPT-3 models had learned chemically meaningful
patterns, rather than merely “memorizing” the training data,
and (ii) get a sense of the inner workings of the models.

The rst type of ablation test involved single-atom removal:
each of the non-hydrogen (H), non-carbon (C) atoms in
a SMILES string was removed, one at a time, and these ablated
SMILES strings were used as prompts for the corresponding
ne-tuned GPT-3 model (Fig. 3a). For the example SMILES
shown in Fig. 3a, ve ablated SMILES strings would be created,
each with either one of the two oxygen atoms, one of the two
chlorine atoms, or the nitrogen atom removed. We used
a designated empty token, denoted as <missing>, to replace the
atom being ablated. The non-hydrogen, non-carbon atoms
involved in the complete OSCs dataset included elements:
boron (B), nitrogen (N), oxygen (O), uorine (F), silicon (Si),
phosphorus (P), sulfur (S), chlorine (Cl), arsenic (As), selenium
(Se), bromine (Br), and iodine (I).

All ablation tests were conducted using the ne-tuned GPT-3
model for ternary classication of HOMO, which was trained
using 80% of the complete OSCs dataset. These ablation tests
were performed on all data points in the 20% hold-out valida-
tion set that were correctly predicted using complete SMILES
strings. As a result, 7714 SMILES strings were examined, leading
504 | Chem. Sci., 2024, 15, 500–510
to a total of 45 763 single-atom-removal ablation tests. Out of
these 45 763 ablated SMILES strings, 43 588 tests (95.2%) yiel-
ded the same classication predictions as their corresponding
complete SMILES strings. This nding suggests that the ne-
tuned GPT-3 model was resilient to minor information loss in
the text prompts, indicating a degree of robustness.

Fig. 3b provides a breakdown of the 45 763 ablation tests
conducted on the 7714 SMILES strings. The vast majority (7106)
of these SMILES strings underwent no more than 10 ablation
tests each (as shown in the rst column of the table in Fig. 3b),
meaning that they contained no more than 10 non-hydrogen,
non-carbon atoms. Out of these, 6015 SMILES strings
remained unaffected by the removal of a single atom, as the
agreement between predictions based on complete and ablated
SMILES strings was 100% for all of them (these SMILES strings
contained 1 to 10 non-hydrogen, non-carbon atoms).
Conversely, 15 SMILES strings, each containing between 1 and 5
non-hydrogen, non-carbon atoms, were found to be highly
sensitive to single-atom ablations, yielding a 0% agreement
rate. Two of these molecules are shown in Fig. 3c, with their
corresponding CSD reference codes labeled.

As SMILES strings contain increasingly more non-hydrogen,
non-carbon atoms, they generally become less problematic for
the ne-tuned GPT-3 model to predict correctly, with a few
exceptions such as the molecules shown in Fig. 3d–f. Our visual
inspections of the molecules with 11 to 20 atoms to ablate
suggests that the high number of ablatable atoms relative to the
size of the molecule of different elemental types makes it
challenging for GPT-3 to handle. However, this empirical ‘rule’
does not always hold, as demonstrated by the molecule in
Fig. 3g, which has the largest number of atoms (69 atoms of 5
elemental types) to ablate in this set, yet it yielded 100%
agreement between complete and ablated SMILES strings.
Ablation study 2: single-group removal

The second type of ablation test we conducted involved the
removal of specic chemical groups from SMILES strings such
as, for example, a nitrile group. This was done by replacing the
atoms involved in the chemical group with <missing> annota-
tions, as illustrated in Fig. 4a. We considered 15 different
chemical groups, which are listed in Table 2. To locate and
identify substructures representing the intended chemical
groups in the complete SMILES strings, we used the SMARTS
representation and the RDKit package. To ensure a sufficient
number of molecules containing each chemical group for
ablation tests, we ne-tuned the GPT-3 models using 40% of the
complete OSCs dataset, reserving the remaining 60% of the data
for ablation tests. As shown in Fig. 2 and discussed above, GPT-
3 models ne-tuned with 40% of the complete OSCs dataset
achieved comparable predictive abilities to those ne-tuned
with 80% of the dataset. We ne-tuned GPT-3 for ternary clas-
sications of both HOMO and LUMO values.

