
This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15831–15843 |  15831

Cite this: Phys. Chem. Chem. Phys.,

2024, 26, 15831

Quantum-centric high performance computing
for quantum chemistry
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High performance computing (HPC) is renowned for its capacity to tackle complex problems.

Meanwhile, quantum computing (QC) provides a potential way to accurately and efficiently solve

quantum chemistry problems. The emerging field of quantum-centric high performance computing

(QCHPC), which merges these two powerful technologies, is anticipated to enhance computational

capabilities for solving challenging problems in quantum chemistry. The implementation of QCHPC for

quantum chemistry requires interdisciplinary research and collaboration across multiple fields, including

quantum chemistry, quantum physics, computer science and so on. This perspective provides an

introduction to the quantum algorithms that are suitable for deployment in QCHPC, focusing on

conceptual insights rather than technical details. Parallel strategies to implement these algorithms on

quantum-centric supercomputers are discussed. We also summarize high performance quantum

emulating simulators, which are considered a viable tool to explore QCHPC. We conclude with

challenges and outlooks in this field.

1 Introduction

An exact solution of the Schrödinger equation is a longstanding
problem in the community of quantum chemistry.1 Due to an
exponential growth of computational costs with the increase of
the system size, the exact computational method that refers to
the full configuration interaction (CI) for solving electronic
structure problems2,3 is limited to small complete active space
(CAS) with less than 20 electrons and 20 orbitals.4 In order to
overcome this exponential wall problem, a variety of approxi-
mate methods with polynomial computational complexity have
been proposed. For example, in the case of ground state pro-
blems near the equilibrium geometry, the coupled-cluster sin-
gles, doubles, and perturbative triples [CCSD(T)] method is
regarded as the ‘‘gold standard’’ in quantum chemistry for
accurately treating weakly interacting electrons.5–8 An accurate
description of strongly correlated problems, e.g. transition-metal
catalysis, and electronically excited states is a much more
challenging task. A popular scheme is to employ multiconfigura-
tion self-consistent field to treat the static correlation9,10 and the
perturbation theory to account for the dynamics correlation.11–13

Many advanced computational methods, including the density
matrix renormalization group (DMRG),14,15 selected CI,16–19 full

CI quantum Monte Carlo,20,21 and many-body expanded full
CI,22,23 provide alternative or even better schemes to (near-)
exactly describe the electron correlation.

On the other hand, given a computational method, the scale
of quantum chemistry problems that are tractable on a classical
computer depends heavily on the computing power of central
processing units (CPUs). For many years, high performance
computing (HPC) with CPUs at its core has been the most
powerful computing tool in the field of quantum chemistry.
Vogiatzis et al. performed the largest single CI iteration calcula-
tion of CAS(24e,24o) for the chromium tetramer with a CI
expansion of one trillion Slater determinants on 8192 CPU
cores of the NERSC Cori machine.4 Here, CAS(Ne,Mo) defines
a CAS problem with N electrons and M orbitals. Brabec et al. ran
large-scale DMRG calculations on a supercomputer platform,
with the largest calculation of CAS(113e,76o) for the nitrogen-
ase FeMo cofactor cluster.24 This parallel calculation scales up
to approximately 2000 CPU cores when setting the bond
dimension equal to 6000. In the past few years, the emergence
of AI-centric supercomputers, where CPUs and graphics proces-
sing units (GPUs) work together in giant systems, has achieved
tremendous success in handling heavy quantum chemistry tasks.
Xiang et al. extended the DMRG calculation of CAS(114e,76o) for
the P-cluster to an unprecedentedly large bond dimension of
14 000 on 48 A100 GPUs.25 Datta et al. accelerated the CCSD(T)
calculation for the C60 molecule with GPUs at the level of the cc-
pVDZ/aug-cc-pVTZ-RI basis sets. The whole calculation was fin-
ished in 7 minutes on Frontier using 12 288 AMD GPUs.26 In the
field of density functional theory (DFT), HPC has significantly
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extended the simulation scale,27–34 from simulating 1000 atoms
with 1200 CPUs at a parallel efficiency of B20% in the early stage27

to simulating SARS-CoV-2 spike proteins with up to 83 million
atoms on a high performance platform with 70 400 CPUs plus 4400
GPUs.34 Overall, HPC is a leading tool to push the electronic
structure theory to the limit on modern supercomputers.

