
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

8.
11

.2
02

5 
22

:4
0:

28
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Enhancing prote
aSchool of Mechanical Engineering, Soongsi

Seoul 06978, Republic of Korea. E-mail: km
bAinB, 160 Yeoksam-ro, Gangnam-gu, Se

seungwoo.seo@ainbsci.com

† Electronic supplementary information
result of hAF2.0, Hyperparameter tuning
for PDB_rev data and PDB_rev data, hype
comparison of predicted versus calculate
performance of different train size, A3D
selected PDB for 0.1% datasets. See DOI:

‡ These authors contributed equally to th

Cite this: RSC Adv., 2024, 14, 31439

Received 31st August 2024
Accepted 23rd September 2024

DOI: 10.1039/d4ra06285j

rsc.li/rsc-advances

© 2024 The Author(s). Published by
in aggregation prediction:
a unified analysis leveraging graph convolutional
networks and active learning†

Jiwon Sun,‡a JunHo Song,‡a Juo Kim, ‡a Seungpyo Kang, a Eunyoung Park,b

Seung-woo Seo*b and Kyoungmin Min *a

Protein aggregation (PA) is a critical phenomenon associated with Alzheimer's and Parkinson's disease.

Recent studies have suggested that factors like aggregation-prone regions (APRs) and b-strand

interactions are crucial in understanding such behavior. While experimental methods have provided

valuable insights, there has been a shift towards computational strategies, particularly machine learning,

for their efficacy and speed. The challenge, however, lies in effectively incorporating structural

information into these models. This study constructs a Graph Convolutional Network (GCN) to predict

PA scores with the expanded and refined Protein Data Bank (PDB) and AlphaFold2.0 dataset. We

employed AGGRESCAN3D 2.0 to calculate PA propensity and to enhance the dataset, we systematically

separated multi polypeptide chains within PDB data into single polypeptide chains, removing

redundancy. This effort resulted in a dataset comprising 302 032 unique PDB entries. Subsequently, we

compared sequence similarity and obtained 22 774 Homo sapiens data from AlphaFold2.0. Using this

expanded and refined dataset, the trained GCN model for PA prediction achieves a remarkable

coefficient of determination (R2) score of 0.9849 and a low mean absolute error (MAE) of 0.0381.

Furthermore, the efficacy of the active learning process was demonstrated through its rapid

identification of proteins with high PA propensity. Consequently, the active learning approach achieved

an MAE of 0.0291 in expected improvement, surpassing other methods. It identified 99% of the target

proteins by exploring merely 29% of the entire search space. This improved GCN model demonstrates

promise in selecting proteins susceptible to PA, advancing protein science. This work contributes to the

development of efficient computational tools for PA prediction, with potential applications in disease

diagnosis and therapy.
Introduction

Protein aggregation (PA) is recognized as the physical associa-
tion of misfolded or unfolded proteins, inuenced by factors
such as aging, genetic mutations, and environmental stressors,
including pH and temperature.1–3 This phenomenon is associ-
ated with various human diseases, including neurodegenerative
disorders (such as Alzheimer's disease, Huntington's disease,
and Parkinson's disease), certain types of cancers, and type II
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diabetes.4–6 Extensive research has focused on exploring the
relationship between the aggregation of specic protein species
and the onset-staged mechanism of these diseases.7,8 Under-
standing the inherent vulnerability of proteins in their soluble
form to aggregation is crucial, as this knowledge could shed
light on the diagnosis and therapy of amyloid-related
diseases.9,10 Recent studies have not only extensively investi-
gated the relationship between specic protein aggregations
and related diseases, such as the correlation between amyloid-
b aggregation and Alzheimer's disease but have also examined
deeper into understanding the underlying causes of these
aggregations.11,12 These investigations reveal that each protein
domain typically possesses at least one aggregation-prone
region (APR).2 Furthermore, it is identied that the interac-
tion between identical or homologous APRs through b-strand
interactions is the most prevalent structural mechanism driving
protein aggregation.

The methodology of investigation in PA is mainly divided
into two streams including experimental observation and
theoretical calculation. From the perspective of experiments,
RSC Adv., 2024, 14, 31439–31450 | 31439
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information about 3D protein aggregate structure can be ob-
tained from X-ray diffraction (XRD) spectroscopy and the
evolutionary stages of aggregation also can be detected from
small-angle X-ray scattering (SAXS).13 In addition, calorimetric-
based methods such as isothermal titration calorimetry (ITC)
allow researchers to quantitatively measure PA.14 However, the
X-ray scattering-based methods require crystal production,
which is time-consuming and expensive. Similarly, the
calorimetric-based methods have limits associated with the
requirement of large-volume samples. From the viewpoint of
theoretical calculation, atomistic scale simulations such as
molecular dynamics (MD) enable a sophisticated under-
standing of the early stages of aggregation, nding clues iden-
tifying possible aggregation-prone structures by differentiating
the aggregation-prone monomeric structure. 15 However, this
simulation model requires force-elds which necessitates
a compromise between accuracy and simulation scale.

