
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

6.
11

.2
02

5 
22

:2
4:

55
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Modeling the rel
aDepartment of Pediatrics, New York Unive

York 10016, USA. E-mail: dimitri.abrahams
bDepartment of Obstetrics, Gynecology and R

University of California, San Francisco, Cal
cLaboratory of Environmental Pollution Con

University of Thessaloniki, University Camp
dCenter for Interdisciplinary Research and

Thessaloniki 57001, Greece

† Electronic supplementary informa
https://doi.org/10.1039/d4ra06695b

Cite this: RSC Adv., 2024, 14, 37470

Received 17th September 2024
Accepted 15th November 2024

DOI: 10.1039/d4ra06695b

rsc.li/rsc-advances

37470 | RSC Adv., 2024, 14, 37470–
ative response factor of small
molecules in positive electrospray ionization†

Dimitri Abrahamsson, *ab Lelouda-Athanasia Koronaiou, cd Trevor Johnson,a

Junjie Yang,b Xiaowen Jia and Dimitra A. Lambropoulou cd

Technological advancements in liquid chromatography (LC) electrospray ionization (ESI) high-resolution

mass spectrometry (HRMS) have made it an increasingly popular analytical technique in non-targeted

analysis (NTA) of environmental and biological samples. One critical limitation of current methods in NTA

is the lack of available analytical standards for many of the compounds detected in biological and

environmental samples. Computational approaches can provide estimates of concentrations by

modeling the relative response factor of a compound (RRF) expressed as the peak area of a given peak

divided by its concentration. In this paper, we explore the application of molecular dynamics (MD) in the

development of a computational workflow for predicting RRF. We obtained measurements of RRF for 48

compounds with LC – quadrupole time-of-flight (QTOF) MS and calculated their RRF. We used the

CGenFF force field to generate the topologies and GROMACS to conduct the (MD) simulations. We

calculated the Lennard-Jones and Coulomb interactions between the analytes and all other molecules in

the ESI droplet, which were then sampled to construct a multilinear regression model for predicting RRF

using Monte Carlo simulations. The best performing model showed a coefficient of determination (R2) of

0.82 and a mean absolute error (MAE) of 0.13 log units. This performance is comparable to other

predictive models including machine learning models. While there is a need for further evaluation of

diverse chemical structures, our approach showed promise in predictions of RRF.
Introduction

Recent technological breakthroughs in high-resolution mass
spectrometry (HRMS) have made it an increasingly popular
technology in environmental analysis,1 biomonitoring2,3 and
metabolomics.4 Oen combined with suspect screening (SS)
and non-targeted analysis (NTA) workows, HRMS has shown
great promise in the discovery of lesser-known chemical struc-
tures and in comprehensively characterizing the chemical
composition of complex mixtures.2,3,5 One critical challenge
associated with the application of HRMS in SS or NTA is the
limited availability of analytical standards for many
anthropogenic/synthetic chemicals and many endogenously
produced metabolites.6,7
rsity Grossman School of Medicine, New

son@gmail.com

eproductive Sciences, School of Medicine,

ifornia 94158, USA

trol, Department of Chemistry, Aristotle

us, 54124 Thessaloniki, Greece

Innovation (CIRI-AUTH), Balkan Center,

tion (ESI) available. See DOI:

37482
When it comes to endogenous metabolites, the lack of
commercially available analytical standards is oen due to
certain compounds being less well-characterized and thus not
yet synthesized or puried. For anthropogenic chemicals, one of
the reasons is that chemical manufacturers in the U.S. are not
required to produce analytical standards for the chemicals that
they manufacture and release to the environment.7 One excep-
tion to this rule is pesticides.7 It is important to note at this
stage that the requirement for analytical standards does not
extend to the transformation and breakdown products of these
chemicals. So even in a hypothetical scenario where manufac-
turers would be required to produce analytical standards, that
would cover only the parent compounds and not all the trans-
formation products. The U.S. Environmental Protection Agency
(EPA) has prioritized about 1.2 million chemicals of environ-
mental importance and has created a database called EPA's
CompTox Chemicals Dashboard (henceforth referred to as “the
dashboard”).8 Nuñez et al.6 estimated that out of the 1.2 million
chemicals on EPA's Dashboard, less than 2% are available as
analytical standards.

There is thus a need to develop computational approaches to
conrm and quantify detected compounds without analytical
standards.6,9,10 While detection and tentative conrmation can
be achieved with MS/MS libraries, quantication remains
a more challenging task.11,12 Liquid Chromatography (LC) –
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Electrospray Ionization (ESI) HRMS is one of the most
commonly used HRMS techniques in SS and NTA studies. One
critical challenge in ESI is that abundances expressed as peak
areas or peak heights are not easily translatable to concentra-
tions. Two compounds of the same concentration can exhibit
peak areas that differ by 3 orders of magnitude because of
differences in ionization.12,13 Abundances may be used as
a surrogate for concentrations in certain situations when
comparing the same chemical across different samples,
however, they cannot be used to compare two chemicals to each
other.14 We should note at this point that while we focus on
HRMS in our paper, low-resolution MS such as triple-
quadrupole instruments can also be used to study the ioniza-
tion efficiency of chemicals. We focus primarily on HRMS and
NTA because that is when one oen meets with the lack of
available analytical standards and when predictive models can
help circumvent that problem.