With the development of quantum information techniques,
quantum computers are emerging as another promising com-
puting platform for solving the Schrödinger equation.35–44 This
research field has gained significant attention in recent years,
especially after the demonstration of quantum advantage in
experiments for certain problems, e.g. Gaussian Boson sam-
pling, on several quantum computing (QC) platforms.45–47 QC,
utilizing quantum mechanical principles including quantum
superposition and quantum entanglement, is anticipated to be
a more efficient approach to solve quantum many-body pro-
blems than classical computing. However, in the current stage,
QC suffers from the influence of noise so quantum simulations
of quantum chemistry are limited to simple toy models. Many
efforts have been devoted to exploring potential applications of
noisy intermediate-scale quantum (NISQ) devices in chemistry
and materials science.41,48–50 Meanwhile, recent significant
advances herald the advent of early error-corrected quantum
computation and shed light on accurately solving quantum
chemistry problems with fault-tolerant quantum computers.51–53

For example, Google Quantum AI team demonstrated that their
distance-5 surface code logical qubit outperformed an ensemble
of distance-3 logical qubits on average, implying that one could
suppress the influence of noise by scaling a surface code logical
qubit.51 In addition, Bluvstein et al. realised a programmable
quantum processor with a new type of logical encoding quantum
circuit, which contains approximately 48 Rydberg atomic logic
qubits.53

Since 1949, the performance of classical computers has been
doubling every 2 years, while Moore’s law is invalidating nowa-
days as integrated circuits are approaching their theoretical
performance limits. Quantum computers are expected to
significantly enhance computing power while they may exhibit
computational advantage only for certain problems. It is thus a
natural choice to integrate quantum computers into super-
computers to overcome the limitations of classical computing
power. Quantum computers work in a completely different way
from classical computers. Therefore, the combination of quan-
tum computers with supercomputers is a challenging task, and
it is also attracting growing interest because of its potential to
provide powerful computing power for solving complex pro-
blems. This new computing platform is referred to quantum-
centric supercomputers and the computing mode executed on
this platform is named quantum-centric HPC (QCHPC). Here,
quantum processing units (QPUs) work together with CPUs/
GPUs, with the former one used to run computationally inten-
sive tasks of (near-)exactly solving the Schrödinger equation.
Although there are some pilot experiments of integrating small
QPUs into the supercomputers, the field is generally still in its
infancy. As such, we present a perspective with an emphasis
on conceptual rather than technical details of QCHPC for

quantum chemistry. A brief introduction to hybrid quantum-
classical computing suitable for quantum-centric supercompu-
ter is presented. Parallel strategies for implementing these
algorithms are discussed. As a useful tool to explore QCHPC
in the NISQ era, state-of-the-art quantum emulating simulators
are reviewed.

2 Hybrid quantum-classical
computing

QCHPC utilizes QPUs together with CPUs/GPUs to perform large-
scale quantum chemistry simulations in a hybrid quantum-
classical computing mode. Here, quantum and classical compu-
ters can work as a whole to execute a hybrid quantum-classical
algorithm or one can combine quantum and classical algorithms
to solve a complex quantum chemistry problem. In the following,
we will introduce hybrid quantum-classical computing from these
two perspectives.

Algorithm-driven hybrid computing

The variational quantum algorithm is a typical hybrid quantum-
classical algorithm.37 It employs a classical optimizer to train
parameterized quantum circuits

|C(y)i = Rl(yl)� � �R1(y1)|C0i (1)

where |C0i is an initial state and Rk(yk) is parameterized one- or
two-qubit gates. The cost function is defined as

CðyÞ ¼ hCðyÞjÔjCðyÞi; (2)

which is often minimized or maximized with respect to para-
meters to perform a certain task. Variational quantum eigen-
solver (VQE) is the leading variational quantum algorithm for
solving quantum chemistry problems,39,41,54–58 including
ground state and excited state problems. In the VQE algorithm,
the physical observable operator Ô in eqn (2) is the many-body
Hamiltonian and thus the expectation value of the Hamilto-
nian, namely the total energy, is the cost function. A parame-
terized circuit is used to prepare the target quantum state and
the total energy (and gradient) is estimated from repeated
measurements over the quantum state. Both state preparation
and measurement are executed on a quantum computer.
The measured results are fed back to the classical computer,
which optimizes the circuit parameters to minimize the cost
function. It is clear that the VQE algorithm is inherently
executed in a hybrid quantum-classical computing mode,
where the quantum and classical tasks are executed iteratively
and this procedure repeats until converged. The VQE algorithm
is considered a near-term quantum algorithm for implement-
ing quantum chemistry simulations on quantum devices with
limited coherence time and gate fidelity. The scalability of the
VQE for large-scale simulations is hindered by the complexity of
quantum circuits required to accurately represent quantum
states. In this perspective, we do not introduce the technique
details of the VQE algorithm. Comprehensive reviews about the
VQE and VQE-base algorithms can be found in ref. 59–61.