There is a diverse range of research dedicated to numerically
quantifying the extent of PA propensity and aggregation-prone
regions (APRs) using various computational algorithms with
much reduced time than conventional MD. These techniques
mainly adopt sequence-based methods. In detail, PA is quan-
tied numerically using amino acid (AA) physiochemical prop-
erties, sequence patterns, and knowledge-based score
functions. 16–20 In recent times, machine learning (ML) models
utilizing sequences as input have begun to be employed in
distinguishing sequences that are likely to lead to protein
aggregation. The exemplary cases are (1) Budapest Amyloid
Predictor web server predicts amyloid protein using a linear
support vector machine (SVM), adopting amino acid sequence
which originated experimental hexapeptide Waltz database as
input. 16 This model achieves prediction accuracy higher than
84% when it classies whether the input sequence has
a propensity to become amyloid or not. (2) Amyloidogenicity
Propensity Prediction Neural Network (APPNN) predicts the
amyloidogenic polypeptide sequence, achieving 84.9% predic-
tion accuracy against an external validation of experimental
sequences using key features for peptides and proteins forming
amyloids, focusing on b-sheet frequency, isoelectric point, and
hydrophobicity.19 (3) Hot spot found in amyloid-versed (FISH
amyloid) introduces an innovative ML approach for amino acid
sequence classication, which hinges on detecting segments
exhibiting distinctive patterns among sequence elements.21

While numerous previous ML-based studies have predicted
aggregation tendencies through sequence-based features, there
is a notable need for ML models that incorporate structural
information. This gap is signicant because the clustering of
hydrophobic residues would form structural aggregation-prone
regions (STAPs) in their native state. These regions are oen
undetectable by linear predictors.22 The absence of machine
learning models capable of incorporating protein structures is
believed to resolve the gap between experimentally observed
protein aggregation propensities and the structure embeddings
that can be derived from sequences.

Fortunately, there has been a signicant turning point in
protein science recently. AlphaFold and its subsequent studies
have accelerated the structure analysis process that traditionally
31440 | RSC Adv., 2024, 14, 31439–31450
required a long time based on the protein sequence.23–26 This
allows researchers to adopt structural information in their
works, increasing the prediction accuracy of protein properties.
The exemplary cases are (1) utilizing the AlphaFold2.0 database
as an additional dataset on the training of the protein function
prediction model.27 This study demonstrates that prediction
models only trained on virtual protein structures from Alpha-
Fold2.0 achieved comparable performance to the model trained
on experimental structures, implying that the virtual structures
were comparably effective in predicting protein functionality.
(2) The structural analysis of 26 hereditary cancer proteins was
conducted using AlphaFold2.0 protein structures.28 The con-
dence scores from AlphaFold2.0 structures were more effective
in predicting variant pathogenicity than other stability predic-
tion tools. (3) The backbone NMR N–H S2 order parameter was
predicted by adopting the information returned from Alpha-
Fold2.0.29 This study combines AlphaFold2's condence scores
with a local contact model to estimate dynamic features at the
residue level, successfully capturing experimental NMR order
parameter proles. Demonstrated on nine proteins, the method
accommodates diverse sizes and levels of dynamics and
disorder. As demonstrated in various studies, the adoption of
structure or structural information from AlphaFold can improve
the prediction model's performance. Similarly, adopting virtual
protein structures demonstrates to increase in the performance
of prediction on PA of proteins, making the use of protein
structures in ML models a more practical strategy.

In this study, we developed the graph convolutional neural
network (GCN) model for predicting PA by incorporating the
AlphaFold database with the protein data bank (PDB) dataset.
The superior performance of the suggested model is validated
using Homo sapiens protein data (21 873 structures) from
AlphaFold2.0 (hAF2.0). The improved model achieved
a remarkable prediction accuracy although it was trained using
only one 0.1% of the PDB dataset. It is anticipated that this
model will serve as a tool for selecting proteins susceptible to PA
and will lay a foundational stone in the eld of protein science.