Table 2 summarizes the results of the ablation tests per-
formed on the 15 chemical groups. Like the single-atom abla-
tion tests, these tests were only conducted on molecules in the
hold-out validation set that were correctly predicted by the ne-
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc04610a


Fig. 3 (a) Illustration of single-atom ablation tests, where one non-hydrogen, non-carbon atom is removed from the SMILES string and replaced
with a designated empty token, <missing>. (b) A breakdown of results for the 45 763 ablation tests conducted on 7714 SMILES strings. The
horizontal axis indicates the number of ablation tests conducted on a specific molecule, and the vertical axis represents the agreement rate
between predictions based on complete and ablated SMILES strings. For instance, if a molecule contained three non-hydrogen, non-carbon
atoms to be ablated and one out of the three ablated SMILES strings yielded the same prediction as the complete SMILES string (i.e., a 33%
agreement rate), this molecule would be counted towards the table element that corresponds to 1–10 ablation tests and an agreement rate in
the range of (30%, 40%]. The numbers displayed within the table represent the numbers of molecules categorized by the respective table
elements. (c)–(g) Representative molecules corresponding to the labeled table elements in (b).
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tuned GPT-3 models. In each test, only one type of chemical
group was ablated at a time. If a molecule contained multiple
instances of the same chemical group, each was ablated one at
a time, leading to a corresponding number of ablation tests. For
example, 1833 ablation tests were performed on nitrile-group-
containing molecules from the hold-out 60% of the OSCs
dataset (that were correctly predicted based on complete
SMILES strings). This number exceeds the actual number of
these molecules, as some contained multiple nitrile groups. In
91% of these 1833 tests, the HOMO predictions based on
SMILES strings with one nitrile group ablated agreed with the
predictions using the complete SMILES strings.

Our results suggest that, across the 15 chemical groups
probed, the ne-tuned GPT-3 model attributed signicant
importance to the acetylene, enamine, nitro, ketone, and
sulfonamide groups in its HOMO predictions. This is evident as
© 2024 The Author(s). Published by the Royal Society of Chemistry
the model altered its HOMO class assignments in more than
10% of the ablation tests for each of these groups. For LUMO
predictions, the ne-tuned GPT-3 model only altered its LUMO
class assignments in more than 10% of the ablation tests for the
thiol and sulfonic acid groups. However, the quantities of
ablation tests for these two chemical groups were low (56 and 28
respectively), implying that the low agreement rates could be
due to the small sample sizes of the tests. One possible inter-
pretation here is that the more ‘important’ functionalities tend
to be those that participate in electronic p-conjugation.

We further examined a few molecules by implementing
a different test. Instead of ablating the atoms belonging to the
chemical group of interest, we replaced them with atoms of
randomly selected elemental types (Fig. 4b). For the molecule
shown in Fig. 4, the ne-tuned GPT-3 model correctly assigned
the HOMO class to the ablated SMILES string (Fig. 4a). We then
Chem. Sci., 2024, 15, 500–510 | 505
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Fig. 4 (a) Illustration of single-group ablation tests, where a chemical group is identified (in this case a nitrile group) using its SMARTS notation
and replaced with <missing> annotations for atoms belonging to the chemical group. (b) Instead of ablating atoms from the SMILES string, each
atom belonging to the target chemical group was replaced with an atom of a randomly selected element type (B, N, O, F, Si, P, S, Cl, As, Se, Br,
or I). For each of several investigated molecules, 100 such random variants of the SMILES string were tested.

Table 2 Single-group ablation tests

Chemical group SMARTS

HOMO LUMO

No. of
tests

Agreement
(%)

No. of
tests

Agreement
(%)

Nitrile [NX1]#[CX2] 1833 91 1831 94
Nitro [$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8] 3485 86 3968 93
Imine [$([CX3]([#6])[#6]),$([CX3H][#6])]=[$([NX2][#6]),$([NX2H])] 1780 97 1867 97
Enamine [NX3][$(C=C),$(cc)] 16 747 85 16 817 92
Ketone [#6][CX3](=O)[#6] 4647 87 5015 96
Carbonyl with
nitrogen