Perspective PCCP

Pu
bl

is
he

d 
on

 1
4 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:3

2:
26

. 
View Article Online

https://doi.org/10.1039/d4cp00436a


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15831–15843 |  15833

Problem-driven hybrid computing

Quantum computers excel at providing exact solutions of certain
problems at a large scale that classical computers find difficult to
solve, such as predicting electronic structure properties of the
active site that contains multiple coupled transition metal atoms
in an enzyme, excited-state properties and dynamics in the light-
harvesting complex.62 While, in these complex systems, strongly
correlated particle–particle interactions are usually localized, and
meanwhile approximate solutions on a classical computer are
usually sufficient to meet the need of applications to describe
weakly correlated interactions.63 Therefore, it is appropriate to
decompose a quantum chemistry simulation of a complex system
into different tasks according to the required computational
accuracy and execute them separately on quantum and classical
computers according to their computational costs. This hybrid
quantum-classical computing mode provides an appealing scheme
to leverage the benefits of both quantum and classical computers.

The characteristics of the problems in quantum chemistry
are diverse, so the decomposition strategies need to be tailored
to specific issues. Here, we introduce three typical problem
decomposition strategies for simulating complex systems, as
shown in Fig. 1.
� Case 1: An active site and the environment
For a complex system, e.g. an enzyme, one only needs to

treat the central region, referred to the active site that contains
transition metals, with the exact computational method. In
such a case, it is promising to embed quantum algorithms into
classical algorithms to describe the whole system with moder-
ate computational costs. The quantum algorithm is responsible
for an accurate description of the active site, and approximate
algorithms are carried out on the classical computers to handle
the environment. Inspired by the traditional quantum
mechanics/molecular mechanics (QM/MM) method,64–66 in
which the Hamiltonian is written as

H = HQM + HMM + HQM–MM (3)

with HQM–MM being the interactions between the active site and
the environment, it is straightforward to extend it for quantum
simulations as

H = HQC + HCC + HQC–CC (4)

with ‘‘CC’’ indicating classical computational approaches, e.g.
molecular force field methods.67,68 Furthermore, one can
employ Hartree–Fock, density functional theory or even low-
scaling wave function approaches, e.g. linear scaling second-
order Møller–Plesset perturbation theory (MP2)69 and CCSD(T)
approaches,70 as the mediate-level schemes to describe the
neighbouring environment, and classical mechanical appro-
aches as the low-level scheme to describe the outermost
environment.
� Case 2: Weakly coupled multiple active sites
Consider a complex system consisting of multiple active

sites, e.g. chlorophyll pigments in the light-harvesting complex
of plants, these sites are weakly coupled while the many-body
interactions in each site are strongly correlated. One can
approximate the Hamiltonian as

H ¼
X

I

HQC
I þ

X

I o J

HCC
IJ þ � � � (5)

where HI is the Hamiltonian of the I-th site and HIJ is the
interaction between I-th and J-th sites. In principle, one should
include all high-order interactions while these interactions are
often truncated at a finite order in practice. For each site, the
exact quantum algorithm is used to describe the electron
correlation and meanwhile, approximate computational meth-
ods are employed to treat the interactions between different
sites. This scheme is analogous to the traditional fragmenta-
tion theory that partitions a system into fragments.71–77

Alternatively, the interactions between one active site and
the others can be included in an effective Hamiltonian,

H ¼
X

I

HQC
eff;I (6)

Here, the effective Hamiltonian is diagonalized on a quantum
computer but the construction of the effective Hamiltonian is
conducted on a classical computer. In the context of QC, this
strategy is able to significantly reduce the requirement of
quantum resources and thus implements large-scale quantum
simulations of quantum chemistry with small-sized quantum
devices.78

� Case 3: Fully entangled sites
When the electrons in a complex system are fully entangled,

it is a challenging task to accurately describe the electron
correlation. A popular scheme is to decompose the electron

Fig. 1 (a) An active site and the surrounding environment; (b) multiple active sites coupled by weak interactions; (c) fully entangled sites. Solid and
dashed lines indicate strong and weak interactions between two sites, respectively.
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correlation into static and dynamic ones and treat them with
different numerical methods. In this scheme, the single-
particle orbital space is often divided into a small active space
and a large inactive space. The Hamiltonian is written as

H = HQC
0 + VCC (7)

where HQC
0 is the zeroth-order Hamiltonian defined in the active

space and VCC is the perturbed Hamiltonian to account for dynamic
correlation. HQC

0 should be exactly diagonalized on a quantum
computer. Note that integrated QPUs consisting of many logical
qubits may be necessary to execute this task since multiple sites are
strongly coupled. The perturbation theory can be used to take into
consideration the electron correlation beyond the active space.
Analogous to the multireference perturbation theory, high-order
reduced density matrices extracted from QC calculations are neces-
sary to evaluate the perturbation correction.79

It is clear that this problem-driven hybrid computing is far
from being a block-box method, as it always requires defining
the boundary of quantum computing and classical computing
through careful consideration of the balance between accuracy
and efficiency. In the context of QC, multiscale quantum
computing (MQC) provides a unified framework for construct-
ing a problem-driven hybrid computing algorithm.80