Methods

The overall schematic ow of the study is illustrated in Fig. 1. In
this study, the GCN-basedmodel was rst trained with PDB data
whose aggregation score was calculated by AGGRESCAN3D 2.0
(A3D) dynamicmode, then its performance was validated on the
hAF2.0 database. As shown in Fig. 1(a), the training data was
adopted from the PDB, while the test data constituted the
hAF2.0. Subsequently, the protein structures with a multi-
polypeptide chain form were divided into each single poly-
peptide chain.

Fig. 1(b) illustrates the training and tuning process to
develop the optimal GCNmodel using the database constructed
in the previous step. In this step, the extensive hyperparameter
optimization was performed. Then, the model exhibiting the
best performance for train data was implemented to predict the
hAF2 data. As a nal step, the active learning process is
employed as shown in Fig. 1(c), whose purpose is to improve the
model's predictive performance and adaptability in extreme
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic overview of this study. (a) Database construction, (b) training and tuning of the GCN model, and (c) active learning process.
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conditions. Active learning was implemented through an iter-
ative feedback loop to identify and prioritize protein structures
that are most likely to aggregate. Several types of acquisition
functions such as Efficient Global Optimization (EGO) and
exploitation were employed to compare the performance. This
active learning process not only enhanced the model's ability to
generalize across diverse datasets but also proposed an opti-
mized process for rapidly and accurately identifying proteins
with high A3D scores. Detailed explanations for each of the
steps are provided.

Database construction

As shown in Fig. 1(a), the database construction method
consists of the following steps: (1) to improve the prediction
accuracy of PA for the hAF2.0 database, data from PDB with
more than half of them having multi polypeptide chains were
split into single polypeptide chain and merged with the existing
PDB data. (2) Comparison of sequence similarity between the
converted PDB data and hAF2.0 data. The similarity between
data from PDB and hAF2.0 data is calculated, and proteins that
have a similarity of more than 80% are removed from the test
data of hAF2.0 to avoid data overlapping which could lead to an
overestimation of the model's performance. By selecting
proteins distinct from those in the PDB training set, we also
emphasize the independence of our datasets. (3) To assess the
PA propensity between the PDB and hAF2.0 data, the A3D,
which utilizes the structure and AA for calculating PA propen-
sity, was used. Detailed information about the data construc-
tion can be found in the later section.

Aggregation calculation

The PA propensity values of train and test data were calculated
using A3D.30 3D structure-based A3D offers a signicant
advantage over existing linear sequence-based algorithms such
as SOLpro31 and PROSO II32 when analyzing the folded states of
© 2024 The Author(s). Published by the Royal Society of Chemistry
globular proteins in a specic structural context. It demon-
strates a higher level of accuracy by capturing structural varia-
tions that inuence PA, considering dynamic changes in
protein structure. In addition, in terms of comparison to the
other 3D-based algorithms, A3D is one of the most promising
methods capable of considering dynamic mutations, leading to
the more accurate prediction of PA propensity. Although the
spatial aggrecan propensity (SAP) provides a similar method for
considering the dynamic uctuation of protein structure, SAP
takes a long time to simulate the time-consuming molecular
simulation, which is not reasonable to accumulate the large size
of training datasets.33 For this reason, many studies use A3D as
a method for predicting PA propensity.34–36 It is also noted that
two modes (static and dynamic mode) are available for calcu-
lating the PA propensities of protein structures. In contrast to
the static mode, where the input structure is energy-minimized
by FoldX37 force eld to ensure the stability of proteins, the
dynamic mode involves using the energy-minimized structure
as the input and predicts the exibility of the protein structure
through CABS-ex simulation.38 By considering this, it is
possible to reect the dynamic changes that proteins undergo
in solution, thereby allowing for a more accurate determination
of protein aggregation tendencies.30 Additionally, in the
dynamic mode, the A3D score is calculated as the average of
A3D scores extracted from trajectory les generated during the
CABS-ex simulation process. Consequently, only the average
A3D scores calculated through the dynamic mode were used in
the nal training data for the GCN model.
Architectures of GCN model

A GCN architecture originating from a previous study was
utilized to predict the PA propensity of protein structure.35 This
model employed the PyTorch Geometric package, and the GCN
Conv algorithm served as the basis for the graph convolution
process.39,40 As illustrated in Fig. 2(a), protein representation
RSC Adv., 2024, 14, 31439–31450 | 31441
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Fig. 2 (a) The process of embedding proteins for GCN training, (b) the constructed GCN architecture to predict the output (A3D value).