While ESI is extensively used in mass spectrometry for the
analysis of both small (e.g., metabolites) and large molecules
(e.g., proteins), the precise mechanism has not been fully
understood. Briey, during ESI, the solution containing the
analyte passes through a metal capillary that is charged at an
electric potential of thousands of volts (kV). The solution forms
a tip at the end of the capillary known as a Taylor cone that
emits a spray of ne droplets. The droplets start in the mm range
and shrink in size as they undergo evaporation oen acceler-
ated with heating of the capillary. The density of the charged
ions in the droplet is controlled by repulsive coulombic forces
between positively charged ions. The upper limit of that density
is described as the Rayleigh stability limit:15,16

zR ¼ 8p

e

ffiffiffiffiffiffiffiffiffiffiffiffi
30gR3

p
(1)

where, e is the number of elementary charged particles, 30 is the
vacuum permittivity, g is the surface tension of the droplet and
R is the droplet radius.

Conceptual models have been proposed to describe the
process that molecules undergo to become ionized and trans-
ferred to the gas phase during ESI. We focus our discussion on
the commonly used positive ESI under which positive ions are
formed. Small molecules (<1000 Da) are thought to ionize and be
transferred to the gas phase by the ion evaporation model
(IEM).15 According to IEM, the analyte is protonated already while
inside the droplet and eventually moves from the center towards
the surface of the droplet. As the positively charged analyte meets
the positively charged solvent molecules on the surface of the
droplet, the ion is transferred to the gas phase through repulsive
forces of positively charged ions and by the excess droplet charge.

Larger molecules such as globular proteins (natively folded
proteins) are thought to ionize and be transferred to the gas
phase by the Charged Residue Model (CRM).15,17 According to
CRM, solvent droplets containing a single protein molecule
gradually evaporate to dryness and as the solvent molecules
evaporate, the charge is transferred to the analyte. The droplets
remain close to the Rayleigh stability limit while evaporating,
which indicates that the droplet loses some of the electric
charge as it shrinks in size. This is supported by experimental
© 2024 The Author(s). Published by the Royal Society of Chemistry
observations where the size of solvent droplets positively
correlated with the droplet charge following an exponential
curve. Contrary to small molecules, the ejection of globular
proteins is not kinetically favorable. The repulsive forces of the
excess surface charge are not sufficiently strong for the mole-
cule to be ejected and transferred to the gas phase. CRM is
supported by experimental evidence where ionization of glob-
ular proteins produces ions with a charge of [M + zRH]zR+, where
zR is the charge at the Rayleigh limit of water droplets of the
same size as the globular protein.15

While these two models are considered distinct, both of
these two processes could apply to small or medium-sized
molecules, especially in the case of heated ESI where the evap-
oration of the water droplets is assisted through heating of the
capillary. This is also supported by molecular dynamics (MD)
simulations studies where native (unmodied) carbohydrates
ionize through CRM, while their permethylated derivatives
ionize through IEM.18

Ionization efficiency is a property that has proven to be
difficult to predict from a small number of chemical descriptors
or physicochemical properties. Numerous investigations have
examined the correlation between ionization efficiencies and
diverse physicochemical properties, including but not limited
to their pKa, log P, surface area, charge delocalization, and gas-
phase proton affinity.19–24 These ndings have led to the devel-
opment of various predictive models for ionization
efficiencies,22,25–28 utilizing both the physicochemical properties
of analytes and solvent characteristics as fundamental inputs.
These models commonly rely on parameters associated with the
analyte's hydrophobicity (e.g., log P, WAPS, WANS, C/H ratio)
and ionizability (such as pKa and the degree of ionization).29

Data-driven approaches involving machine learning, such as
random forest models, have shown great promise in providing
predictions with reasonable uncertainties.11,12,30–32 It should be
noted, however, that these approaches require large datasets in
the order of hundreds of chemicals with diverse structures and
properties, and the predictions are tied to a specic method and
instrumentation.

Theory-driven approaches that are based on quantum chem-
istry and computational chemistry principles could provide an
alternative when large datasets are not available or are difficult to
obtain. Molecular dynamic simulations (MD) have been previ-
ously applied in a number of studies to understand the mecha-
nism of ionization in salt ions, peptides, and proteins33–37 and to
a lesser extent in small molecules18,38 However, to the best of our
knowledge, there appears to be little on the predictions of their
ionization efficiency using MD simulations. Our study aims to ll
this gap by employingmolecular dynamics tomodel the behavior
of chemicals in the ionization chamber and evaluate the poten-
tial of such theory-driven approaches to make predictions and
assess their uncertainties.

