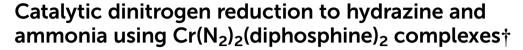
Dalton Transactions

COMMUNICATION


View Article Online
View Journal | View Issue

Cite this: *Dalton Trans.*, 2024, **53**, 6496

Received 8th March 2024, Accepted 25th March 2024 DOI: 10.1039/d4dt00702f

rsc.li/dalton

Charles H. Beasley, page Olivia L. Duletski, page Ksenia S. Stankevich, page Navamoney Arulsamy page and Michael T. Mock page 4

sources.

The synthesis, characterization of trans-[Cr(N₂)₂(depe)₂] (1) is described. 1 and trans-[Cr(N₂)₂(dmpe)₂] (2) catalyze the reduction of N₂ to N₂H₄ and NH₃ in THF using SmI₂ and H₂O or ethylene glycol as proton sources. 2 produces the highest total fixed N for a molecular Cr catalyst to date.

Motivated by the desire to understand and control the challenging multi-proton, multi-electron reaction of N2 reduction to NH₃, researchers have intensely studied the reactivity of molecular transition metal dinitrogen complexes.1 Well-defined molecular systems offer a high degree of electronic and structural control to regulate chemical reactivity of N₂. When combined with effective strategies to form N-H bonds, such as proton-coupled electron transfer (PCET) reagents, i.e. SmI₂ and a proton source, tens-of-thousands of equivalents of NH3 can be generated.⁴ The valuable information obtained from these studies includes the identification of viable M-N_rH_v reaction intermediates from spectroscopic data that can be used to delineate the mechanistic steps of a putative catalytic cycle. Such studies can aid in the understanding of the mechanistically complex biological N2 fixation processes carried out by nitrogenase enzymes,5 as well as heterogeneous Haber-Bosch catalysts.6

Group 6 N_2 complexes bearing monodentate phosphine ligands, especially with Mo and W, were among the first molecular systems to generate stoichiometric quantities of N_2 -derived NH_3 from protonolysis reactions with strong acids nearly 50 years ago. Recently, a renaissance of examining structurally similar $[M(N_2)_2(P-P)_2]$, (M = Mo, W; P-P = diphosphine) systems has begun, elevating these simple complexes as catalysts for N_2 reduction to NH_3 , or other remarkable reac-

this system was not catalytic using SmI2.16 Herein we prepared

and characterized trans-[Cr(N2)2(depe)2] (1), and report cata-

lytic N2 reduction to NH3 and N2H4 with 1 and trans-[Cr

 $(N_2)_2(dmpe)_2^{17}$ (2) $(dmpe = Me_2PCH_2CH_2PMe_2)$ at room temp-

erature using SmI2 and ethylene glycol or H2O as proton

tions such as cleavage of the N₂ triple bond.⁸ Masuda and coworkers reported spontaneous N≡N bond cleavage upon one-

electron oxidation of $trans-[Mo(N_2)_2(depe)_2]$ (depe =

Et₂PCH₂CH₂PEt₂) to form [Mo(N)(depe)₂]⁺. Chirik and coworkers developed a photocatalytic strategy to form NH₃ from

[Mo(N)(depe)₂]⁺ and H₂.¹⁰ Electrocatalytic N₂ fixation with Mo

and W-phosphine complexes was described by Peters and co-

workers using a tandem catalysis approach.¹¹ Nishibayashi

Vigorous stirring of yellow *trans*-[CrCl₂(depe)₂]¹⁸ (1-Cl) in THF with excess Mg powder under a N₂ atmosphere for 24 h furnished 1 as a dark red solid in 70% yield. Isolation of 1 allowed for a comparison of the structural and spectroscopic data with 2 that was reported in 1983.^{17a} The structure of 1, determined by single crystal X-ray diffraction, shows Cr with four phosphorus atoms of the chelates on the equatorial plane and two axial end-on bound N₂ ligands, Fig. 1, panel a. The average Cr–N, Cr–P, and N \equiv N bond distances are 1.904 \pm 0.005 Å, 2.334 \pm 0.007 Å, and 1.104 \pm 0.004 Å, respectively. The corresponding Cr–N, and Cr–P, bond distances in 2 (see ESI†),