Table 1 Types and values of explored hyperparameters of GCN
models (bold values are optimal parameters)

Hyperparameter Values

Learning rate [0.001, 0.0005, 0.0001]
Dimension [8, 16, 32]
Batch size [32, 64, 128]
Number of GCN layers [1, 2, 3]
Pooling method [global_add_pool,

global_mean_pool, global_max_pool]
Dropout rate [0.0, 0.1, 0.2]
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was constructed using 3D atomic coordinates from PDB les. In
this graphical representation, denoted as G = (V, E), V repre-
sents the nodes, each corresponding to an amino acid (AA), and
E symbolizes the edges, indicative of the interactions between
AAs. For this study, an edge E is established between two AAs if
the distance between their a-carbons is less than a specied
threshold (7 Å). The protein graph G encompasses a node
feature matrix, X, and an adjacency matrix, A. The matrix X is
a 20-dimensional feature matrix (sized N × 20, where N is the
count of AAs), generated through one-hot encoding of the 20 AA
types. On the other hand, matrix A is an N × N square matrix,
where each dimension equals the number of AAs, representing
the connections between AAs (1 for connected, 0 for discon-
nected). Fig. 2(b) illustrates the structure of the GCN model,
which includes a GCN for feature extraction from the protein
graph, and a dense layer for predicting the A3D dynamic score.
The number of dense layers was xed as 2, and the number of
GCN layers varied from 1 to 3 depending on the hyper-
parameter. The dimension of the GCN layers was maintained
constant. The reason for employing shallow and linear GCN
layers originated from the consideration that excessive stacking
and non-linearity could lead to over-smoothing, which poten-
tially diminishes performance. Given that the number of GCN
layers considered is sufficiently small, it is anticipated that the
representation of nodes in the GCN process will not converge to
a specic value.41,42 The mean squared error (MSE) function was
selected as the loss function, with a linear function for the nal
activation. Batch normalization (BN) was implemented to
mitigate internal covariant shi issues, placed aer the rectied
linear unit (ReLU) activation function.43,44 Aer the GCN layer,
the graph pooling layer was added and the dropout layer was
adopted to avoid overtting. The dense layer also employs ReLU
activation functions and the dropout layer. Adaptive moment
estimation (Adam) was chosen for the optimizer.
31442 | RSC Adv., 2024, 14, 31439–31450
Hyperparameter tuning

To nd the optimal parameters of the GCNmodel, the extensive
hyperparameter combination was investigated using the grid
search method. The types and values of explored hyper-
parameters are listed in Table 1. Three values are explored for
each of the six types of hyperparameters, resulting in a total of
729 hyperparameter combinations. It is noted that epoch was
not considered in hyperparameter tuning but early stopping
was implemented to prevent overtting. However, to avoid the
model being undertted due to abrupt uctuations of initial
loss values, a minimum of 20 epochs of training was enforced.
Subsequently, with a patience setting of 10, the training
continued until just before the onset of overtting, at which
point the performance was measured. The number of GCN
layers and the pooling method were also utilized as types of
hyperparameters.
Active learning process

The primary purpose of active learning in this study is to
effectively pinpoint proteins with the highest A3D scores. To
accomplish this goal, we have implemented an optimization
process that strategically guides the data exploration direction.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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This is achieved by determining which datasets are prioritized
for inclusion in our training set. Several methods are used in the
optimization process: exploration based on prediction uncer-
tainty, Efficient Global Optimization (EGO), exploitation
utilizing the mean of predicted values, and random selection.

First, exploration uses the standard deviation value of pre-
dicted values as an acquisition function thus reducing the
model's prediction uncertainty. Second, exploitation prioritizes
proteins with the highest average predicted A3D scores, and this
means the user solely believes in the performance of the
surrogate model. Third, efficient global optimization employs
an expective improvement (EI) value45 as an acquisition func-
tion, which balances exploration and exploitation to prevent
biased sampling. Eqn (1) shows how to compute the EI value for
a given material x:

EIðxÞ ¼ ðmðxÞ � f *ÞF
�
mðxÞ � f *

sðxÞ
�
þ sðxÞf

�
mðxÞ � f *

sðxÞ
�

(1)

where f* denotes the largest value (A3D score) found in the
training database thus far; s(x) and m(x) denote the predictive
standard deviation and predicted mean, respectively, obtained
from the surrogate models for a given protein x. f is the prob-
ability density function for the standard normal distribution,
and F is the cumulative distribution function for the standard
normal distribution.