[OX1]=CN 4234 91 4521 97

Carbonyl with
oxygen

[CX3](=[OX1])O 4940 93 5260 96

Thiol *-[S;D1] 57 91 56 79
Thiocarbonyl *=[S;D1] 1452 92 1455 94
Sulfone [$([#16X4](=[OX1])(=[OX1])([#6])[#6]),$([#16X4+2]([OX1-])([OX1-])([#6])

[#6])]
236 90 262 91

Sulfonic acid *-[S;D4](=O)(=O)-[O;D1] 39 97 28 82
Sulfonate [$([#16X4](=[OX1])(=[OX1])([#6])[OX2H0]),$([#16X4+2]([OX1-])([OX1-])([#6])

[OX2H0])]
69 97 95 95

Sulfonamide [$([#16X4]([NX3])(=[OX1])(=[OX1])[#6]),$([#16X4+2]([NX3])([OX1-])([OX1-])
[#6])]

351 89 383 97

Acetylene *-[C;D2]#[C;D1;H] 83 81 77 96
Halogens: F, Cl, Br, I *-[#9,#17,#35,#53] 7131 90 7456 95
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generated 100 randomly mutated SMILES strings as shown in
Fig. 4b. In 80% of these mutated SMILES strings, the same ne-
tuned GPT-3 model failed to assign the correct HOMO class.
This observation, which is not unique to the example provided,
seems to suggest that the GPT-3 model lled in the ‘missing’
tokens before making the property prediction. This might
partially explain the high agreement rates between predictions
based on complete and ablated SMILES strings (Table 2).
However, there were numerous cases where the ne-tuned GPT-
3 model gave identical predictions irrespective of the mutations
to the SMILES string.
Predicting molecular properties for ‘unknown’ molecules

We further evaluated the effectiveness of ne-tuning GPT-3 for
machine learning molecular properties by generating
506 | Chem. Sci., 2024, 15, 500–510
predictions for unknown molecules. To do this, we identied
molecules belonging to families as identied by the presence of
common moieties using conjugated molecular fragments. For
example, within the OSCs dataset, we found 72 molecules that
contained at least one tetracene fragment, as illustrated in
Fig. 5. Once we identied such a family of molecules, we
excluded all members of that family from both the ne-tuning
of a GPT-3 model and the training of a GNN model, hence
making this class of molecules effectively ‘unknown’. The
remainder of the dataset was then used to train these models.
We then used these ML models to predict the target molecular
properties for the unknown family of molecules.

Each of the rst ve families of polycyclic aromatic
hydrocarbon-containing molecules (labelled 1–5 in Table 3) was
effectively classied by the GPT-3 models, which were ne-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Examples of tetracene-containing molecules in the OSCs
dataset, with their CSD reference codes labeled.
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tuned without these specic families of molecules. The ne-
tuned GPT-3 models demonstrated notably better perfor-
mance in predicting HOMO than LUMO. Even when all ve
families of molecules were excluded from the training process,
the subsequently ne-tuned GPT-3 models still demonstrated
robust performance in predicting their HOMO and LUMO
classes. The efficacy of ne-tuning GPT-3 was slightly reduced
when predicting ‘unknown’ molecules containing quinones (6–
Table 3 Ternary classification accuracies of fine-tuned GPT-3 and train

Conjugated fragment Number of molecule

Naphthalene (1) 475
Anthracene (2) 577
Tetracene (3) 72
Pyrene (4) 237
Perylene (5) 41
(1) + (2) + (3) + (4) + (5)a 1402
p-Benzoquinone (6) 295
1,4-Naphthoquinone (7) 282
9,10-Anthraquinone (8) 186
(1) + (2) + (3) + (4) + (5) + (6) + (7) + (8)b 2165
1,8-Naphthalimide (9) 85
Naphthalenetetracarboxylic diimide (10) 88
Perylenetetracarboxylic diimide (11) 76
(1) + (2) + (3) + (4) + (5) + (6) + (7) + (8) + (9)
+ (10) + (11)c

3177

a All ve families of molecules were excluded frommodel training. The HO
these ve families of molecules. b All eight families of molecules were e
reported in this row were measured on the families 6–8 of molecules. c

HOMO/LUMO prediction accuracies reported in this row were measured

© 2024 The Author(s). Published by the Royal Society of Chemistry
8) or imides (9–11). In all cases, GNN models outperformed
their corresponding ne-tuned GPT-3 models marginally.