and co-workers showed simple Mo-phosphine complexes catalyzed N_2 reduction to NH_3 using SmI_2 and various proton sources. While these examples highlight new discoveries using $[M(N_2)_2(P-P)_2]$ (M = Mo, W) complexes, catalytic N_2 reduction with analogous Cr compounds are limited. Recent reports highlighted the utility of molecular Cr complexes using a variety of ligand architectures for N_2 activation, activation, functionalization, or catalytic N_2 silylation. However, molecular Cr complexes that catalyze the direct reduction of N_2 to NH_3 are rare. In 2022, Nishibayashi and co-workers reported a Cr complex bearing a PCP pincer ligand that catalyzed direct N_2 reduction to NH_3 and N_2H_4 at -78 °C to rt. KC_8 and phosphonium salts as H^+ sources were required for turnover, and

^aDepartment of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA. E-mail: michael.mock@montana.edu

^bDepartment of Chemistry, University of Wyoming, Laramie, WY, 82071, USA

[†] Electronic supplementary information (ESI) available: Experimental procedures, crystallographic details, and additional spectroscopic and electrochemical data. CCDC 2330754 (1) and 2330755 (2). For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d4dt00702f

Dalton Transactions Communication

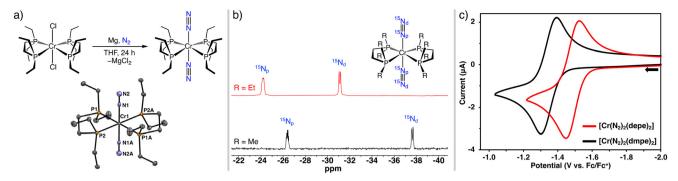


Fig. 1 (a) Synthesis and molecular structure of 1. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity. Crystals of 1 contain two molecules per asymmetric unit with comparable metric parameters; only one molecule is shown. Selected bond distances (Å) and angles (°): Cr1-N1 = 1.9081(10); N1-N2 = 1.1003(14); Cr-P1 = 2.3343(3); Cr-P2 = 2.3249(3). Cr2-N3 = 1.9008(10); N3-N4 = 1.1069(14); Cr-P3 = 2.3425(3); Cr-P4 = 2.3346(3), P1-Cr1-P2 = 81.650(9); P3-Cr2-P4 = 81.583(10); P1-Cr1-N1 = 89.25(3); P2-Cr1-N1 = 90.21(3); P3-Cr2-N3 = 89.29(3); P3-Cr2-N3 = 89.29(3); P3-Cr2-N3 = 89.29(3); P3-Cr2-N3 = 89.29(3); P3-Cr3-N3 = 89.20(3); P3-Cr3-N3(3); P4-Cr2-N3 = 90.59(3). (b) ¹⁵N{¹H} NMR spectra of 1^{15N} (red) and 2^{15N} (black) recorded at 25 °C in THF-d₈. (c) Cyclic voltammograms of 1 and 2 in THF showing the Cr^{1/0} wave.

are slightly shorter at 1.8862(17) Å, and 2.294 \pm 0.005 Å, and the N=N distance is 1.110(2) Å. The ligand bite angles for 1 and 2, i.e. P1-Cr-P2, are 81.6° and 83.5°, respectively, and the P-Cr-N angles are near 90°.

The ³¹P{¹H} NMR spectrum of 1 in THF-d₈, displays a singlet at 79.9 ppm (68.8 ppm for 2) consistent with four magnetically equivalent P atoms. Complexes 1 and 2 were characterized by 15N NMR spectroscopy to augment the cumulative library of tabulated 15N NMR data of phosphine-supported group 6 N₂ complexes. ^{13h} The ¹⁵N₂-labelled complexes 1^{15N} and 215N, were prepared by mixing the respective Cr-N2 complexes in THF-d₈ under 1 atm ¹⁵N₂. The ¹⁵N NMR spectra were collected after mixing for 24 h. The ¹⁵N{¹H} NMR spectra contain two resonances; a doublet ($J_{NN} = 7.0 \text{ Hz}$) and a multiplet (~2.5 Hz ³¹P coupling) (1^{15N}: -31.1 ppm, -24.2 ppm, and 2^{15N} : -37.6 ppm, -26.4 ppm), assigned as the distal (N_d) and proximal (N_p) nitrogen atoms, respectively, (Fig. 1, panel b). ¹³ⁱ