Materials and methods
Workow diagram

The individual steps of the experimental and computational
aspects of the study are presented in Fig. 2.
RSC Adv., 2024, 14, 37470–37482 | 37471
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Experimental section

Chemicals and solutions. The analytes were provided by the
US EPA for the purposes of this study and were developed as part
of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT).
The preparation of the chemical mixtures is described in detail in
the study of Ulrich et al.39 For the purposes of this study, we used
mixtures 504, 506, and 508. The mixtures were diluted in a series
of dilutions rst with methanol (99.9% Millipore Sigma) and
then with HPLC water (99.9% Millipore Sigma) from 20 mM to
100, 50 and 25 mM with a nal water content of >99%. For the
purposes of this study, we selected chemicals that ionize in
positive electrospray ionization mode (ESI+) and whose calibra-
tion curves showed an R2 of 0.8 or higher. The chemical struc-
tures and chemical identiers of the chemicals involved in the
study (n = 48) are shown in ESI spreadsheet 1.† The complete
chemical lists frommixtures 504, 506, and 508 are also shown in
ESI spreadsheet 1.† We should note at this point that charac-
terizing the mixtures and maximizing the number of detected
and identied compounds is beyond the scope of the study. As
our study requires extensive computations that take days to
complete, we have to limit our efforts to a small subset of
compounds that satisfy the criteria of detection (<5 ppm mass
difference from the monoisotopic mass) and linearity (R2 $ 0.8).

Instrumental analysis. The mixtures were analyzed with an
Agilent 1290 ultra-high performance liquid chromatography
(UPLC) coupled to an Agilent quadrupole time-of-ight (QTOF)
mass spectrometer. The UPLC was equipped with an Agilent
Eclipse Plus C18 column (2.1 × 100 mm, 1.8 mM) for the chro-
matographic separation of the analytes. The mobile phase
consisted of the two following solutions. Solution A: HPLC
water (Sigma-Aldrich, $99.5%) with 0.1% methanol (Sigma-
Aldrich, 99.9%) and 5 mM ammonium acetate (Sigma-Aldrich,
$98%). Solution B: 90% methanol with 10% HPLC water and
5 mM ammonium acetate. The two solutions were mixed under
the following gradient program: 0 min 10% B and 90% A, 0–
15 min increase to 100% B, 16–20 min equilibration at 100% B.
The solvent gradient over time is also shown in Fig. S1.† All
mixtures were injected twice at an injection volume of 5 mL. Two
no-injection blanks and one HPLC water blank were also
analyzed in the beginning of the sequence.

The instrument was operated in both positive electrospray
ionization mode (ESI+) and full scan mass spectra (MS1) were
acquired in the range of 100–1000 Da with a resolving power of
40 000 and a mass accuracy of <5 ppm. The instrument was
calibrated before the analysis and the mass difference was
corrected with reference standards using masses 121.050873
and 922.009798 for positive ionization mode.

Data collection and le processing. All the collected data
les were processed with MS-DIAL, an open-source soware for
mass spectrometry that was developed by the University of
California, Davis, and by RIKEN (Japan). The detected features
were aligned across samples and were matched to the mono-
isotopic masses of the chemicals contained in the mixtures
within a 10 ppm mass difference (ESI spreadsheet†). The peak
areas of the analytes were calculated by taking the average of the
duplicate injections and they were corrected by subtracting the
37472 | RSC Adv., 2024, 14, 37470–37482
average area measured in the blanks. The MS-DIAL settings and
parameters used to process the data les are presented in the
ESI spreadsheet.†

Calculation of RRF. Ionization efficiency describes the extent
to which molecules of an analyte in the liquid phase can tran-
sition to the gas phase as ions during the process of electrospray
ionization. The ionization efficiency of an analyte can be
mathematically described by the relative response factor of the
analyte as follows:

RRF ¼ A

C
(2)

where, RRF is the relative response factor, A is the abundance
(peak area or peak height) and C is the concentration of the
analyte.
Molecular dynamics simulations

Input generation. We generated mol2 format les for all
chemicals in the dataset using UCSF Chimera and SMILES as
inputs for the mol2 les. The protonation of each molecule was
determined by generating pKa diagrams for each chemical
using Chemaxon and Chemicalize40 and identifying the domi-
nant species at the pH that would be relevant to our experi-
ments (pH = 5).41 All the pKa diagrams and the protonation
states are uploaded as .png images on GitHub under https://
github.com/dimitriabrahamsson/electro-spray.

Topology generation. Topologies were generated with
CGenFF force eld (CHARMM General Force Field) using the
CHARMM-GUI42 online platform (https://www.charmm-gui.org/
) and the mol2 les from the previous step. The protonation of
the analytes was examined once more to ensure that it was
correct and that no changes were made while importing the
mol2 les in GHARMM-GUI. The generated les from
CHARMM-GUI were then converted to GROMACS format using
the charmm2gromacs-pvm.py script (uploaded on GitHub
under https://github.com/dimitriabrahamsson/electro-spray).