To further test the effectiveness of ne-tuning GPT-3, we
excluded families 1–8 of molecules during ne-tuning when
predicting for quinone molecules belonging to families 6–8.
Similarly, for the imide molecules belonging to families 9–11,
we ne-tuned GPT-3 models while excluding families 1–11.
Despite further limiting the model's exposure to patterns
shared between target molecules and similar ones, the ne-
tuned GPT-3 models performed robustly in predicting the
properties of the unknown molecules. These more stringent
tests further reinforce that ne-tuning GPT-3 can be an effective
strategy for ML tasks involving molecular properties.
Fine-tuning GPT-3 with both canonical and non-canonical
SMILES

The results discussed so far have been derived from GPT-3
models ne-tuned on canonical SMILES strings as generated
by RDKit. However, multiple valid SMILES strings can represent
a single molecule: for example, CCO, OCC, and C(O)C all
represent the same ethanol molecule. To address this, canon-
icalization algorithms are employed to ensure consistency,
generating a singular SMILES string for a given molecule from
the multitude of possibilities. This unique output, albeit
dependent on the specic canonicalization algorithm applied,
is referred to as the canonical SMILES.

To assess the performance of GPT-3 that was ne-tuned on
canonical SMILES strings against models ne-tuned with non-
canonical ones, we employed a GPT-3 model ne-tuned for
ternary classication of HOMO. This model, which used an 80 :
20 train-to-test data split for the OSCs dataset, is referenced as
the rst model in Table 1. For every molecule in the test set
(20% of the OSCs dataset, equating to 8578 molecules), we
ed GNN models for “unknown” molecules

s

HOMO accuracy LUMO accuracy

GPT-3 GNN GPT-3 GNN

0.94 0.95 0.88 0.91
0.99 1.00 0.93 0.97
0.96 1.00 0.90 0.99
0.98 1.00 0.97 0.99
0.98 1.00 0.98 0.95
0.97 0.98 0.93 0.95
0.83 0.91 0.87 0.87
0.82 0.91 0.94 0.96
0.86 0.91 0.99 1.00
0.88 0.91 0.95 0.96
0.86 0.93 1.00 1.00
0.86 0.88 0.95 0.98
0.85 0.89 0.97 0.97
0.88 0.88 0.97 0.97

MO/LUMO prediction accuracies reported in this row were measured on
xcluded from model training. The HOMO/LUMO prediction accuracies
All 11 families of molecules were excluded from model training. The
on the families 9–11 of molecules.

Chem. Sci., 2024, 15, 500–510 | 507
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generated 10 valid non-canonical SMILES strings.22 The ne-
tuned GPT-3 ternary classier was then applied to predict the
HOMO class labels for all 10 SMILES strings of each molecule.
This process was designed to evaluate the consistency of HOMO
predictions between the canonical SMILES string and the 10
non-canonical versions for each molecule.

Fig. 6a categorizes the molecules according to the consis-
tency level, determined by the number of non-canonical strings
receiving the same HOMO class label as the canonical string. A
consistency level of 0 means that none of the non-canonical
strings matched the canonical string's prediction; a level of 10
indicates a perfect match for all. Disappointingly, the GPT-3
model trained solely on canonical SMILES strings performed
poorly with non-canonical strings (as shown by the blue bars):
for just 1622 out of 8578 molecules, the model predicted
consistent class labels across all 11 SMILES variations; for 344
molecules, there was a complete lack of prediction consistency
across the SMILES variations.
Fig. 6 (a) Consistency of HOMO predictions between the canonical
SMILES string and 10 non-canonical versions for each molecule in the
test set; the consistency level is determined by the number of non-
canonical strings receiving the same HOMO class label as the
canonical string. (b) Number of erroneous responses to the non-
canonical SMILES strings of a molecule; erroneous responses are
completions that are not a HOMO class label (0, 1, or 2). In both (a) and
(b), the blue bars represent the GPT-3 model fine-tuned exclusively
with canonical SMILES strings, while the orange bars represent the
GPT-3 model fine-tuned on a dataset augmented with non-canonical
SMILES strings. Both vertical axes are in the logarithmic scale.

