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Quantifying vibronic coupling with resonant
inelastic X-ray scattering

Keith Gilmore ab

Electron–phonon interactions are fundamental to the behavior of chemical and physical systems. Var-

ious methods exist to quantify these interactions, however, none are entirely satisfactory for crystalline

materials with dispersive phonons. In recent years, resonant inelastic X-ray scattering (RIXS) has been

proposed as a new technique that can probe momentum-dependent electron–phonon interactions in

crystalline materials with better resolution with respect to the phonon mode and momentum as well as

the electronic orbital and momentum. We first summarize theoretical progress on understanding and

interpreting RIXS measurements of vibronic coupling, and then outline a path toward eventual predictive

first-principles calculations of the phonon contribution to RIXS spectra in the case of dispersive

phonons. Particular attention is given to the relation between the coupling constant measured by RIXS,

which relates to exciton–phonon scattering, and the standard electron–phonon coupling probed by

transport measurements. We discuss first-principles calculation of this exciton–phonon coupling para-

meter. Example calculations are provided for crystalline MgO.

I. Introduction

Vibronic interactions are an inescapable aspect of various
phenomena in chemistry and condensed matter physics. Bond
lengths and angles are altered during chemical reactions as
electrons fill or empty bonding and anti-bonding orbitals. Bond
angles respond to the occurrence of degenerate electronic levels
by distorting so as to break this degeneracy through the Jahn-
Teller effect. Photoabsorption excites vibrational modes, can
cause dissociation of molecules and can also induce isomer
changes. Understanding and predicting these responses starts
with quantitatively characterizing the ground- and excited-state
potential energy surfaces (PESs) of molecules.

In condensed matter systems, accounting for electron–
phonon interactions (EPIs) is essential for understanding many
physical properties. Electron–phonon scattering is a major
contributor to electrical and spin transport properties in metals
and to carrier mobilities in semiconductors. As such, it is an
important factor in the various Hall effects. In semiconductors,
EPIs can cause the formation of polarons and provide critical
assistance to optical absorption within indirect band-gap mate-
rials. For metals, interactions between the electrons and lattice
can manifest through the Kohn anomaly and spontaneously
break degeneracies through the Peierls instability and the

formation of charge density waves. They are also responsible
for the attractive force between electrons that leads to Cooper
pairing and BCS superconductivity.

The impact and importance of these vibronic interactions
depends primarily on the strength of the electron–phonon
coupling (EPC). For most material properties, such as resistivity
and conventional BCS superconductivity, the momentum
dependence of the electron–phonon coupling is not particularly
important. However, the strength of the EPI near Fermi surface
nesting wavevectors can be quite important, for example, for
charge density wave ordering.1 The momentum dependence of
electron–phonon coupling is likely also relevant to understand-
ing unconventional, anisotropic superconductivity for which it
may play an assisting role.2,3 These considerations provide
strong motivation for accurately quantifying EPI strengths of
crystalline materials throughout the Brillouin zone.

Quantifying the electron–phonon coupling (EPC) strength
throughout the Brillouin zone is an outstanding problem.
Raman and infrared methods are standard techniques,4–6 but
are limited to probing the zone center. Angle-resolved photo-
emisison spectroscopy (ARPES) measures EPC with sensitivity
to the electron momentum, but is averaged over the phonon
momentum.7 Recent work on time-resolved ARPES is
promising,8 though it is not yet a standard technique. Scatter-
ing techniques, including inelastic neutron scattering (INS)9,10

and inelastic X-ray scattering (IXS),11 in principle provide access
to the momentum resolved EPC through the linewidth of the
phonon excitation peaks. For phonon momenta with weak EPC,
peak linewidths are narrow and the coupling strength can be
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reliably extracted. However, for phonon momenta with strong
coupling – the most important regions – the peaks broaden
significantly and accurate quantification of the coupling
strength becomes challenging.