System preparation. All preparation steps were conducted
using GROMACS (version 2023.2). GROMACS uses periodic
boundary conditions (PBC) where the atoms of the simulation
system are put into a space-lling box, which is surrounded by
translated copies of itself. Thus, the system does not have nite
borders during the simulation, but it allows for the removal of
PBC for post-simulation calculations.43 Two different systems
were considered for the MD simulations. System 1 aimed at
approximating the composition of a nm electrospray droplet
which included the analyte, the H+ produced during hydrolysis,
and the water andmethanol molecules as shown in the rst step
of IEM in Fig. 1. With the second system (System 2), we aimed to
approximate the composition of the droplet surface and the
analyte located at the surface before evaporation as shown in
the second step of IEM in Fig. 1. One critical challenge when
describing both systems is describing the H+ ions in solution. In
water, the H+ ions, also referred to as H(aq)

+, produced from the
hydrolysis of water molecules react with other water molecules
to form hydronium, H3O(aq)

+, also known as oxonium, following
the reactions below:
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Conceptual models describing the mechanism of electrospray ionization. Small molecules are thought to be ionized through the ion
evaporation model (IEM),15 while larger molecules, such as globular proteins are thought to ionize through the charged residue model (CRM).15
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H2O(l) # H(aq)
+ + OH(aq)

− (3)

H2O(l) + H(aq)
+ # H3O(aq)

+ (4)

System 1. The hydronium ion was described using a TIP3P
that included additional hydrogen (3H in total) and was modi-
ed to include the specic parameters for H3O

+ from the study
of Wolf and Groenhof.44 The distance between O and H (rOH)
was set at 1.02 Å, the angle for H–O–H (qHOH) was set at 112°,
and the charges for O (qO) and H (qH) were set at −0.59 and
0.53e. The droplet was represented by a three-dimensional cube
and the size was set at 64 nm3 (4 × 4 × 4 nm). The number of
H3O

+ molecules was approximated based on the experimental
observations of Smith et al.45 who determined the charge (e) of
water andmethanol droplets in ESI+ as a function of the droplet
diameter. The calculations are described in detail in Text S1 in
ESI.†

The numbers of water (TIP3P) and methanol molecules were
determined based on the gradient mixing (Fig. S1†) of the two
solvents during LC and based on the retention time of each
chemical (ESI spreadsheet†). This means that for every chem-
ical the number of water and methanol molecules was different
depending on when it was eluted from the LC column. Previous
MD studies46 on ESI droplets have also suggested that the
amount of methanol in the droplet plays a critical role in the
ionization efficiency of the analytes. As the volume of methanol
increases, the evaporative rate increases, as does the ionization
efficiency, for many molecules.46

System 2. As mentioned earlier, System 2 aimed at approxi-
mating the behavior of the analyte on the surface of the droplet
© 2024 The Author(s). Published by the Royal Society of Chemistry
where most of the charged ions are expected to be located and
where the [M + H]+ ions are likely formed. While the presence of
hydronium is well established, there are important differences
between how the proton (H+) is bound to H2O in H3O

+ and how
it is bound in [M + H]+. In the case of H3O

+, the proton is bound
to the oxygen atom in a covalent bond. Oxygen in H2O has two
lone pairs of electrons. When the extra proton attaches, it forms
a dative (or coordinate) covalent bond with one of these lone
pairs, where both electrons in the bond come from the oxygen
atom. In this covalent bond, oxygen shares one of its lone pairs
with the extra hydrogen, creating a stable bond within the
hydronium ion.47 In the case of [M + H]+, however, H+ does not
form a covalent bond with the analyte (M). Instead, it is stabi-
lized through ionic interactions. The proton attaches itself to
a site on the molecule where it can stabilize the positive charge,
typically near a region with lone pairs (such as nitrogen or
oxygen atoms) or near a p-system (in the case of aromatic
molecules).15,48 In order to account for this discrepancy, in
System 2, we describe the H+ ions as freely oating ions that are
not covalently bound to water molecules or to the analyte. In
this case, H+ was described in the same way as other ions like
Na+ and Cl− are described in GROMACS using the CGenFF force
eld. In this description, the mass of H+ was set at 1.0080 g
mol−1 and the charge (q) was set at +1. As a point of reference,
Na+ ions in CGenFF are described as single atoms with a mass
of 22.98977 g mol−1 and a charge of +1. A 4 × 4 × 4 nm solvent
box was created with approximately 600 water molecules
(TIP3P) and 600H+ ions. The number of 600H+ was determined
based on pilot simulations so that H+ would remain evenly
distributed inside the box throughout the simulation to ensure
continuous interactions with the analyte. A smaller number of
RSC Adv., 2024, 14, 37470–37482 | 37473
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Fig. 2 Workflow diagram for the processing steps in the experimental and computational parts of the study.
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ions resulted in the ions starting evenly distributed but during
the simulation moving to the outer parts of the box and not
sufficiently interacting with the chemical which oen remained
towards the center of the box (Fig. S3–S5 and Text S2†).
37474 | RSC Adv., 2024, 14, 37470–37482
Simulation setup. The simulations were conducted using
GROMACS version 2023.2. The simulation protocol started with
the steepest descend minimization with 50 000 steps as the
maximum number of minimization steps to perform and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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<1000 kJ mol−1 nm−1 as the threshold at which the minimiza-
tion process can stop. The minimization and subsequent
simulation steps were run using Verlet as the cut-off scheme for
neighbor searching and Fast Smooth Particle-Mesh Ewald
electrostatics (FSPME or PME in GROMACS) for modeling the
electrostatic interactions. The short-range electrostatic cut-off
points for Coulomb and van der Waals interactions were set
to 1.2 nm which is recommended for CGenFF.49 The tempera-
ture was set at 300 K and it was controlled with a Berendsen
thermostat in NVT and a Parrinelo–Rahman barostat in NPT.
System equilibration was conducted in two stages, the NVT
stage where volume and temperature were kept constant, and
the NPT stage where pressure and temperature were kept
constant. The simulation step was set at 0.5 fs using a leapfrog
integrator and the simulation length was 200 ps. The produc-
tion step following equilibration was conducted using the same
simulation step and integrator as previously but in this case, the
simulation length was 1000 ps (1 ns). All the mdp les for the
minimization, equilibration, and production steps with all the
details are available on GitHub (https://github.com/
dimitriabrahamsson/electro-spray).
Fig. 3 Coulomb and Lennard-Jones interactions between caffeine and
interactions over time and the bottom figures show the distribution of t