As depicted in Fig. 1(c), we constructed an active learning
platform and compared the performances of four different
optimization processes: exploration, exploitation, EGO, and
random selection. The GCN model is constructed using 80% of
the initial database as the training set and the remaining 20% is
used as the validation set. A random split of the dataset was
performed for cross-validation. Based on 80% of the randomly
chosen training set, 20 distinct models were constructed for
each iteration of the active learning process. By repeating this
process 100 times, the mean and standard deviation of the
predicted values were obtained. In each iteration, 200 new
entries (about 1% of the hAF 2.0 database) were recommended
and thus added to the training set.

Results and discussions
Database construction

The initial database consists of 144 768 PDB protein structure
(PDB_origin) data for training a graph-based model and 23 391
hAF2.0 data for active learning and model performance vali-
dation. The PDB_origin data include thousands of species of
protein from Homo sapiens, Mus musculus, and Gallus gallus to
synthetically constructed proteins, and exist in a single poly-
peptide chain (single-chain) or multi polypeptide chain (multi-
chain) form.46 In contrast, the hAF2.0 data consists of only
single polypeptide chains. It is noted that in single-chain
proteins, PA occurs due to interactions between AA within the
same polypeptide chain. However, in multi-chain proteins,
aggregation arises from interactions between several poly-
peptide chains. This structural difference, even within the same
polypeptide chains, leads to varying tendencies in PA.47 There-
fore, it is essential to examine the structural differences and
© 2024 The Author(s). Published by the Royal Society of Chemistry
select data that reects structural variations according to the
type. To verify the structural difference within the same poly-
peptide chains, Fig. S1 (ESI†) represents the box plot of
randomly selected protein's A3D score across 12 different
protein structures in dynamic mode with the same AA sequence
when they exist as sing-polypeptide chains (light blue box), as
multi-polypeptide chains (pink box), and when multi-
polypeptide chains are divided into single-polypeptide chains
(cyan box). Table S1† also represents the average and standard
deviation of the A3D score. In Fig. S1,† proteins with the same
AA sequences were categorized by the AA lengths plotted at the
top of the graph. The pink box represents a single-polypeptide
chain that exists within multi-polypeptide chains. Thus, cyan
and pink boxes mean the same polypeptide chain but differ
depending on whether they exist independently (e.g. 6LML for
pink box, 6LML_E for cyan box). When compared to other
proteins who have the same AA sequences, most proteins have
similar A3D scores and standard deviations. However, for
certain proteins (e.g., 6LML, 6TXX), there is a signicant
difference in mean A3D score when they exist as multi-chains
(in 87 AA lengths, −0.3692 average A3D score for 6LML
compared to −0.5945 average A3D score for 1KX6 and −0.5820
average A3D score for 6LML_E, and in 378 AA lengths, −0.5698
average A3D score for 6TXX compared to −0.4735 average A3D
score for 4TW7 and −0.4942 average A3D score for 6TXX_A).
Additionally, some proteins (e.g., 6LML_E, 1D5G_A) show
a large standard deviation, indicating that even with the same
amino acid sequences, different PA propensities can arise from
dynamic changes in the protein structure. Therefore, using
various polypeptide chain data from the PDB for predicting PA
in single-chain hAF2.0 data, the possibility that even identical
AA sequences could adopt different folded states was accounted
for. Furthermore, the model's capacity to predict protein
aggregation that is not observed in a single-polypeptide chain
may improve prediction reliability. In this respect, we separated
multi-chain data from the PDB_origin into single-chain and
incorporated them into PDB_origin data set as shown in Fig. 3.
Initially, the 144 767 PDB_origin protein data has 61 642 single-
chain and 83 125 multi-chain data. The multi-chain data can be
separated into 270 605 single polypeptide chains (multi-to-
single chains). Then, the single chains with the same
sequence are removed, leading to a total of 176 374 multi-to-
single chains remaining in the dataset. Finally, from the
initial 144 768 single or multi-polypeptide chains, a total of 320
141 polypeptide chains (PDB_rev) were prepared for GCNmodel
training.

Fig. 4(a) shows the count and fraction weight distributions of
A3D scores for PDB_origin, PDB_rev, and hAF2.0 in each data-
set. The average A3D scores for PDB_origin, PDB_rev, and
hAF2.0 are −0.4915, −0.2604, and −0.2917, respectively, with
standard deviations of 0.3912, 0.2040, and 0.3056. As demon-
strated in Fig. 4(a), the protein data distribution in the PDB_rev
divided dataset closely approximates a normal distribution
when compared to the PDB_origin dataset. Compared with the
hAF2.0 dataset, the distribution of PDB_rev dataset was more
similar to that of PDB_origin. This is a critical consideration in
the training process of the GCN model, as an imbalanced data
RSC Adv., 2024, 14, 31439–31450 | 31443
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Fig. 3 Preprocessing PDB database for GCN training.
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distribution during training could make the model sensitive to
specic patterns or outliers, posing challenges for achieving
optimal performance and generalization.48 In the process of
A3D calculations, protein structures that contained non-
standard amino acids due to residue deformations had exces-
sively short sequence lengths or did not converge within 100
steps in the dynamic mode's CABS-ex simulation were
removed from the nal database. As a result, a total of 304 059
PDB datasets were used as the nal database for this study.