Resonant inelastic X-ray scattering (RIXS) is a relatively new
technique that holds considerable promise for quantifying
electron–phonon coupling throughout the Brillouin zone with
unique specificity. RIXS measurements involve scattering
X-rays that are tuned in energy to a particular core-level
resonance of a sample.12 It is typical to approximate the RIXS
cross section by the Kramers–Heisenberg equation

I oi;oo; qð Þ ¼
X
F

X
M

Fh j êo � r̂ð Þy Mj i Mh j êi � r̂ð Þ Ij i
oi � EM � EIð Þ þ iGM=2

�����
�����
2

� d oloss � EF � EIð Þð Þ: (1)

One refers to the initial-state I, which is typically the ground-
state, virtual intermediate-states M with lifetimes GM/2 for
which an electron from a particular core-level has been pro-
moted to the conduction band, and final-states F that could be
the ground-state (giving the elastic contribution) or a state with
some low-energy excitation (giving inelastic contributions). The
incident (outgoing) photon has energy oi (oo) and polarization
vector êi (êo). The energy transferred to the sample is oloss = oi�
oo and there is an implied momentum transfer q. The excita-
tion left in the final-state could range from a charge-transfer
excitation or plasmon (B10 eV), a local orbital excitation
(B1 eV), a spin-wave (t300 meV), a phonon (t200 meV), or
other composite excitations.

A few factors contribute to the power and versatility of RIXS.
The core-level resonance condition makes the technique ele-
ment and orbital selective allowing different sites and orbitals
of a sample to be probed independently. Controlling the
polarization of the incident and outgoing photons permits
one to distinguish electronic and spin excitations,13 and to
further differentiate between specific orbitals. Despite the
negligible momentum carried by soft X-ray photons, the scat-
tering nature of the technique permits the controllable
transfer of considerable momentum to the sample, allowing
the mapping of dispersion relations.14,15 Finally, due to the

high cross-section of resonant X-ray scattering, the technique is
sensitive to much smaller sample volumes than INS. This
allows, e.g. measurement of spin-wave dispersions in films as
thin as only a few monolayers.16

RIXS has two main limitation. First, while the experimental
instrumentation is maturing rapidly, the present energy resolu-
tion of about 20 meV is considerably poorer than INS. Second,
the scattering process is more complicated, which makes
accurate interpretation of the data challenging. This is further
exacerbated by the typical application of the technique to
strongly correlated materials, which introduces challenges for
making rigorous comparisons with calculations. Nevertheless,
progress is being made on the computational and theoretical
side,17 even in the context of first-principles calculations.18,19

Fig. 1 illustrates the essential aspects of phonon generation
during a RIXS measurement, taking the example of a system
with a single active local vibrational mode. Invoking the Born–
Oppenheimer approximation, each electronic configuration
will present some potential energy surface for the vibrational
dynamics. Absorption of a soft X-ray causes a vertical transition
between the ground- and excited-state potential energy sur-
faces. Quantum mechanically, the initial-state vibrational wave-
function projects onto the vibrational eigenstates of the excited-
state PES and then evolves accordingly for the duration of the
core–hole lifetime. Classically, vibrational dynamics are
initiated by the excited-state force that corresponds to the slope
of the excited-state PES at the ground-state (equilibrium) mode
coordinate. During the radiative transition back to the ground-
state PES, the temporally evolved vibrational wavepacket pro-
jects back onto the vibrational eigenstates of the ground-state
PES, having non-negligible overlap with multiple low vibra-
tional levels. The resulting RIXS loss spectrum appears as a
series of peaks separated by the ground-state vibrational fre-
quency. The intensities of the peaks generally decrease with
increases vibrational level, though this need not be strictly
monotonic.

A primary objective of performing vibrational RIXS measure-
ments on molecules or other, e.g. condensed-phase systems
exhibiting localized vibrational modes, is to determine their
potential energy surfaces.20–23 One often observes a large

Fig. 1 Schematic illustration of the RIXS scattering process for excitation of phonons. In the left panel, the ground-state vibrational wavefunction
projects onto several excited-state vibrational wavefunctions. In the middle panel, the excited-state vibrational wavepacket projects back onto multiple
ground-state vibrational states. The right panel shows the resulting RIXS loss spectrum with a harmonic progression of phonons with energy oph.
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number of vibrational peaks in the RIXS loss spectrum spaced
at integer multiples of the vibrational energy. Treating small
molecules such as oxygen and acetone, Schreck et al.24 showed
that anharmonic frequency shifts appear for higher oscillator
levels and that these deviations allow precise fitting of the
ground-state PES to a Morse potential. Work is ongoing to
similarly characterize excited-state potential energy surfaces by
probing vibrational progressions accompanying RIXS final-
states with valence electronic excitations.25