3 Multiscale quantum computing

Analogous to classical multiscale modeling, MQC integrates
multiple numerical models at different scales of resolution to
give a reasonable description of different interactions as shown
in Fig. 2. MQC is designed not only for fault-tolerant quantum
computers but also for near-term noisy quantum computers
with self-adapted quantum resources. Except for a simple
partition of a complex system into the QM and MM region,
MQC further introduces the Divide-and-Conquer strategy to

treat the QM region, namely decomposing the QM problem into
small subproblems. In the solution of each subproblem, the
correlation energy is partitioned into static and dynamic ones,
with only the former one evaluated on a quantum computer.

One of the key appealing aspects of MQC is its capacity to
accurately describe the electron correlation of complex systems
using a small number of qubits and shallow quantum circuits.
As such, error mitigation techniques can be applied to these
small-scale quantum circuit simulations to efficiently suppress
the effects of noise.82 Another advantage of MQC originates
from the introduction of the Divide-and-Conquer strategy,
which allows independent executions of QC task for solving
each subproblem so that one can easily implement massively
parallel quantum simulations with a batch of small-scale
quantum devices. Finally, MQC can improve its computational
accuracy through apriori or posterior corrections, which can be
efficiently carried out on classical computers. In this section,
we briefly review the Divide-and-Conquer and active space
schemes for large-scale quantum simulations within the frame-
work of MQC and leave the discussions of parallel quantum
simulations to the next section.

Divide-and-Conquer

Divide-and-Conquer is a widely used strategy to break down
a problem into smaller, simpler subproblems until these sub-
problems can be easily solved. Ma et al. combined a simple
many-body expansion (MBE) fragmentation scheme and the
VQE to study the relative energies of water hexamers.80 The
total energy is approximated at the second order MBE (MBE2)
fragmentation method as

E � EMBE2
QM ¼

X

I

EI þ
X

I o J

E
ð2Þ
IJ ; (8)

where E(2)
IJ = EIJ � EI � EJ. EI and EIJ are the energies of I-th

Fig. 2 A brief introduction of different interactions and numerical models used to account for them in a complex system. (1) The long-range interactions
between the outermost region and the active region can be described by the classical mechanics methods, e.g. polarizable continuum models (PCM) for
the dielectric screening effect and molecular mechanics (MM) force field models for long-range Coulomb interactions. (2) The short-range Coulomb and
Pauli exclusion can be treated with semiempirical methods,81 such as AM1, PM7 and OMx, or linear-scaling density functional theory (LSDFT) methods.28

(3) The exact exchange can be handled by the Hartree–Fock (HF) method. It is difficult to describe the electron correlation in an accurate manner. (4) The
wave function theory (WFT) is considered a systematic way to approach the exact solution. Theoretical chemists have been trying to achieve a subtle
balance between accuracy and efficiency in the WFT approaches for half a century. Quantum computing provides another potential solution of the
Schrödinger equation.
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monomer and IJ-th dimer that is composed of I-th and J-th
monomers. Except for the MBE approach, fragment molecular-
orbital method,71 molecular fragmentation with conjugated caps
method,72,73 and the (generalized) many-body expansion74–76 are
also popular energy-based fragmentation approaches for problem
decomposition.

The density matrix embedding theory (DMET)83–87 is an
alternative Divide-and-Conquer scheme to reduce the computa-
tional complexity. The core concept of DMET is to construct a
set of localized orbitals to define fragments and then construct
an effective Hamiltonian in an active space that is composed of
the fragment orbitals and corresponding bath orbitals, with the
latter one used to account for the interactions between the
fragment and the environment.86 As a pilot of implementation
the DMET on a trapped-ion quantum computer, Kawashima
et al. realized quantum simulations of a ring of 10 hydrogen
atoms based on the VQE.78 Here, the ground-state potential
energy surface of H10 is estimated by running ten 2-qubit VQE
simulations. Lv and coworkers carried out quantum emulating
simulations of a C18 molecule at the level of the cc-pVDZ basis
(up to 144 qubits) using the DMET-VQE method.88 Further-
more, they have generalized this method to simulate periodic
materials.89 Shang et al. have realized a massively parallelized
VQE circuit simulation of Atazanavier (a small drug molecule
for COVID-19 containing 103 atoms) by integrating a matrix
product state (MPS) simulator with DMET.90 It is worth men-
tioning that Divide-and-Conquer is a powerful scheme to carry
out large-scale quantum chemistry simulations while it is not
suitable for decomposing strongly correlated electrons.