© 2024 The Author(s). Published by the Royal Society of Chemistry
Calculation of interactions and model development. For
both System 1 and System 2, we calculated the short-range
Lennard-Jones and short-range Coulomb interactions between
the analyte and each group of molecules in the system. For
System 1, the sets were (i) analyte and water, (ii) analyte and
methanol, and (iii) analyte and H3O

+ ions. For System 2, the sets
were (i) analyte and water and (ii) analyte and H+ ions, however,
we only considered the set of analyte and H+ ions since the
interactions with water were already described in System 1. As
these are short-range interactions, it is important to point out
that this includes only the molecules around the analyte that
are within the short-range distance, which was set at 1.2 nm.
The interactions were calculated using the gmx energy
command in GROMACS. The generated les contained the
interaction energies (kJ mol−1) over time (ps) in the form of
a time series. An example of the Coulomb and Lennard-Jones
interactions for caffeine is shown in Fig. 3. The top gures
show the interactions over time and the bottom gures show
the distribution of the observed interaction energies using the
kernel density estimate.

Our model is based on the idea that the RRF of a given
compound in ESI+ can be described as a function of the
H+ ions during the simulation of System 2. The top figures show the
he observed interaction energies.
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Coulomb and Lennard-Jones interactions between the
compound and all other molecules in the solution. RRF was
expressed as a function of the Coulomb and Lennard-Jones
using a multilinear regression model.

The model was as follows:

log RRF = lLJ + cCoul + const (5)

where, LJ is the Lennard-Jones interactions, and Coul is the
Coulomb interactions.

One critical challenge when incorporating these interactions
into a model is nding which metrics are meaningful for the
purposes of the model. We applied a Monte Carlo simulation
approach to randomly sample the Coulomb and Lennard-Jones
distributions (3 percentile points per distribution plus the
standard deviation) 100 times for each set of molecules (i.e.,
System 1: (i) analyte and water, (ii) analyte and methanol, and
(iii) analyte and H3O

+ ions; System 2: analyte and H+ ions) and
selected the best-performing model for each set.

Expanding the lLJ and cCoul terms of the equation we get:

lLJ =l1LJp1 + l2LJp2 + l3LJp3 + l4LJstd (6)

cCoul = c1Coulp1 + c2Coulp2 + c3Coulp3 + c4Coulstd (7)

where, p1, p2, and p3 are the 3 percentile points from the
distribution (e.g., 20, 50, and 70) and std is the standard devi-
ation of the distribution.

The coefficients and the intercept of the model were deter-
mined through a least-squares minimization using the stats-
models package (version 0.14.0) in Python (version 3.10.11). The
script is available on GitHub (https://github.com/
dimitriabrahamsson/electro-spray). The model was evaluated
by examining the R2, the mean absolute error (MAE), and the
p-values of the coefficients. Aer selecting the best-performing
model for each set of molecules from both systems, we built
a composite model with the parameters whose p-values were
lower than 0.1. We purposely chose a higher cutoff point at this
stage in order to be more inclusive, however, in the nal model,
only the p-values below 0.05 were considered signicant. The
nal model was evaluated based on its R2, the mean absolute
error (MAE), and the p-values of the coefficients. We also tested
whether the addition of other physicochemical properties, i.e.
vapor pressure (PV), water solubility (SW), the equilibrium par-
titioning ratio between octanol and water (KOW), air and water
(KAW), methanol and water (KMW), methanol and air (KMA), and
the innate charge of the molecule improved the predictive
accuracy of the model. PV and SW were calculated with OPERA
2.6 (ref. 50) available on the dashboard.8 KOW, KAW, KMW, and
KMA were calculated with UFZ-LSER.51 The innate charge of the
molecule was determined by examining the structure and its
protonation state at pH 5 and noting 0 if it was neutral, +1 (or
more) if it had a positive innate charge, and−1 (or less) if it had
a negative innate charge. The properties were tested iteratively
by adding each property to the model and recording its
performance. Only one property was tested at a time and only
the properties whose coefficient showed a p-value of less than
37476 | RSC Adv., 2024, 14, 37470–37482
0.05 were considered signicant and were included in the
model. A parameter with a mere increase in R2 without
a signicant p-value would not be included in the model.