Cyclic voltammetry (CV) experiments established the redox behaviour of the Cr(0)-N2 complexes. Voltammograms were recorded using a glassy carbon working electrode at 0.1 V s⁻¹ in THF. The voltammogram for each complex displays a reversible, one-electron $Cr^{I/O}$ wave with the half-wave potential $(E_{1/2})$ of -1.49 V and -1.34 V (vs. $Cp_2Fe^{+/0}$) for 1 and 2, respectively (Fig. 1, panel c). The electrochemically reversible Cr^{I/O} couples indicate N2 dissociation does not occur upon oxidation to Cr(1) during the CV experiments. The reversibility of the waves for 1 and 2 contrasts other cis- or trans-[Cr(N2)2(P4)] complexes measured by CV that exhibit quasi-reversible or irreversible $Cr^{1/0}$ waves due to rapid N_2 loss upon oxidation. ^{13b,c,i} In the current study, an irreversible anodic wave was assigned to the $\mathrm{Cr^{II/I}}$ redox feature at $E_{\mathrm{pa}} = -0.48$ V and $E_{\mathrm{pa}} = -0.63$ V, for 1 and 2, respectively, due to N2 dissociation at more positive potentials, (Fig. S17 and S18 ESI†). The CV results suggest a one-electron chemical oxidation to form trans- $[Cr(N_2)_2(P-P)_2]^+$ should be possible; however, our attempts to isolate such a species have been unsuccessful. Owing to the more electronrich metal centre of 1, the $\nu_{\rm NN}$ band in the infrared spectrum

at 1906 cm⁻¹ (THF) appears at lower energy than the ν_{NN} band for 2 at 1917 cm⁻¹ (THF).

Complexes 1 and 2 were examined as catalysts for the direct reduction of N2 to NH3 and N2H4. The catalysis studies were performed in THF at room temperature using the PCET reagent SmI2 and ethylene glycol and/or water as proton donors. A typical catalytic run used 583 equiv. SmI2, 1166 equiv. ROH per Cr centre and was stirred for 48 h. Quantification of NH₃, N₂H₄ and H₂ (see ESI for details†) products assessed the total fixed N generated in each reaction. Selected catalytic data are listed in Table 1 (see ESI for all tabulated results†).

Analysis of the catalysis results provides insights about the performance of 1 and 2 under identical reaction conditions. 2 afforded more total fixed N than 1 in all catalytic trials. For example, 1 generated up to 5 equiv. of NH3 and 5 equiv. N2H4 per Cr center using ethylene glycol as the proton donor after >100 h. Under identical conditions, 2 produced up to 16 equiv. NH₃ and 10 equiv. N₂H₄ in 48 h. Furthermore, ethylene glycol worked more effectively as the proton donor affording higher total fixed N than using H2O. The deliterious effect of H2O on catalysis was noted in reactions with 2 using ethylene glycol as the primary proton source. As the amount of H₂O added to the reaction increased, NH₃ production declined, while the N₂H₄ formed stayed relatively constant. We postulate the Cr complexes may simply be more prone to degradation in the presence of H2O. Separately, 2 was treated with 500 equiv. H2O or ethylene glycol in THF-d8. Free dmpe from complex degradation appeared more rapidly using H₂O, as assessed by ³¹P NMR spectroscopy. Catalysis performed with 2 under an atmosphere of $^{15}N_2$ afforded $^{15}NH_4^+$ as a doublet at 7.1 ppm (J_{15N-1H} = 71 Hz) in the ¹H NMR spectrum, identifying ¹⁵N₂ as the source of ¹⁵NH₃.