508 | Chem. Sci., 2024, 15, 500–510
Furthermore, Fig. 6b (blue bars) reveals that the GPT-3
model oen provided erroneous responses to non-canonical
SMILES strings, meaning that it completed the prompt with
a character that was not a HOMO class label (0, 1, or 2), as it had
been ne-tuned to do. Only for 2436 out of 8578 molecules did
the model respond with a class label, regardless of whether
these were consistent with the canonical reference. For the
remainder, the model's completions were incorrect to varying
degrees.

The underwhelming performance of the model ne-tuned
solely with canonical SMILES strings on non-canonical strings
is attributable to the absence of certain patterns in canon-
icalized SMILES—namely, the different valid permutations of
arranging the same group of atoms, as illustrated by the ethanol
example above. To address this issue, we expanded the training
dataset, which initially comprised only canonical strings, to
include ve valid non-canonical versions for each molecule.
Subsequently, we ne-tuned another GPT-3 model using this
augmented dataset and evaluated its performance on the same
test set that included each molecule's canonical SMILES string
along with 10 non-canonical variants; we followed the same
evaluation methodology as used for the model trained only on
canonical SMILES strings (represented by the blue bars in
Fig. 6).

Fig. 6a demonstrates signicant improvements achieved by
incorporating non-canonical SMILES strings into the ne-
tuning process of GPT-3. For 7243 of the 8578 molecules in
the test set, the new GPT-3 model consistently predicted the
same HOMO class label across all 11 SMILES versions of each
molecule. Across all other consistency levels, this enhanced
GPT-3 model—trained with a mix of canonical and non-
canonical SMILES—uniformly surpassed the model trained
solely on canonical SMILES. Likewise, Fig. 6b shows that the
new model produced no erroneous responses for 8488 of the
8578 molecules and very few erroneous responses for the
remainder. These results suggest that the enhanced GPT-3
model has beneted from exposure to diverse representations
of molecules possible within SMILES notation. It appears that
increasing the variety in the training data aids in the ne-tuning
process, allowing GPT-3 to develop a more robust under-
standing of molecular structures and their properties. This
makes the model less sensitive to variations in SMILES repre-
sentation and enhances its ability to generalize from learned
patterns. Equally, these results highlight the paramount
importance of training data in determining the performance of
a ne-tuned model when deployed for predictions.

Conclusions

Our results suggest that ne-tuning GPT-3, and perhaps other
LLMs, can be an effective ML approach to predicting electronic
and functional properties of organic molecules, at least in terms
of relatively coarse-grained classication tasks. In all ML tasks
that we conducted, the ne-tuned GPT-3 model yielded accurate
predictions for the hold-out data and even for ‘unknown’
classes of molecules. Moreover, our ablation tests demonstrated
the models' resilience against loss of information (due to
© 2024 The Author(s). Published by the Royal Society of Chemistry
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missing atoms and chemical groups) and noise (random
changes in atomic identities). Similar observations of GPT
models' robustness and their resilience against noise have also
been made by others.15 These results lead us to assert that the
extensively pre-trained GPT-3, when properly ne-tuned, can
detect and distinguish chemically meaningful patterns and
discern subtle differences among them, thus effectively
‘specializing’ in the chemistry problems at hand.

This approach has several potential advantages: for example,
employing SMILES strings as direct prompts to GPT-3 requires
signicantly less computational memory compared to many
alternative ML input data forms, such as molecular graphs or
numerical representations like the Smooth Overlap of Atomic
Positions (SOAP) descriptors. Consequently, the GPT-3 ne-
tuning approach could be especially advantageous for large
molecular datasets composed of millions or even tens of
millions of data points.

However, while our ndings underscore the potential utility
of GPT-3 ne-tuning for predicting molecular properties, there
are also certain inherent limitations. First, it does not seem
obvious how one might enhance the performance of a ne-
tuned GPT-3 model beyond augmenting the training data with
more volume and/or diversity, which may not be available for
many research goals; indeed, the success of our method here
relied on the existence of the large, pre-computed OSC dataset.18

This limitation stems from GPT-3's ‘black box’ nature. By
contrast, with a molecular graph-based approach, like the
directed message-passing neural network used as the baseline
in this work, additional chemical information may be incor-
porated into the graph representation to potentially enhance
prediction performance.