The predictive power of themodel was further evaluated with
a 10-fold cross-validation and a y-randomization. During the 10-
fold cross-validation, the dataset was rst divided into 10
equally sized sub-datasets. Then, during each fold one dataset
was set as the testing set and the remaining sub-datasets were
compiled into a training set. The model was trained on the
training set and tested on the testing set. The process was
repeated 10 times (10-fold). It is important to note at this point
that when applying a k-fold cross-validation and when dividing
the dataset into training and testing there is always a possibility
of encountering compounds in the testing set that are outside
the applicability domain of the trained model. In order to
account for this discrepancy, if a prediction was 2 log units
higher than the highest value in the dataset or 2 log units lower
than the lowest value in the dataset it was considered outside
the applicability domain and it was excluded from the evalua-
tion. The compounds that were excluded from any particular
fold of the cross-validation exercise were still included in the
discussion section of the paper. The purpose of the k-fold cross-
validation is to evaluate the predictive power of the model
outside its training set and to identify outlier compounds in the
dataset. These compounds are considered outliers in the sense
that they represent physicochemical properties that are
dissimilar to the ones in the training set and in order for the
model to make accurate predictions, they have to be included in
the training set.

For the y-randomization, the y variable, in this case the RRF
was randomly shuffled, and the model was developed as
previously by dividing the dataset into training and testing sets.
The process was repeated 5 times, and the predictions were
averaged across the 5 iterations. The purpose of the y-
randomization is to evaluate the extent to which the model
predictions are different from random predictions. This helps
to determine whether the model is making meaningful
predictions and whether it has been overparametrized. The
lower the R2 of the y-randomization and the more different it is
from the R2 of the cross-validation, the higher the likelihood
that the model is making meaningful predictions that are
distinct from random predictions.

One of the challenges we encountered is that the generated
CGenFF topologies oen included high penalties (>50) for
a charge, a bond, an angle, a dihedral, or an improper group.
While high penalties do not necessarily mean large errors, they
do denote a low similarity with the build-by-analogy structure in
CGenFF and it is recommended to apply caution when using
such structures because they may require further validation.
This may be an important issue in the case of protein dynamics
and ligand binding, however, in our case, it is unclear how these
penalties or uncertainties may inuence our calculations. To
address this issue, we tested the robustness of the model by
incrementally removing compounds with high penalties start-
ing from the ones with the highest penalties to the ones with the
lowest penalties. This resulted in 10 different models with
a different cutoff point as the maximum acceptable penalty
© 2024 The Author(s). Published by the Royal Society of Chemistry
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ranging from 500 to 50. We then examined the changes in the R2

of the model as the number and type of chemicals in the dataset
changed. In order to avoid introducing errors in the rst steps of
the model development, we developed the rst iteration of the
model with chemicals that had a penalty of less than 300.
Results and discussion
Experimental measurements

The observed log RRF values for the chemicals in our dataset
ranged from 1.73 to 3.17 with Cinchophen showing the lowest
value and Thiabendazole showing the highest value (ESI
spreadsheet†). As RRF is the ratio of abundance to concentra-
tion, higher RRF values indicate higher ionization efficiency
(higher abundance at lower concentrations). This observation is
in agreement with data from our previous study12 where Cin-
chophen showed a lower RRF compared to Thiabendazole. It
should be noted that the two studies use the same mixtures (in
part) but different methods and different instruments (same
type – Agilent LC-QTOF-MS – but different instrument). Despite
the differences in methods and instrumentation, the differ-
ences in the RRF values of the two chemicals are preserved. This
observation is supportive of the ionization efficiency (IE) scale
approach developed by Oss et al.25 where a set of RRF values can
be represented as a scale of relative ionization efficiencies and
that scale should in principle be transferable across different
methods.
Model development

From the models developed for System 1, the best-performing
models for predicting log RRF showed an R2 of 0.42 when
using the analyte–water interactions, 0.37 when using the ana-
lyte–methanol interactions, and 0.39 when using the analyte-
H3O