Catalytic trials using trans-[CrCl2(dmpe)2] (2-Cl) and ethylene glycol generated comparable amounts of NH3 and N2H4 as using 2 as the precatalyst. 1-Cl did not catalyze N2 reduction, affording only 1 equiv. of NH₃ and N₂H₄ per Cr center. SmI₂

Table 1 Selected Cr-catalyzed N₂ reduction experiments

$$N_2 + SmI_2 + ROH \xrightarrow{[Cr] cat.} NH_3 + N_2H_4 + H_2$$

Entry	Cr cat.	ROH	NH ₃ equiv./Cr ^a	N_2H_4 equiv./ Cr^b	Total fixed N	Time (h)
1	None	(CH ₂ OH) ₂	0	0	0	48
2	1	$(CH_2OH)_2$	3.7 ± 0.9	1.4 ± 0.8	$4.9^{h} \pm 1.5$	48
3	1	$(CH_2OH)_2$	4.6 ± 0.6	4.0 ± 1.7	$8.6^{h} \pm 2.1$	100
4^c	1	H_2O	1.4	0.7	2.1	48
5^d	1	H_2O	3.2	0.6	3.8	28
6	1-Cl	$(CH_2OH)_2$	1.2	0.9	2.1	48
7	2	$(CH_2OH)_2$	14.6 ± 1.6	5.9 ± 2.9	$20.5^{h} \pm 3.8$	48
8^e	2	$(CH_2OH)_2$	6.2 ± 0.5	6.4 ± 0.8	$12.6^{h} \pm 0.3$	48
9^f	2	$(CH_2OH)_2$	4.4 ± 0.9	6.6 ± 0.6	$11^h \pm 0.4$	48
10^g	2	$(CH_2OH)_2$	1.1	5.7	6.8	48
11^d	2	H_2O	5.1	5.9	11	3
12	2-Cl	$(CH_2OH)_2$	13.5 ± 2.8	5.9 ± 0.6	$19.4^{h} \pm 3.4$	48

Experiments performed using 0.6 µmol catalyst in 15.0 mL THF at 25 °C under 1 atm N2, with 583 equiv. of SmI2, and with 1166 equiv. ROH unless otherwise specified. ^a Determined by acidification and NH₄ quantification using ¹H NMR spectroscopy (see ESI†). ^b Determined by color-metric *p*-dimethylaminobenzaldehyde method (see ESI†). ^c 1000 equiv. H₂O/Cr. ^d 10 000 equiv. H₂O/Cr. ^e 25 ppm of H₂O. ^f 250 ppm of H₂O. ^g 583 equiv. (CH₂OH)₂, 583 equiv. H₂O. ^h Average of two or more trials. H₂ quantification by gas chromatography, values are tabulated in ESI.†

and ethylene glycol may be ineffective at reducing the Cr(II) center of 1-Cl to Cr(0) where N2 is strongly activated. Treatment of 2-Cl with 2 equiv. SmI2 and 2 equiv. ethylene glycol rapidly generated 2 (see ESI†). However, the same reaction of 1-Cl and SmI2 with ethylene glycol additive did not form 1 ($E_{1/2} = -1.49$ V, vide supra). 1 or 2 could not be generated from 1-Cl or 2-Cl using excess SmI2(THF) alone (E° of $SmI_2(THF) = -1.41 \pm 0.08 \text{ V}^{20} \text{ vs. Fc/Fc}^+$). A Cr(I) species could be accessible, but N2 activation and subsequent functionalization steps may be moderated at Cr(I), limiting catalysis.

The mixed N₂ reduction selectivity to form NH₃ and N₂H₄ provides preliminary evidence for a catalytic cycle that follows, at least in part, an alternating N₂ reduction mechanism, Fig. 2, bottom. A purely distal N2 reduction pathway, Fig. 2, top, would be selective for NH3 formation. In a 1986 report, the reaction of 2 with CF₃SO₃H was postulated to form a Cr-hydrazido product, [Cr(NNH₂)(dmpe)₂][CF₃SO₃]₂.²¹ A recent study by Wei, Yi, Xi, and co-workers examining early stage N2 functionalization of $[Cp*Cr^{0}(depe)(N_{2})]^{-}$ $(Cp* = \eta^{5}-C_{5}(CH_{3})_{5})$ using a variety of electrophiles (H⁺, Me₃Si⁺, Me⁺) also revealed the selective formation of Cr-hydrazido products, consistent