Reecting on the generalized tokenization applied to
SMILES in our work (Fig. 1), we hypothesize that a specialized
tokenizer that creates chemically relevant tokens—while
respecting the chemical nature of the molecular structure and
its fragments—could enhance performance in data efficiency
and/or prediction accuracy. In a related note, the SELFIES
(SELF-referencing Embedded Strings) representation, which
oen outperforms SMILES in ML tasks, did not show improved
performance in our initial tests. This is likely because the
generic tokenization applied to SELFIES diminished the extra
chemical information that it conveyed compared to SMILES.

Second, while task-specic ne-tuning enables GPT-3 to
recognize chemically relevant patterns, thus enhancing its
predictive performance, the model does not inherently grasp
the chemical principles underpinning the molecular properties.
Its predictions are entirely based on pattern recognition and do
not imply a deep understanding of the underlying science. This
predicament is further complicated because GPT-3 was not yet
open-sourced at the time of these studies, which restricts any
systematic interpretation of why specic predictions were
made. This limits the applicability of this method in scenarios
where understanding the reasoning behind a prediction is
important. While our ablation tests did shed some light on the
importance of certain chemical groups, the ndings could be
swayed by the underlying assumptions and certainly do not
provide a thorough comprehension of the model's decision-
© 2024 The Author(s). Published by the Royal Society of Chemistry
making process: in no sense does GPT ‘know’, for example,
that a ketone group is prone to conjugation. These challenges
relate to model interpretability and, again, greater under-
standing might be possible to be addressed if a fully open-
sourced GPT-3 model were available or if a different, open-
sourced LLM was used.

Lastly, ne-tuning LLMs such as GPT-3 can demand
considerable resources, making the process both computa-
tionally intensive and nancially burdensome, particularly for
large datasets. In this work, all the ne-tuning tasks conducted
via OpenAI's API resulted in a total cost of approximately 500 US
dollars, excluding the initial exploratory exercises. With other
major offerings of LLMs, either ne-tuning is not available, or
a local GPU capacity is required for the ne-tuning process (or
even pre-training prior to ne-tuning) when applied to chem-
istry tasks. For now, these hurdles may impede broader testing
and/or adoption of LLMs within the chemistry eld, following
the initial surge of efforts that has centered primarily on GPT
models.

In summary, our exploration of ne-tuning GPT-3 demon-
strates a promising new approach for predicting molecular
properties and, more widely, for discerning patterns in large
chemistry datasets. While this strategy has distinct limitations
exist, future work in advancing tokenization techniques,
improving model interpretability, and reducing computational
demands could see LLMs such as GPT-3 becoming an integral
part of the chemist's toolkit to complement more traditional
computational predictions.
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18 Ö. H. Omar, T. Nematiaram, A. Troisi and D. Padula, Organic
materials repurposing, a data set for theoretical predictions
of new applications for existing compounds, Sci. Data, 2022,
9, 54.

19 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and
G. E. Dahl, Neural Message Passing for Quantum
Chemistry, in Proceedings of the 34th International
Conference on Machine Learning, ed. D. Precup and Y. W.
Teh, PMLR, 2017, vol. 70, pp. 1263–1272.

20 K. Yang, et al., Analyzing LearnedMolecular Representations
for Property Prediction, J. Chem. Inf. Model., 2019, 59, 3370–
3388.

21 X. Li, et al., Combining machine learning and high-
throughput experimentation to discover photocatalytically
active organic molecules, Chem. Sci., 2021, 12, 10742–10754.

22 E. J. Bjerrum, SMILES Enumeration as Data Augmentation
for Neural Network Modeling of Molecules, arXiv, 2017,
preprint, arXiv:1703.07076, DOI: 10.48550/arXiv.1703.07076.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2306.14915
https://doi.org/10.48550/arXiv.2304.05376
https://doi.org/10.48550/arXiv.2304.05376
https://doi.org/10.26434/chemrxiv-2023-fw8n4-v2
https://doi.org/10.48550/arXiv.1703.07076
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc04610a

	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules

	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules

	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules
	Fine-tuning GPT-3 for machine learning electronic and functional properties of organic molecules