Active space

The active space method is a common strategy to carry out
large-scale high-accuracy quantum chemistry simulations, in
which the Hamiltonian in the active space is diagonalized with
near-exactly computational methods, such as DMRG14,15 and
selected CI.16–19 A simple way to describe the correlation energy
beyond the active space is the ONIOM method.91,92 The ONIOM
method is an easy-to-implement scheme, in which the total
energy can be formulated as

E ¼ EAhigh þ Elow � EAlow; (9)

to compensate the energy error originating from the active
space approximation. Here, ‘low’ and ‘high’ indicate low-level
and high-level computational methods, and A indicates the
active site. Ma et al. employed VQE as the high-level method
and MP2 as the low-level method to study the relative energies
of molecules.80 Izsák et al. studied dissociation curves of
dimethyl acetylene using the CCSD method as the low-level
method.93

The perturbation theory is a more reliable scheme to eval-
uate the dynamic correlation. Ryabinkin et al. proposed to
correct the iterative qubit coupled cluster VQE algorithm based
on the qubit version of the second-order Epstein–Nesbet per-
turbation theory (ENPT) equation.94 Tammaro and coworkers
proposed N-electron valence perturbation theory formulated in

the VQE framework to study the relative stability of the hydro-
xide anion and hydroxyl radical.95 Liu et al. formulated pertur-
bative variational quantum algorithms by combining the VQE
and either multireference perturbation theory or an effective
Hamiltonian theory.79 In order to evaluate the perturbation
correction energy, one needs to extract high-order reduced
density matrices from quantum computing.

Alternatively, one can incorporate the dynamic correlation
into an effective Hamiltonian

Heff = e�sHes, (10)

which can be diagonalized on a quantum computer. Here, the
operator s usually consists of excitations beyond the active space.
One typical example is the coupled cluster-based downfolding
methods that partition the cluster operator into internal (includ-
ing excitations within CAS) and external (namely s, including
excitations outside of CAS) parts.96–100 Based on downfolding
methods, Kowalski et al. proposed a pioneering dimensionality-
reducing technique, known as the quantum flow (QFlow)
approach,100 which enables the optimization of 684 parameters
with only 8 qubits. Similarly, Huang et al. proposed a quantum
unitary downfolding formalism, known as the quantum driven
similarity renormalization group (QDSRG) method, for evaluating
the H2 dissociation curve with the cc-pV5Z basis (220 qubits) on a
IBM quantum hardware.101 Additionally, one can combine the
explicitly correlated method, such as R12 or F12 method, with
the VQE algorithm to approach the complete basis set limit.102–105

For example, Motta et al. employed a canonical transcorrelated
F12 Hamiltonian (CT-F12) method to incorporate the dynamic
correlation effect from the large basis set.103 Overall, the combi-
nation of the perturbation theory or the effective Hamiltonian
with the VQE is an appealing scheme to reduce the complexity of
quantum circuits so that one can scale the VQE calculations to
complex systems.

4 Quantum-centric high performance
computing

IBM stated ‘‘The quantum-centric supercomputer will incorporate
quantum processors, classical processors, quantum communication
networks, and classical networks, all working together to comple-
tely transform how we compute’’. The development of quantum
processors and communication networks is an ongoing endea-
vor and is more accurately characterized as a medium to long-
term goal. In this work, we focus on implementing QCHPC for
quantum chemistry based on the potential architectures of
quantum-centric supercomputers.

QC is a computing paradigm that works based on quantum
bits and quantum gates, with high computational power and
inherent parallelism. Due to the existence of quantum super-
position, quantum computers can process a large amount of
information at the same time. For example, when n qubits are
input, it is possible to obtain 2n results. From this perspective,
QC is inherently parallel. However, in order to extract informa-
tion about the quantum state prepared on a quantum computer,
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measurements are needed to understand what happened in the
system. After measurement, the quantum state is destroyed so
that this parallel mode is useless unless advanced algorithms for
reading information exist. In the current stage, the physical
observables are estimated by measuring the expectation values
of each term in the observable operators. One needs to repeat this
process until the statistical error is less than a specified precision
threshold. In the case of large-scale quantum circuits, the
quantum algorithms can be implemented by processing quantum
information on a large number of distinct quantum
computers.106–108 In order to perform multiqubit gates across
quantum computers, qubit teleportation and gate teleportation106

are required, as shown in Fig. 3(a). The quantum circuit is
distributed as a series of gate layers, where each layer contains
a collection of gates to be applied on the qubits in the system, and
the gate times of each gate for each QPU in the system produce a
temporal gate execution schedule.