Alternating Pathway

Fig. 2 Plausible N₂ reduction mechanisms for Cr mediated formation of hydrazine and ammonia.

with a distal pathway. Contrary to these reaction patterns, protonation studies of related cis- or trans-[Cr(N2)2(P4)] complexes we examined using strong acids or H+/e- reagents, as well as the catalytic Cr[PCP] system¹⁶ generated NH₃ and N₂H₄. ^{13c,i,15a} Considering all these examples, and that N₂ reduction mechanisms are sensitive to reaction conditions, (i.e. identity of the H⁺ and e⁻ reagents, solvent, temperature), a hybrid N₂ reduction pathway²² where the third and fourth N-H bonds are formed at the proximal N atom of a Cr-hydrazido intermediate, Fig. 2, middle, cannot be excluded for the current systems. Further studies are warranted to understand the N2 reduction pathways with Cr.

The proclivity for N₂ ligand substitution in 1 and 2 was evaluated as a metric that could reflect catalyst stability and influence catalytic performance. We examined reactions of 1 and 2 with CO to assess the rate of ligand exchange, Fig. 3. Ligand substitution in these six-coordinate complexes is expected to be a dissociative process; a result of Cr-N or Cr-P bond dissociation. Wilkinson, Hursthouse, and co-workers noted 2 did not react with 7 atm CO for several hours except under u.v. irradiation (in light petroleum) to form cis-[Cr(CO)₂(dmpe)₂] (cis-2-CO). This account was surprising, and the unreactive nature toward N2/CO exchange seemed uncharacteristic of a

Fig. 3 Ligand exchange reactions of 1 and 2 with CO display different reaction profiles.

Dalton Transactions Communication

complex with terminally bound N₂ ligands. We reacted 2 with 1 atm CO at 25 °C in pentane or THF without u.v. irradiation and monitored the reaction by in situ IR spectroscopy, or ³¹P NMR spectroscopy (see ESI†). In both solvents the reaction was slow, but 2 was not unreactive. In THF, after 26 h ~85% of 2 converted to a ~1:1 mixture of cis-2-CO and trans-[Cr $(CO)_2(dmpe)_2$ (trans-2-CO). trans-2-CO converts to ~95% cis-2-CO (and ~5% free dmpe) after additional 46 h by 31P NMR spectroscopy. In THF, 1 converts directly to cis-[Cr(CO)₂(depe)₂] cis-1-CO ($\nu_{CO} = 1829$, 1768 cm⁻¹) in ~3 h by in situ IR spectroscopy (see ESI†). The vastly different rates of N₂/CO ligand exchange underscore the greater kinetic stability of 2 toward Cr-L dissociative processes that could ultimately curtail catalyst deactivation pathways (i.e. ligand loss) improving catalyst performance for N₂ reduction compared to 1.

In conclusion, we present a contemporary advancement in the use of $trans-[Cr(N_2)_2(P-P)_2]$ complexes (1 and 2) for direct catalytic reduction of N2 to form NH3 and N2H4 using the PCET reagent SmI2 and H2O and/or ethylene glycol as proton donors. A new complex, trans-[Cr(N2)2(depe)2], was presented herein. Despite having similar electronic structures, we posit 2 is a better catalyst than 1 (using the presented conditions), due to a less negative Cr^{I/O} redox couple and greater kinetic stability from Cr-L dissociative processes.

Author contributions

C. Beasley, investigation, methodology, writing, editing; O. L. Duletski, investigation; K. S. Stankevich, investigation; N. Arulsamy, investigation, writing; M. T. Mock, conceptualization, methodology, supervision, writing, editing, funding acquisition.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors thank Dr. Bernhard Linden and Mathias Linden for LIFDI-MS analysis. This material is based upon work supported by the National Science Foundation (NSF) under Grant No. CHE-1956161 and CHE-2247748. Support for MSU's NMR Center has been provided by the NSF (Grant No. NSF-MRI: CHE-2018388 and DBI-1532078), the Murdock Charitable Trust Foundation (2015066:MNL), and MSU's office of the Vice President for Research and Economic Development. The authors gratefully acknowledge financial support for the X-ray diffractometer from the NSF (CHE-0619920) and a Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (Grant # 2P20GM103432).