Interpreting and modeling vibrational excitations in crystalline
solids with delocalized, dispersive phonons is a considerably more
complicated task than for materials with localized vibrational
modes. One is confronted with the full, momentum-dependent
electronic and phononic band structures. The activation of several
dispersive phonon modes leads to more complex, broadened
spectra that often do not have such well defined peaks.26–29

Rather than seeking to map a PES, the physical quantity of
most interest when probing crystalline materials with disper-
sive phonons is typically the electron–phonon coupling
strength. This quantity is encoded in the relative peak inten-
sities. Accurately extracting electron–phonon coupling
strengths of crystalline systems with dispersive phonons from
the relative peak intensities of the phonon peaks of RIXS
spectra is non-trivial and remains an open question.17,30–32

We focus on addressing this challenge in the present work.
Much of the analysis of the phonon features in RIXS spectra

of periodic systems utilizes a simplified model presented by
Ament et al. that approximates the problem as a displaced
harmonic oscillator.33 This model and the accompanying ana-
lysis are presented in the Section II A. In Section II B and II C we
present some simple extensions of this basic model that
demonstrate the difficulty of using this description to accu-
rately extract the electron–phonon coupling constant. In
Section III, we introduce an alternative, Green’s function based
approach that is suitable for first-principles calculations. This
begins with calculating the purely electronic X-ray absorption
and RIXS spectra via the Bethe–Salpeter equation, which we
describe in Section III A. From there, we discuss how to
incorporate vibronic interactions as a self-energy built through
a cumulant expansion. This is done for X-ray absorption in
Section III B and for RIXS in Section III C. Finally, we comment
in Section IV that the coupling constant extracted from a RIXS
measurement is better viewed as exciton–phonon coupling
than the usual electron–phonon coupling initially sought. Pre-
scriptions for calculating this exciton–phonon parameter from
first-principles and relating it to the desired electron–phonon
coupling are provided. Some numerical expositions of the
theoretical formalism are provided for crystalline MgO. We
summarize the work in the conclusions.

II. Einstein oscillators
A. Displaced oscillator model

Given the complexity of evaluating the Kramers–Heisenberg
expression for fully general electron–phonon interactions,

interpretations of the phonon contribution to RIXS for solids
have relied heavily on a simplified model put forward in the
foundational work of Ament et al.33 This model is based on a
Holstein Hamiltonian with a single localized electronic level
coupled to a single Einstein oscillator. This picture was partially
motivated by consideration of RIXS experiments tuned to the
copper L-edge excitation of cuprates for which a core electron is

promoted into the single empty and localized dx2�y2 orbital of a
copper site. Defining the energy of the electronic transition as
e0 and the vibrational energy as oph, the Hamiltonian is

H = e0ĉ†ĉ + ophb̂†b̂ + Mĉ†ĉ(b̂ + b̂†) (2)

where ĉ†(ĉ) and b̂†(b̂) designate the creation (annihilation)
operators for the electron and oscillator, respectively, and M
is the vibronic coupling strength. It is common to refer to the
reduced vibronic coupling strength g = M2/oph

2. The Hamilto-
nian in eqn (2) may be diagonalized by applying a Lang–Firsov
canonical transformation H̃ = eT̂He�T̂ using the generating
function T̂ ¼ ffiffiffi

g
p

ĉyĉ b̂y � b̂
� �

with the result that H̃ =
oph(b̂†b̂ � g).34 This amounts to a displaced harmonic oscillator
where the resonance condition is shifted by the product of the
dimensionless coupling strength and the vibrational frequency,
goph.

Using the above canonical transformation, and assuming
the system begins in the zero oscillator level, the RIXS ampli-
tude for leaving n phonons in the final state becomes

An ¼
X
m

Cnh j r̂ � êoð Þe�T̂ Cmj i Cmh jeT̂ r̂ � êið Þ C0j i
odet � ophðm� gÞ þ ig=2

: (3)

We assume that the vibronic states |Ci = |fi|wi are factoriz-
able into electronic |fi and vibrational |wi parts. Since the
electronic space is limited to the ground-state and a single
excited level, the subscripts n and m simply indicate the
oscillator levels of the final and intermediate states, respec-
tively. Within the denominator, odet = oi � e0 is the detuning
between the incident photon energy and the electronic reso-
nance, and g/2 is the inverse lifetime of the core–hole-excited
intermediate state.