+ interactions (ESI spreadsheet†). From the models devel-
oped for System 2, the best-performing model for predicting log
RRF showed an R2 of 0.71 (ESI spreadsheet†). This observation
indicates that the nal stage of ionization [M + H]+ is better
described by the interactions of the analyte with the H+ ions on
the surface of the droplet (Fig. 1 – step 2 of IEM) than by the
interactions of the analyte with the other molecules while in the
center of the droplet (Fig. 1 – step 1 of IEM). This is not to say
that there is no predictive value in the interactions of the analyte
with the solvent molecules. Previous studies have demonstrated
the impacts of different solvents on the ionization efficiency of
small molecules52,53 and this is in agreement with our calcula-
tions from System 1. This observation just indicates that the
interactions of the analyte on the droplet are potentially more
determining the ionization efficiency of the analyte. The nal
composite model consisted of the following parameters. System
1: p2, p3 and the standard deviation for Lennard-Jones inter-
actions between the analyte and water; System 2: p1, p2, p3 and
the standard deviations for Lennard-Jones and Coulomb inter-
actions between the analyte and H+ ions. For system 1, p1 was
not included because its p-value (p = 0.117) was higher than the
0.05 cutoff point. The derived coefficients for the above-
mentioned parameters showed p-values below 0.05 (Table S1†).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Out of all the physicochemical properties that we tested, the
only one that showed a statistically signicant contribution was
the water solubility of the analyte (SW). The nal model showed
an R2 of 0.82 and an MAE of 0.13.

The coefficients and intercept of the developed model were
determined to be as follows:

log RRF = lLJ + cCoul − 0.14SW + 2.51 (8)

where,

lLJ = 0.63LJHp1 − 5.80LJHp2 + 4.92LJHp3 + 3.49LJHstd + 0.21LJWp2
− 0.20LJWp3 + 0.35LJWstd (9)

cCoul = −0.01CoulHp1 + 0.03CoulHp2 − 0.03CoulHp3
− 0.04CoulHstd (10)

where, LJH are the Lennard-Jones interactions between the
analyte and H+ ions from System 2. CoulH are the Coulomb
interactions between the analyte and H+ ions from System 2.
LJW are the Lennard-Jones interactions between the analyte and
water molecules from System 1. The values for p1, p2, and p3 in
System 2 were 0.5, 34 and 50. The values for p2, and p3 in System
1 were 44 and 89.

The p-values of the coefficients and the intercept were all
below 0.05 (Table S1†). The standard errors for the derived
coefficients are presented in Tables S1 and S2.† The R2 andMAE
of the model were comparable to those in the study of Oss
et al.25where they observed an R2 of 0.67 and a standard residual
error of 0.86 log units. While the two studies are very different in
the computational approaches, they both share datasets of
similar size (48 vs. 62) and they both use multilinear regression
models as their nal predictive models thus allowing for
meaningful comparisons.

We examined whether the differences between the experi-
mental and modeled RRF (absolute errors) could be explained
due to the different retention times (RT) of the chemicals and by
extension due to the different ratios of water to methanol, but
we did not observe a signicant association between the two.
Neither did we observe a signicant association between RRF
and RT (Fig. S6†).

Our modeling calculations showed that the interactions of
the analyte with the water molecules in System 1 were similar
but slightly more predictive than the interactions of the analyte
with the H3O

+ ions (R2: 0.42 vs. 0.39). Given the great collinearity
of these two variables, including both of them in the model
renders the coefficients for H3O

+ insignicant (p > 0.05). This
observation suggests that, at least in terms of interactions with
the analyte, the H atoms in the H2O molecules are not distin-
guishable from the H atoms in the H3O

+ ions.
As mentioned earlier in the methods, we examined the effect

that compounds with high penalties may have on the predictive
power of the model. Including all compounds with penalties
over 300 resulted in a small decrease in R2 (0.82 vs. 0.74) and
a small increase in the MAE (0.13 vs. 0.15) of the model (Fig. 4).
Aer incrementally removing compounds with high penalties
from the dataset, we observed that the R2 of the model appeared
RSC Adv., 2024, 14, 37470–37482 | 37477
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Fig. 4 Experimental and calculated values of log transformed RRF
using the developed model. The diagonal lines show the 1-to-1
agreement line, and the ±1 log unit deviation line. Plot (A) shows the
results of the model after removing compounds with a penalty over
300 (dataset n = 42). Six chemicals were excluded from the dataset in
this iteration. Plot (B) shows the results of the model including all the
chemicals in the dataset (dataset n = 48). R2 is the coefficient of
determination and MAE is the mean absolute error between the
predictions and the experimental values.
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to be consistent with an increase around cutoff points of 250
and 300 (Fig. S7†), which conrmed our initial cut-off point of
300. We should note at this point that while in this particular
case, the effect of including compounds with high penalties
appears to be minimal, we do not know how that may manifest
37478 | RSC Adv., 2024, 14, 37470–37482
in other datasets with different compositions and with
compounds with higher penalties.

The 10-fold cross-validation showed an R2 of 0.52 and an
MAE of 0.25 for compounds that were not included in the
training set (Fig. S8A†). This shows that the model can make
reasonable predictions for chemicals that were not included in
the training set. Two chemicals were shown to be outside of the
applicability domain of the model (based on the denition in
the Methods section). These two chemicals were Furalaxyl and
Dicrotophos (Fig. S9†). During the cross-validation, Furalaxyl
showed an absolute error of 10.1 log units, and Dicrotophos had
an absolute error of 5.58 log units. Both chemicals had penalties
lower than 300 so it does not seem that their penalties would be
a likely explanation (ESI spreadsheet†). Most likely, these two
chemicals are structurally and physicochemically distinct from
the other chemicals in the dataset. This is supported by the
observation that when these two compounds are included in the
dataset their absolute errors are 0.001 log units for Furalaxyl
and 0.03 log units for Dicrotophos (Fig. S10†).