The statistical estimation procedure provides a naive paral-
lel computing mode for QC in the sense that one can prepare a
quantum state and measure physical observables on multiple
QPUs.109,110 This enables good parallel scalability using the
adapted dynamical distribution algorithm to achieve load
balance (see Fig. 3(b)). In the VQE calculation, the electronic
molecular Hamiltonian H can be written as a sum of the Pauli
strings: H ¼

P
i

aiPi, where each Pauli string Pi A {I,sx,sy,sz}
#N

is a tensor product of N Pauli operators. One can estimate each

hc|Pi|ci independently and then sum over all those results with
the corresponding coefficients (ai) to get hc|H|ci. Recently, Clau-
dino et al. utilized parallel execution of quantum circuits to study
the singlet-fission processes using 20 qubits of the Quantinuum
H1-1 system in a distributed manner.111 This pioneering work
demonstrated the possibility of parallel hardware simulations on
quantum devices. Massive parallelization over measurements is an
efficient technique to speed up the VQE calculations. However, it is
difficult to extend the VQE methods to accurate simulations of
large systems by simply distributing the measurement jobs on
multiple QPUs due to the complexity of the quantum circuits.

On top of the VQE parallelization, one can implement task
parallelism for concurrent execution of different tasks on QPUs
and CPUs/GPUs. When the granularity of task parallelism on
classical computers is large and communication is minimal or
non-existent, one can implement multiple-level parallelization
across a supercomputer platform. This classical parallel strat-
egy has been well established so we will only consider how to
distribute tasks onto QPUs and CPUs/GPUs. Task parallelism is
naturally suitable for multi-core parallelism, where each core
can handle one or more tasks, and multiple cores are mapped
to the same or different processors to take advantage of the
computing power of multiple cores. According to the different
QC tasks, one can categorize QCHPC into two types:
� Sequential parallelism
In sequential parallelism, each task has a clear execution

order and there is the dependency between these tasks.

Fig. 3 (a) The distributed logical qubits within the network of quantum computers. The block circuits are executed on different QPUs. (b) The parallelism
over quantum measurements based on the statistical estimation of the expectation value of the electronic structure Hamiltonian, which can be
expressed as the summation of a polynomial number of mutually uncorrelated Pauli strings. Expectation values of each Pauli string can thus be calculated
independently. (c) The dynamical load balancing scheme for implementing the chemical tasks.
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For example, when state preparation and measurement executed
on a quantum computer are employed to generate the input for
classical calculations, the QC and CC tasks are executed in
sequence. As such, one can independently parallelize the QC
tasks on multiple QPUs and the CC tasks on the supercomputers.
� Massively parallelism
In massively parallelism, a large batch of tasks are assumed

to be executed independently. Here, one can consider QPUs as
the same computing unit as CPUs/GPUs. The tasks are statically
or dynamically distributed onto QPUs and CPUs/GPUs with
special attention needed as QPUs only accept certain comput-
ing tasks with high computational complexity. In contrast, one
can consider several QPUs plus CPUs/GPUs as a computing unit
to execute one task. For example, when Divide-and-Conquer is
employed in the MQC, the total energy for each subsystem can
be evaluated independently and the data transfer among these
calculations is negligible. As such, the calculation for each
subsystem can be assigned to a core that is composed of QPUs
and CPUs/GPUs. The MQC simulation of a whole complex
system can be implemented in a massively parallel manner,
without the load balancing problem, as shown in Fig. 3(c).

Although MQC provides an appealing application of
QCHPC, it also faces many challenges for solving complex
problems, such as task distribution and synchronization and
data transmission, due to the completely different character-
istics of the QC and CC tasks.

5 Quantum emulating simulator

With the rapid development of quantum techniques, demonstrat-
ing quantum computing on multiple quantum platforms has
been successfully executed and thus quantum computing is
seeking practical applications in chemistry and materials science.
However, the quantum resources required to support extensive
exploration of these potential applications are still far beyond the
capacity of available quantum devices in the near future. It is
necessary to develop high performance simulators for quantum
algorithm and hardware verification on classical computers.
Currently, a large number of classical simulators, including
QuEST,113 Yao.jl,124 JUQCS,112,125,126 cuQuantum,115 Intel Quan-
tum Simulator,114 ProjectQ,117 Qulacs,119 Pennylane,118 Qiskit127

and so on, have been proposed for universal quantum circuit
emulating simulations. The functionalities supported by these
simulators are summarized in Table 1. Due to an exponential
growth of physical resources with increasing system sizes, existing
simulators commonly suffer from the memory bottleneck so the
large-scale emulation of quantum computational chemistry for
material and drug design remains challenging. Analogous to
classical quantum chemistry simulations, HPC is a powerful tool
to perform large-scale simulations of quantum chemistry. In this
section, we introduce some typical simulators optimized for HPC
to simulate universal quantum circuits.