The numerator of eqn (3) consists of Franck–Condon factors
for the overlaps of the nuclear wavefunctions. With this sub-
stitution, the RIXS amplitude corresponding to a final state
with n phonons reduces to

AnðzÞ ¼ do
�di
X
m

Bfn;mgðgÞBfm;0gðgÞ
z� ophðm� gÞ : (4)

This expression uses the shorthand notation B{n,m}(g) =
Bmax(n,m),min(n,m)(g) and introduces the Franck–Condon factors

Bfn;mgðgÞ ¼ ð�1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�gn!m!
p

�
Xm
l¼0

ð�gÞl ffiffiffi
g
p n�m

ðm� lÞ!l!ðn�mþ lÞ!: (5)

In eqn (4), the factors of d are the dipole matrix elements
and z = odet + ig/2. This simplified model for describing
vibrational excitations during photon scattering experiments,
often attributed to,33 in fact has long been applied to optical
Raman scattering experiments.35–37
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As shown in Fig. 2, eqn (4) results in a RIXS signal that
consists of a series of peaks spaced by the vibrational energy,
oph. The intensities of the peaks depend on the vibronic
coupling strength g (or M), the detuning from resonance odet

and the lifetime of the intermediate-state (g/2)�1. The detuning
is fixed experimentally by selecting the incident photon energy
during the measurement. The lifetime is sometimes left as a
free parameter or roughly approximated, however, it is gener-
ally known38 and should be fixed accordingly. With the detun-
ing and core–hole lifetime properly fixed, the coupling strength
is the sole free parameter and is obtained by fitting the relative
intensities of the first and second phonon harmonics to
experimental results.30,33 Within this simple model, the cou-
pling strength can be physically interpreted as related to the
displacement distance between the equilibrium positions of
the ground- and excited-state harmonic potentials.

Fig. 2 demonstrates that the intensities of the higher pho-
non harmonics increase when either the coupling strength g

increases or when the core–hole lifetime becomes longer.
Conceptually, the amount of spectral intensity transferred
from the elastic line to the phonon peaks depends on the
total impulse applied during the intermediate state. This
quantity is a combination of the vibronic coupling strength
and the intermediate state lifetime and can be expressed as
the dimensionless quantity 2M/g, which is often a better metric
of the effective RIXS coupling strength than g = (M/oph)2.30,39

This observation underscores the point that an erroneous
value of the intermediate state lifetime leads to a misanalysis
of the coupling strength. To properly quantify the vibronic
coupling, it is important to recognize that the denominator
of eqn (4) contains g/2, the half width at half maximum
of the absorption lineshape, not the full width at half
maximum.

A common misconception within the condensed matter
RIXS community, reinforced by Fig. 2, is that peak intensities
of the phonon harmonics decrease monotonically. Evidence to
the contrary exists for small molecules, such as O2.25 Small
organic molecules present an unusual combination of strong
coupling strength and long core–hole lifetime, making the
product of the two, the effective impulse 2M/g, unusually large.
This, combined with large phonon frequencies, can yield a non-
monotonic decay of the phonon harmonics. However, non-
monotonic behavior can also occur when more than one
phonon mode is active, or when contributions from different
points in the Brillouin zone are important.

For some experimental RIXS data on crystalline materials,
phonon harmonics beyond the first are not well resolved. In
these cases, it may appear impossible to quantify the vibronic
coupling strength. However, Rossi et al.40 and Braicovich et al.30

have recently demonstrated an alternative approach for quan-
tifying the coupling strength based on the intensity decay of the
first harmonic peak with respect to detuning the incident
photon energy below the electronic resonance. The intensity
of the first phonon harmonic is given by

I1 odetð Þ / e�2g

g

X1
m¼0

gmðm� gÞ
m! odet � ophðm� gÞ þ ig=2
� �

�����
�����
2

: (6)

As demonstrated by those authors, and summarized in
Fig. 3, the coupling strength g may be obtained by measuring
the intensity of the first phonon harmonic at several detuning
values and fitting the intensity decay with eqn (6). This
approach requires that the electronic resonance under consid-
eration is well isolated in energy from any other transition
otherwise it becomes problematic to clearly define the detuning
value. Further, the vibronic coupling shifts the resonance by
goph, which becomes significant when either the vibronic
coupling or phonon frequency is large.39 These considerations
complicate the use of detuning to accurately quantify the
coupling constant and the efficacy of this technique remains
unclear.41