Fig. S2† shows a box plot of the AA length for the PDB_rev
data and for those in PDB_rev with an AA length of over 2700.
The average length of AA in the entire PDB_rev data is 434.522,
with the longest protein having an AA length of 32 018. It was
observed that the average value of the lower 75% of data is 493,
indicating that some proteins have exceptionally long AA
lengths. In the case of AlphaFold2.0 protein data, for AA longer
than 2,700, the protein data is divided intomultiple overlapping
fragments, and each structure is predicted separately to address
exceptionally long AA proteins. It is challenging to predict the
entire structure at once when a specic protein has such a long
31444 | RSC Adv., 2024, 14, 31439–31450
AA length, and it also demands a high computational cost for
training the GCN model. In this regard, we applied the method
used in AlphaFold to reduce computational costs by removing
PDB_rev data with over 2700 AA.

Before removing the data, if there is a signicant correlation
between AA and PA, removed data could impact the prediction
of PA. Therefore, the correlation between AA and PA was
examined. In Fig. 4(b), scatter plots are shown based on AA
length and A3D score. In Fig. 4(b), the le represents the
distribution of the PDB_rev data that was used as the nal
database aer the previous steps. A Pearson correlation (R)
analysis showed that there is no signicant correlation (R =

0.0654) between AA length and A3D score. In addition, Fig. 4(b),
right shows the scatter plot of AA length and A3D scores with AA
lengths exceeding 2700 proteins, among 304 059 data, and its R
value is 0.0086. Consequently, this observation led to the
conclusion that there is no meaningful correlation between AA
length and PA. This justies that the length of AA does not
signicantly impact PA. Aer excluding 2027 entries with AA
lengths exceeding 2,700, we established a nal dataset
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) The distribution of A3D scores calculated through A3D. (b) Scatter plot of AA length versus A3D score with R. (Left) represent the total
A3D score and (right) represent the distribution of PDB_rev data for AA lengths of 2700 or more. (c) The schematic proves of calculating
sequence similarity from PDB_rev and hAF2.0 datasets.
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comprising 302 032 entries for the PDB database. Notably, the
exclusion of data led to a signicant reduction in the GCN
model's training time, decreasing from approximately 1400
seconds per epoch to about 500 seconds per epoch when using
one RTX3090 GPU.

Sequence similarity

When the sequences of protein polypeptide chains are similar,
there is a higher likelihood that the physical and chemical
properties of the proteins are also comparable. In the training
process, a high degree of similarity between the training and
validation data would lead to overtting the GCN models. To
address this issue, a comparison of protein sequence similarity
between the PDB_rev and hAF2.0 was performed as shown in
Fig. 4(c). Firstly, each sequence of proteins was extracted from
PDB and hAF2.0 data, and each of the sequences is aligned such
that two or more consecutive AA form a matching box, resulting
in a match. The sequence similarity is calculated through Q = 2
× Nmatch/Lsequence, where Nmatch represents the total number of
AA forming the matching box, and Lsequence is the total sum of
the AA count in the two compared sequences. Table 2 represents
Table 2 The results of sequence similarity comparison. The 10%
increase in sequence similarity correlates with 400 proteins showing
comparable similarities

Similarity (%) Count

50 2973
60 2385
70 1916
80 1518

© 2024 The Author(s). Published by the Royal Society of Chemistry
the results of comparing sequence similarity, indicating that as
the similarity increases by 10%, approximately 400 proteins
share that level of similarity. It is noted that proteins with
a similarity threshold of 80% were removed from the hAF2.0
data. This process led to the removal of 1518 Homo sapiens
protein data. As a result, 21 873 Homo sapiens protein data were
used as the nal test data.
Hyperparameter tuning