The y-randomization showed that when the model is trained
on random data the expected R2 is 0.03 (Fig. S8B†). This is
substantially lower than both the R2 of the model with all the
chemicals (0.74) and the R2 of the 10-fold cross-validation (0.52).
This observation suggests that the model is making meaningful
predictions that are distinct from random predictions.

In trying to understand the contributions of the different
interactions to RRF we examined the different terms of eqn (8)
for two chemicals that showed near 0 differences between
experimental and calculated values of RRF. The two chemicals
were (1) Cinchophen with a log RRF of 1.73 (calculated log RRF
= 1.74), and (2) Loratadine with a log RRF of 3.14 (calculated
log RRF = 3.15). Both chemicals' log RRF is determined to
a larger extent by the Lennard-Jones and Coulomb interactions
and to a smaller extent by their water solubility. For both
chemicals, the Lennard-Jones interactions appear to have
a positive contribution to RRF while the Coulomb interactions
appear to have a negative contribution (Fig. 5). This is consis-
tent for all chemicals in the dataset. When comparing Cincho-
phen and Loratadine, it appears that the lower RRF of
Cinchophen is due to smaller lLJ and cCoul terms (Fig. 5). The
Lennard-Jones potential approximates the van der Waals
interactions and the Coulomb potential represents the ability to
engage in hydrogen bonding. Previous studies have suggested
that increased non-polar character, which would be represented
by the Lennard-Jones potential is associated with higher RRF,
while increased polar character which would be represented by
the Coulomb potential is associated with a decrease in
RRF.25,26,30,54,55 Our observations appear to be in agreement with
the ndings from previous studies.

Water solubility appears to play a small (Fig. 5) yet signicant
role (Tables S1 and S2†) in the model. For all compounds in the
dataset, the sSW term has a positive contribution to RRF. Based
on this observation, one would expect that compounds with
higher water solubility would have a higher RRF. However,
given that the term sSW is several orders of magnitude smaller
than the lLJ and cCoul terms, the inuence of sSW on RRF is
minimal in comparison. In our developed model, sSW acts as
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Contributions of Lennard-Jones interactions, Coulomb inter-
actions, and water solubility to the calculated log RRF for two
compounds that showed near 0 errors between the experimental
values and the predictions of log RRF. Cinchophen: experimental log
RRF= 1.73 and calculated log RRF= 1.74. Loratadine: experimental log
RRF = 1.73 and calculated log RRF = 1.74.
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a corrective factor rather than a determining factor. Further-
more, water solubility is known to decrease with increasing
molecular weight,56 which is also what we observed in our
dataset. The contribution of the sSW for Cinchophen is slightly
larger than that of Loratadine which is in agreement with their
molecular weights (Cinchophen: 249.26 g mol−1, Loratadine:
382.89 g mol−1).
Limitations and future considerations

One limitation that needs to be acknowledged is that while our
model showed good accuracy (R2: 0.82) the computational cost
of our approach is much higher than other approaches that rely
on simpler descriptor generators like PaDEL57 or Mordred.58

Running one simulation on one system for one chemical takes
© 2024 The Author(s). Published by the Royal Society of Chemistry
approximately 13 min using an ASUS GeForce GTX 1080 TI 11
GB Turbo GPU. Conducting simulations for 48 chemicals, 2
systems, and 3 replicates each comes up to 62.4 h. This may
limit the ability of the model to be used as an online application
as it would require access to GPUs. The workow is, however,
applicable in PCs with NVIDIA GPUs.

Another limitation that should be acknowledged is that, in
this study, we examined only one type of force eld (CGenFF).
Future applications could examine whether using other types of
force elds like gaff2 from AMBER and GROMOS from GRO-
MACS can produce better predictions than CGenFF.

Finally, on the experimental side, it should be acknowledged
that for the purposes of this study, we tested only two solvents
for our LC gradient, HPLC water and methanol. As the ioniza-
tion efficiency of chemicals is known to vary by different
solvents,53 the effect of that variability on the modeling calcu-
lations is something that needs to be investigated further.
Conclusion

Our study presents a novel approach for modeling the ioniza-
tion efficiency of organic molecules. Our approach can be used
in combination with existing approaches for concentration
estimates of chemical compounds in environmental and bio-
logical samples. While there is a variety of modeling approaches
for RRF, our view is that these approaches are complementary
rather than competing. When trying to estimate concentrations
of chemicals in environmental or biological samples,
combining the results of multiple different approaches can help
establish multiple layers of evidence that can be used in support
of a prediction when analytical standards are unavailable.
Data availability

All code, ESI spreadsheets,† underlying datasets, and chemical
structures used in this study are publicly available and can be
accessed on GitHub under the following repository: https://
github.com/dimitriabrahamsson/electro-spray. All Python
scripts are accompanied by instructions on how to run them
in order to replicate the ndings of the study.
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