The original displaced oscillator model for describing pho-
non features in RIXS spectra presented by Ament et al.33

established the basis for interpreting phonon excitations for

Fig. 2 Model RIXS spectra showing a progression of phonon excitations
separated by the vibrational energy oph. The elastic line has been removed
and spectra are normalized to the intensity of the first phonon harmonic.
Relative intensities of the higher harmonic peaks increase with (a) the
coupling strength, keeping g/2oph = 2, and (b) the lifetime of the inter-
mediate state, holding M/oph = 2.
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the condensed matter community and has been widely applied
to experimental RIXS data.26–28,42,43 Despite this widespread
embrace, the model has important limitations. Specifically, it is
restricted to a single localized vibrational mode coupled to a
single localized electronic state. In the next subsections we
explore the impact of relaxing some limitations of this model.
Section II B allows different vibrational frequencies for the
ground and excited states – the displaced and distorted har-
monic oscillator – while Section II C introduces a second local
vibrational mode. This still leaves important aspects unad-
dressed, such as generalizing the local nature of the electronic
state and vibrational mode to itinerant electrons and extended
phonons, respectively. Monciu et al.32 recently considered the
impact of electron itinerancy while Dashwood et al. included
the momentum dependence of phonons.31

B. Displaced and distorted oscillator

Thus far, we have assumed that the vibrational frequency is
unchanged between the ground and core-excited states and the
system maps onto the simple displaced harmonic oscillator
model. For the case of molecules, it is clear that the core-excited
state PES can differ radically from the ground-state PES; in
some cases, the excited-state may be dissociative. In periodic
solids, the ground-state vibrational modes correspond to delo-
calized phonons. The frequency of these phonon modes
remains unchanged in the intermediate state, however the
core-excited site may be viewed as a transient impurity that
induces local vibrations. The vibrational frequency of these
local modes may differ significantly from similarly displacive,
e.g. optical phonon modes appearing in the RIXS final
state.44,45 To illustrate the complexity this introduces while
staying as close as possible to the model studied in the previous
section, we assume that the vibrational modes for both the
ground and core-excited states are local, harmonic modes, but

with different frequencies. We may write the following effective
Hamiltonian for this case

H ¼ 1� ĉyĉ
� 	

ophb̂
yb̂

þ ĉyĉ e0 þ ~oph
~̂by ~̂bþ

ffiffiffi
~g

p
~oph

~̂bþ ~̂by
� �h i

: (7)

Tildes in the above expression indicate values corresponding
to the RIXS intermediate state for which hĉ†ĉi = 1. In the initial
and final state hĉ†ĉi = 0 and the Hamiltonian reduces to just the
ground-state oscillator term with frequency oph. In the inter-
mediate state local vibrational modes with frequency ~oph are

created (destroyed) by the operator ~̂by ~̂b
� �

. This model corre-

sponds to the displaced and distorted harmonic oscillator.
The phonon contribution to the RIXS signal for the

displaced and distorted harmonic oscillator may be obtained
by generalizing the canonical transformation presented in
Section II A. Accounting first for the displaced aspect of the
excited-state oscillator, we use the generating function

~̂T ¼
ffiffiffi
~g
p

~ophĉ
yĉ ~̂by þ ~̂b
� �

to write the RIXS amplitudes as

AnðzÞ / do
�di
X

~m

nh je� ~̂T ~mj i ~mh je ~̂T 0j i
z� ~oph ~m� ~gð Þ : (8)

This expression differs from eqn (3) due to the different
intermediate state vibrational modes |m̃i, altered frequencies
~oph arising from the change in curvature of the excited-state
vibrational surface, and the modified transformation operator.
We write the coupling strength as g̃ to stress the difference from
the previous section.

We treat the distorted aspect of the excited-state oscillator by
introducing a map between the two vibrational bases, defined

as the transformation mj i ¼
P

~m

Xm ~mðbÞ ~mj i where b ¼
ffiffiffiffiffiffiffiffiffiffi
~o=o

p
quantifies the change in the oscillator frequency. Analytic
expressions for Xmm̃(b) have been derived by various
methods.46–50 The result in terms of Hermite polynomials Hj is

Xn~nðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2~nþn~n!n!