Aer the hyperparameter tuning, the learning rate: 0.0005,
dimension: 32, batch size: 64, number of convolution layers: 3,
pooling method: global_mean_pool, and dropout rate: 0.2 were
conrmed as an optimal hyperparameter combination in Table
1. With the selected hyperparameter combination, an R2 score
of 0.9525 and an MAE of 0.0338 were achieved for the training
dataset (PDB_rev). All the hyperparameter combinations and
their performance are provided as a separate CSV le in ESI.‡ To
identify the dependency of each parameter (learning rate,
dimension, batch size, number of GCN layers, pooling method,
and dropout rate), the hyperparameter of the top ten percent
(72) models was analyzed. It is noteworthy that all the top ten
percent of models adopt global_mean_pool as their pooling
method. It demonstrates that the choice of graph pooling
method plays a signicant role in performance enhancement
and that the global_mean_pool method is the most suitable. In
addition, as shown in Fig. S3,† the developed GCN architecture
shows a tendency to be sensitive to learning rate and dimen-
sion, while demonstrating less sensitivity towards the other
hyperparameters. From these results, it is believed that deter-
mining optimal values of the learning rate and the dimension is
the most signicant to achieving the best performance.
RSC Adv., 2024, 14, 31439–31450 | 31445
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Validation of generalization performance

To validate the model's generalization, we constructed
a predictive model, aiming to investigate the sensitivity of
prediction uncertainty with varying training set sizes. As
depicted in Fig. 5(a) it is generally observed that smaller
training sets tend to degrade the performance in predicting the
test set. Fig. S3(a) and (b)† show detailed results for how each
true versus predicted A3D score is distributed when the training
set ratio is 80% and 0.1%, respectively. In Fig. 5(a), it is observed
that as the training set range increases from 0.1% (302 struc-
tures) to 60% (181 219 structures), the R2 value is still unex-
pectedly high at about 0.78 and achieves a high performance
above 0.96 in both the PDB_rev and hAF 2.0 databases. In other
words, we demonstrate that only 0.1% of the total database is
used for training, and the trained model can predict the
remaining 99.9% with low MAE values of 0.067 and 0.079 for
PDB_rev and hAF 2.0, respectively, despite the large error rate
shown in Fig. S4.† This is possible because when the training
set is randomly selected from the entire database structure,
there is a likelihood of including proteins with high A3D scores,
as the training domain is not limited to a specic range of
values as shown in Fig. S5.† Consequently, this largely reduces
the extrapolation risk, which is oen themost vulnerable aspect
of ML models, thereby enhancing prediction accuracy and
generalizability. Therefore, the constructed prediction model
can be utilized as a rough screening tool. As shown in Table S2,†
while A3D typically requires 21 240 seconds to complete (over 12
calculations), the GCN model only takes 0.5 seconds during
inference aer training. This means that the GCN model can
predict protein aggregation approximately 42 480 times faster
than A3D, making it highly efficient.

To further verify the origin of such superior performance, we
conducted a t-SNE49 analysis. As seen in Fig. 5(b), the data
distribution of the PDB_rev (green points) encompasses and is
more diverse than that of hAF 2.0 (blue points). This explains
why the predictive performance for hAF 2.0 (test data) is better
than that for PDB to the most of training set ratios. In other
Fig. 5 Performance visualization for each train size (0.1% to 60%) by (a) M
PDB made (green points), hAF2.0 (blue points), PDB 0.1% (red points).

31446 | RSC Adv., 2024, 14, 31439–31450
words, the current GCN model could perform better due to
being trained on more comprehensive data. Additionally, even
though the number of data points (red points) in the 0.1%
training set is limited, they are evenly distributed over the green
area and not biased towards one side; thus, such behavior leads
to an increase in the generalization performance.

Performance of active learning

In most studies that aim to build a predictive model, starting
with an extensive database is not common. Moreover, the values
in the constructed databases are oen not uniformly distrib-
uted and frequently lack sufficient data to represent the tar-
geted chemical space adequately. Biased or unbalanced data
distributions in available databases can complicate the
construction of machine learning predictive models. Therefore,
in this study, to validate the practical functionality of active
learning, we chose the dataset whose predictive performance is
the least among the 20 conducted with a 0.1% training set ratio,
as shown in Fig. S6.† The performance of this model exhibits an
R2 of 0.1870 and an MAE of 0.2870 with an A3D score ranging
from −1.2903 to 0.5. Such a dataset suggests that while the
initial predictive model may perform reasonably within the
trained areas, it fails outside these regions like high A3D score
(A3D score $ 0.5), leading to extrapolation.