References

- 1 (a) Y. Tanabe and Y. Nishibayashi, Chem. Soc. Rev., 2021, **50**, 5201–5242; (b) Y. Tanabe and Y. Nishibayashi, Coord. 2022, 214783; (c) Transition Rev., 472, Metal-Dinitrogen Complexes: Preparation and Reactivity, ed. Y. Nishibayashi, Wiley-VCH, Weinheim, 2019.
- 2 M. J. Chalkley, M. W. Drover and J. C. Peters, Chem. Rev., 2020, 120, 5582-5636.
- 3 (a) Y. Ashida, K. Arashiba, K. Nakajima and Nishibayashi, Nature, 2019, 568, 536-540; (b) N. G. Boekell and R. A. Flowers II, Chem. Rev., 2022, 122, 13447-13477; (c) E. A. Boyd and J. C. Peters, J. Am. Chem. Soc., 2022, 144, 21337-21346.
- 4 Y. Ashida, T. Mizushima, K. Arashiba, A. Egi, H. Tanaka, K. Yoshizawa and Y. Nishibayashi, Nat. Synth., 2023, 2,
- 5 C. Van Stappen, L. Decamps, G. E. Cutsail III, R. Bjornsson, J. T. Henthorn, J. A. Birrell and S. DeBeer, Chem. Rev., 2020, **120**, 5005-5081.
- 6 C. M. Goodwin, P. Lömker, D. Degerman, B. Davies, M. Shipilin, F. Garcia-Martinez, S. Koroidov, J. Katja Mathiesen, R. Rameshan, G. L. S. Rodrigues, C. Schlueter, P. Amann and A. Nilsson, Nature, 2024, 625, 282-286.
- 7 J. Chatt, A. J. Pearman and R. L. Richards, Nature, 1975, 253, 39-40.
- 8 (a) F. A. Darani, G. P. A. Yap and K. H. Theopold, Organometallics, 2023, 42, 1324-1330; (b) S. J. K. Forrest, B. Schluschass, E. Y. Yuzik-Klimova and S. Schneider, Chem. Rev., 2021, 121, 6522-6587; (c) C. E. Laplaza and C. C. Cummins, Science, 1995, 268, 861-863.
- 9 A. Katayama, T. Ohta, Y. Wasada-Tsutsui, T. Inomata, T. Ozawa, T. Ogura and H. Masuda, Angew. Chem., Int. Ed., 2019, 58, 11279-11284.
- 10 (a) S. Kim, Y. Park, J. Kim, T. P. Pabst and P. J. Chirik, Nat. Synth., 2022, 1, 297-303; (b) M. T. Mock, Nat. Synth., 2022, 1, 262-263.
- 11 P. Garrido-Barros, J. Derosa, M. J. Chalkley and J. C. Peters, Nature, 2022, 609, 71-76.
- 12 Y. Ashida, K. Arashiba, H. Tanaka, A. Egi, K. Nakajima, K. Yoshizawa and Y. Nishibayashi, Inorg. Chem., 2019, 58, 8927-8932.
- 13 (a) A. J. Kendall and M. T. Mock, Eur. J. Inorg. Chem., 2020, 1358-1375; (b) M. T. Mock, S. Chen, R. Rousseau, M. J. O'Hagan, W. G. Dougherty, W. S. Kassel, D. L. DuBois and R. M. Bullock, Chem. Commun., 2011, 47, 12212-12214; (c) M. T. Mock, S. Chen, M. O'Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel and R. M. Bullock, J. Am. Chem. Soc., 2013, 135, 11493-11496; (d) M. Fritz, S. Demeshko, C. Würtele, M. Finger and S. Schneider, Inorg. Chem., 2023, 26, (e) W. H. Monillas, G. P. A. Yap, L. A. MacAdams and K. H. Theopold, J. Am. Chem. Soc., 2007, 129, 8090-8091; (f) W. H. Monillas, G. P. A. Yap and K. H. Theopold, *Inorg.* Chim. Acta, 2011, 369, 103-119; (g) X. Wang, Y. Wang, Y. Wu, G. X. Wang, J. Wei and Z. Xi, *Inorg. Chem.*, 2023, 62,