Jülich universal quantum computer simulator (JUQCS) is a
gate-based quantum emulating simulator released as early as
2007.125 Eleven years later, a massively parallel version compiled

to make use of OpenMP and MPI was run on the Sunway
TaihuLight and on the K computer to emulate simple quantum
circuits and Shors factorization algorithm using up to 48
qubits.126 Recently, a GPU-accelerated version of JUQCS
(JUQCS-G) was implemented to study quantum annealing and
the quantum approximate optimization algorithms. JUQCS-G
was used to solve exact cover problems with up to 40 qubits on
a GPU cluster with 3744 NVIDIA A100 Tensor Core GPUs.112

QuEST is a hybrid multithreaded and distributed, GPU
accelerated simulator of universal quantum circuits. QuEST
was used to simulate random circuits of up to 38 qubits,
distributed over up to 2048 compute nodes, each with up to
24 cores, on the ARCUS and ARCHER supercomputers.113 Intel
quantum simulator (IQS), formerly known as qHiPSTER, is a
HPC simulator that can leverage the available hardware
resources provided by supercomputers.114 By dividing pro-
cesses into separate groups to simulate a pool of quantum
circuits in parallel, IQS was used to carry out 42-qubit simula-
tions on the SuperMUC-NG supercomputer. The cuQuantum
SDK provides efficient scalable software building blocks opti-
mized for NVIDIA GPU-based platforms to accelerate and scale
up quantum circuit simulators with both state vector and
tensor network strategies.115

A high-performance and massively parallelized VQE simu-
lator based on matrix product states (MPS), named MPS-VQE,
was proposed recently for modeling protein–ligand complex
systems.90,128 In combination with DMET, the MPS-VQE simu-
lator was employed to study the torsional barrier of ethane and
the quantification of the protein–ligand interactions on the
HPC platform. Without DMET, the largest system modelled by
the MPS-VQE simulator is a hydrogen chain containing
500 atoms using the STO-3G basis (1000 qubits). A three-level
parallelization scheme was introduced to scale up to about
10 million cores. A peak performance of 216.9 PFLOP/s is
achieved on a new Sunway supercomputer, which demonstrates
that the MPS-VQE simulator has become the state-of-the-art
quantum emulating simulator. This simulator was recently
integrated into Q2chemistry, a cutting-edge software package

Table 1 Typical simulator for universal quantum circuit emulating simula-
tions. MPI: message passing interface; HPC: high performance computing;
Nq: number of qubits. ‘‘ ’’ and ‘‘ ’’ indicate that this function is or is not
implemented

Simulator OpenMP MPI GPU HPC Nq Language Ref.

Q2Chemistry 1000 Python/Julia 90
JUQCS 48 Fortran 112
QuEST 38 C++ 113
IQS 42 C++ 114
cuQuantum 40 Python/C++ 115
TenCirChem 32 Python 116
ProjectQ 45 Python/C++ 117
Pennylane 420 Python/C++ 118
Qulacs 25 Python/C++ 119
Qiskit 35 Python 120
Qibo 34 Python 121
Pyquil 36 Python 122
qsim 36 Python/C++ 123
Yao.jl 16 Julia 124
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designed for quantum chemistry applications.129 This software
can efficiently simulate medium- to large-sized quantum circuits,
handling both molecular and periodic systems with a focus on
scalability and performance. Meanwhile, Q2chemistry combines
high-performance computing techniques and advanced quantum
algorithms, making it a valuable tool for researchers and practi-
tioners in the field of quantum chemistry.

Another large-scale simulator implemented based on tensor
network is TenCirChem,116 an efficient open-source Python
library for solving quantum chemistry problems using
variational quantum algorithms. By virtual of advanced tensor
network contraction simulation engine in TensorCircuit, Ten-
CirChem exhibits extremely high performance in simulating
quantum circuits. For example, it can calculate the potential
energy surface of a water molecule at the level of UCCSD/
6-31G(d) using a single GPU node, in which the quantum
circuit contains 34 qubits and 565 variational parameters.

6 Challenges and outlook

Supercomputers are the most powerful computing tool to carry
out large-scale quantum chemistry simulations nowadays, and
quantum computers are expected to be a promising computing
platform for exactly solving quantum chemistry problems in
the future. It is appealing to combine these two tools to solve
complex quantum chemistry problems in an accurate and
efficient manner. While, the development of quantum-centric
high performance computing requires combinin both classical
and quantum computing architectures, which brings us lots of
challenges:
� When integrating quantum computers into classical

computers, it is necessary to consider the efficiency of data
transfer, task distribution and synchronization. Quantum com-
puters may deal with a large batch of data much slower than
classical computers. Meanwhile, in contrast to classical com-
puter, quantum computers may only exhibit computational
advantage for certain problems. Therefore, it may be a challen-
ging task to make quantum computers and supercomputers
work together.
� In quantum chemistry, quantum computers are expected to

find use in simulating transition metal catalysts,130,131

photochemistry,132 high-resolution rovibrational spectroscopy,133

quantum dynamics134 and so on. However, quantum algorithms
that may exhibit quantum advantage, including higher computa-
tional efficiency, less computational time and energy consump-
tion, in solving these problems are still under exploration.
Meanwhile, combining quantum computers and classical com-
puters to simulate these problems is a completely new and
challenging field.
� There exist a large number of hybrid quantum-classical

algorithms. While, in order to take full advantage of the
computing power of quantum computers and supercomputers,
it is necessary to carry out massively parallel computing on
both quantum and classical computers. Therefore, the parallel
strategy is different from the classical one. One needs to design

efficient parallel strategies for quantum chemistry simulations
based on the new hardware architecture.