The performance of the implemented active learning is
evaluated in Fig. 6 by comparing the cumulative number of
structures satisfying the criteria within the target domain (A3D
score $ 0.5). As shown in Fig. 6, EI, exploration, and exploita-
tion strategies outperform random search. At the 20th iteration,
the EI approach identied 541 target proteins via active
learning, accounting for 99% of the hAF 2.0 database's 546
entire proteins. Furthermore, using the EI strategy, on average,
approximately 18.83 proteins are obtained with each iteration
up to the 20th cycle. In terms of MAE, exploration, and EI
optimization methods surpass random, but exploitation is not
satisfactory. In addition, EI identies fewer target proteins in
a shorter time compared to the exploitation strategy but shows
more accurate prediction performance with an MAE of 0.0291.
AE score and R2 score. And (b) t-SNE distribution for three databases:

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (Top) The cumulative number of proteins with high PA (0.5# A3D score) recommended by each of the methods. The gray-colored area
indicates the distribution of 20 runs from a random search. (Bottom) Performance results of four active learning methods. The percentage in the
parentheses indicates the ratio of the number of added proteins until the 20th iteration, divided by the number of entries in the entire search
space in hAF2.0 database.
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These results conrm that EI is an efficient optimization
method with good prediction performance in a smaller number
of trials to effectively identify proteins with high PA properties.

Moreover, exploitation theoretically should prioritize the
highest A3D score to rapidly identify proteins. As presented in
Fig. 6, exploitation found all the target proteins during four
iterations, and it is more efficient than any optimization
process. However, as mentioned earlier, the prediction perfor-
mance (MAE) is 0.0516, which is the lowest among the ve
methods.

Next, in the case of exploration, 7.91 target proteins were
selected on average, and a total of 265 structures (49% of the
total space) were selected at the 20th iteration. This acquisition
function is better than random search, but worse than EI and
exploitation. Although this is far from what we are aiming for
(nding proteins with high A3D scores), it is still important to
note that the prediction performance is the best (MAE of 0.027)
among all acquisition functions. As discussed before, this is
likely due to the addition of proteins with a larger predictive
uncertainty.
Conclusions

This study presents the development and evaluation of a new
GCN model for predicting PA, a phenomenon associated with
© 2024 The Author(s). Published by the Royal Society of Chemistry
various diseases, including neurodegenerative disorders like
Alzheimer's and Parkinson's disease. The advancement in pre-
dicting such phenomena is highlighted. The dataset, enhanced
with data from the RCSB PDB and AlphaFold2.0, includes 302
032 unique PDB entries and 22 774Homo sapiens data. The GCN
model, trained on this dataset, achieved high accuracy in PA
prediction, with a coefficient of determination (R2) of 0.99 and
a lowMAE. Developed GCNmodel effectively identied proteins
with a high propensity for PA through an active learning
approach, successfully predicting 99% of PA by exploring only
29% of the entire search space. This achievement surpasses
previous methods and signicantly contributes to protein
science. Integration of structural information from PDB and
AlphaFold2.0 underscores the necessity for ML models that
consider protein structure, enhancing PA prediction accuracy.
The developed GCN model emerges as an invaluable tool for
selecting proteins susceptible to PA, offering signicant appli-
cations in protein science, and the diagnosis and treatment of
related diseases.

Future researchers could build upon this work by exploring
several avenues to further rene and expand the capabilities of
the GCNmodel. One potential direction is the ne-tuning of the
GCN model with more specic experimental datasets, particu-
larly those that exclude intrinsically disordered proteins/
peptides (IDPs).50 Numerous studies have already reported
RSC Adv., 2024, 14, 31439–31450 | 31447
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that IDPs lack stable and well-dened structures, making it
challenging for AlphaFold to accurately predict their struc-
tures.51,52 Consequently, the inclusion of IDPs in the hAF 2.0
database used in this study could impact the GCN model's
accuracy in predicting protein aggregation propensity.
Addressing this challenge is crucial for improving the model's
predictive accuracy, but it also presents signicant difficulties.
Therefore, future researchers could consider constructing an
hAF 2.0 database that excludes IDPs and retraining the GCN
model to enhance its accuracy in predicting protein aggregation
(PA).

In addition, performance could be further improved by
employing advanced machine learning techniques. For
example, incorporating semi-supervised learning techniques,
such as positive-unlabeled (PU) learning, could further improve
prediction accuracy, particularly in situations where labeled
data is scarce or imbalanced.53 Moreover, expanding the dataset
to include a wider variety of protein types and environmental
conditions could make the GCN model even more versatile and
applicable to a broader range of biological contexts. These
future enhancements would not only improve the current
model's performance but also broaden its application scope,
ultimately it could serve as an important tool for efficiently
predicting PA before experiments by reducing the costs and
time with reliability. This advancement could signicantly
contribute to the development of more effective diagnostic and
therapeutic strategies for PA-related diseases.

Data availability

The source code, partial train data, and example notebooks of
AP value prediction GCN model are available at https://
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