Communication **Dalton Transactions**

- 18641-18648; (h) M. T. Mock, A. W. Pierpont, J. D. Egbert, M. O'Hagan, S. Chen, R. M. Bullock, W. G. Dougherty, W. S. Kassel and R. Rousseau, Inorg. Chem., 2015, 54, 4827-4839; (i) J. D. Egbert, M. O'Hagan, E. S. Wiedner, R. M. Bullock, N. A. Piro, W. S. Kassel and M. T. Mock, Chem. Commun., 2016, 52, 9343-9346; (j) I. Vidyaratne, J. Scott, S. Gambarotta and P. H. M. Budzelaar, Inorg. Chem., 2007, 46, 7040-7049.
- 14 (a) J. Yin, J. Li, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, J. Am. Chem. Soc., 2019, 141, 4241-4247; (b) G. X. Wang, X. Wang, Y. Jiang, W. Chen, C. Shan, P. Zhang, J. Wei, S. Ye and Z. Xi, J. Am. Chem. Soc., 2023, 145, 9746-9754; (c) G. X. Wang, Z. B. Yin, J. Wei and Z. Xi, Acc. Chem. Res., 2023, 56, 3211-3222; (d) Z. B. Yin, B. Wu, G. X. Wang, J. Wei and Z. Xi, J. Am. Chem. Soc., 2023, 145, 7065-7070; (e) T. Shima, J. Yang, G. Luo, Y. Luo and Z. Hou, J. Am. Chem. Soc., 2020, 142, 9007-9016; (f) Y. Kokubo, K. Tsuzuki, H. Sugiura, S. Yomura, Y. Wasada-Tsutsui, T. Ozawa, S. Yanagisawa, M. Kubo, T. Takeyama, T. Yamaguchi, Y. Shimazaki, S. Kugimiya, H. Masuda and Y. Kajita, Inorg. Chem., 2023, 62, 5320-
- 15 (a) A. J. Kendall, S. I. Johnson, R. M. Bullock and M. T. Mock, J. Am. Chem. Soc., 2018, 140, 2528-2536; (b) M. C. Eaton, B. J. Knight, V. J. Catalano and

- L. J. Murray, Eur. J. Inorg. Chem., 2020, 1519-1524; (c) J. Li, J. Yin, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, Chem. Commun., 2019, 55, 9641-9644.
- 16 Y. Ashida, A. Egi, K. Arashiba, H. Tanaka, T. Mitsumoto, S. Kuriyama, K. Yoshizawa and Y. Nishibayashi, Chem. -Eur. J., 2022, 28, e202200557.
- 17 (a) G. S. Girolami, J. E. Salt, G. Wilkinson, M. Thornton-Pett and M. B. Hursthouse, J. Am. Chem. Soc., 1983, 105, 5954-5956; (b) J. E. Salt, G. S. Girolami, G. Wilkinson, M. Motevalli, M. Thornton-Pett and M. B. Hursthouse, I. Chem. Soc., Dalton Trans., 1985, 685-692.
- 18 D. M. Halepoto, D. G. L. Holt, L. F. Larkworthy, G. J. Leigh, D. C. Povey and G. W. Smith, J. Chem. Soc., Chem. Commun., 1989, 1322-1323.
- 19 Structural metrics from XRD data of 2 collected here at 100 K. Data from ref. 17 at 295 K.
- 20 (a) M. L. Kuhlman and R. A. Flowers II, Tetrahedron Lett., 2000, 41, 8049-8052; (b) R. J. Enemærke, K. Daasbjerg and T. Skrydstrup, Chem. Commun., 1999, 343-344.
- 21 J. E. Salt, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1986, 1141-1154.
- 22 (a) J. Rittle and J. C. Peters, J. Am. Chem. Soc., 2016, 138, 4243-4248; (b) N. B. Thompson, P. H. Oyala, H. T. Dong, M. J. Chalkley, J. Zhao, E. E. Alp, M. Hu, N. Lehnert and J. C. Peters, *Inorg. Chem.*, 2019, **58**, 3535–3549.