For years, researchers believed that they might only be able
to use noisy quantum devices in the short term, and many were
looking for potential applications that could be useful within
limited capacity. While progress was unpredictable, this may
not matter now. In the past few years, breakthroughs in theory
and experiments have led researchers to believe that the error
correction problem can be solved.51–53 A combination of hard-
ware and software strategies is expected to suppress, mitigate,
and eliminate quantum errors. This is not a straightforward
approach, but it is feasible and may take less time than
expected to realize fault-tolerant quantum computers. As such,
it is time to explore quantum-centric HPC for solving challen-
ging problems in quantum chemistry.
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Salinas, D. Garcı́aMartı́n, A. Garcia-Saez, J. I. Latorre and
S. Carrazza, Qibo: a framework for quantum simulation with
hardware acceleration, Quantum Sci. Technol., 2021, 7, 015018.

122 R. S. Smith, M. J. Curtis and W. J. Zeng, A Practical
Quantum Instruction Set Architecture, arXiv, 2017, pre-
print, arXiv:1608.03355, DOI: 10.48550/arXiv.1608.03355.

123 E. Gustafson, B. Holzman, J. Kowalkowski, H. Lamm,
A. C. Y. Li, G. Perdue, S. V. Isakov, O. Martin, R.
Thomson, J. Beall, M. Ganahl, G. Vidal and E. Peters, Large
scale multi-node simulations of Z2 gauge theory quantum
circuits using Google Cloud Platform. 2021 IEEE/ACM
Second International Workshop on Quantum Computing
Software (QCS), 2021, pp. 72–79.

124 X.-Z. Luo, J.-G. Liu, P. Zhang and L. Wang, Yao.jl: Exten-
sible, Efficient Framework for Quantum Algorithm Design,
Quantum, 2020, 4, 341.

125 K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu,
G. Arnold, M. Richter, T. Lippert, H. Watanabe and
N. Ito, Massively parallel quantum computer simulator,
Comput. Phys. Commun., 2007, 176, 121–136.

126 H. De Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka,
N. Ito, S. Yuan and K. Michielsen, Massively parallel

quantum computer simulator, eleven years later, Comput.
Phys. Commun., 2019, 237, 47–61.

127 Qiskit contributors Qiskit: An Open-source Framework for
Quantum Computing. 2023.

128 H. Shang, L. Shen, Y. Fan, Z. Xu, C. Guo, J. Liu, et al., Large-
Scale Simulation of Quantum Computational Chemistry
on a New Sunway Supercomputer. Proceedings of the
International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, 2022.

129 Y. Fan, J. Liu, X. Zeng, Z. Xu, H. Shang and Z. Li, et al.,
J. Univ. Sci. Technol. China, 2022, 52, 2.

130 L. Noodleman, T. Lovell, T. Liu, F. Himo and R. A. Torres,
Insights into properties and energetics of iron-sulfur pro-
teins from simple clusters to nitrogenase, Curr. Opin.
Chem. Biol., 2002, 6, 259–273.

131 Z. Li, J. Li, N. S. Dattani, C. J. Umrigar and G. K.-L. Chan,
The electronic complexity of the ground-state of the FeMo
cofactor of nitrogenase as relevant to quantum simula-
tions, J. Chem. Phys., 2019, 150, 024302.

132 Y.-C. Cheng and G. R. Fleming, Dynamics of Light Harvest-
ing in Photosynthesis, Annu. Rev. Phys. Chem., 2009, 60,
241–262.

133 T. Oka, Taming CH5
+, the ‘‘enfant terrible’’ of chemical

structures, Science, 2015, 347, 1313–1314.
134 M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang,

X. Yang, C. Xu, D. Xie, M. Gustafsson, R. T. Skodje, Z. Sun
and D. H. Zhang, Observation of Feshbach Resonances
in the F + H2 HF + H Reaction, Science, 2006, 311,
1440–1443.

PCCP Perspective

Pu
bl

is
he

d 
on

 1
4 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

12
:3

2:
26

. 
View Article Online

https://doi.org/10.48550/arXiv.1608.03355
https://doi.org/10.1039/d4cp00436a