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
2b

1þ b2

s X~n

~k¼0

Xn
k¼0

~n

~k

 !
n

k

 !

� 2
~kþkb

~kH~n�~kð0ÞHn�kð0ÞJ ~kþ k
� �

:

(9)

This expression introduces the factor

JðKÞ ¼
0 if K is odd:
ðK � 1Þ!!
1þ b2ð ÞK=2

if K is even:

8<
: (10)

Substituting these transformation matrices into the expres-
sion for the RIXS amplitudes in eqn (8) gives

AnðzÞ ¼ do
�di
X

~m

X
~l;~k

Xn~lðbÞX0~kðbÞ
Bf~l; ~mg ~gð ÞBf ~m;~kg ~gð Þ
z� ~oph ~m� ~gð Þ : (11)

The impact of the difference in curvature between the
ground- and excited-state PESs on the relative intensities of
the phonon progression in the RIXS signal depends on two

Fig. 3 Intensity of the first phonon harmonic peak with respect to
detuning the incident photon energy from the electronic resonance. The
dependence of the detuning curve on the coupling strength is shown with
the intermediate-state lifetime fixed at g/2oph = 1.
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considerations. A steeper slope of the excited-state PES yields a
larger vibronic coupling strength. However, the difference in
curvature between the two vibrational surfaces also changes the
Franck–Condon overlap factors. Fig. 4 shows the resulting
phonon intensities for a given set of model parameters.

C. Two displaced oscillators

In many cases, more than one vibrational mode will be excited
during a RIXS experiment. For this scenario, the Holstein
Hamiltonian of eqn (2) becomes

H ¼ e0ĉyĉþ
X
l¼1;2

olb̂
y
lb̂l þ

X
l¼1;2

Mlĉ
yĉ b̂l þ b̂

y
l

� �
: (12)

We can again convert this Hamiltonian into the diagonal
form of a two-dimensional displaced harmonic oscillator by
applying a Lang–Firsov canonical transformation with the

generalized transformation matrix T̂ ¼
P
l

ffiffiffiffiffi
gl
p

ĉyĉ b̂
y
l � b̂l

� �
.39

Evaluating the overlap of ground-state and excited-state vibra-
tional wavepackets introduces the following products of
Franck–Condon factors

Bn2m2
n1m1

g1; g2ð Þ ¼ Bmax n1 ;m1ð Þ;min n1;m1ð Þ g1ð Þ
� Bmax n2 ;m2ð Þ;min n2;m2ð Þ g2ð Þ: (13)

With these Franck–Condon products, the RIXS amplitudes
for the double-mode case are

An1n2ðzÞ ¼ do
�di
X
m1;m2

Bn2m2
n1m1

g1; g2ð ÞBm20
m10

g1; g2ð Þ
z�

P
l¼1;2

ol ml � glð Þ : (14)

Further generalization to a higher number of vibrational
modes is straight-forward.

III. Green’s function approach

The numerical cost of calculating the phonon contribution to
the RIXS cross section by wavefunction methods becomes
prohibitive for periodic systems due to the need to account
for momentum transfer between the electronic and vibrational
systems. Setting up the vibronic Hamiltonian necessitates
sampling the exciton and phonon states, as well as the
momentum-dependent exciton–phonon coupling strengths,
throughout the Brillouin zone. Such calculations may be fea-
sible with respect to computational cost. The much larger
challenge would be to diagonalize the resulting Hamiltonian
as its Hilbert space expands rapidly when adjoining the phonon
modes to the electronic degrees of freedom. In this situation,
Green’s function methods become advantageous.

Devereaux et al. presented a formal Green’s function
description of the phonon RIXS signal for a model representa-
tive of 2-dimensional cuprates, including finite momentum
transfer.17 This work provided valuable insight into the phonon
excitation process during a RIXS measurement, including a
description of the momentum transfer and phonon mode
dependencies. However, the formalism and accompanying
numerical results only included single phonon diagrams limit-
ing the quantitative application of the work. Although the
detuning method described in the previous section offers a
means for quantifying the vibronic coupling strength using
only the first harmonic, the numerical restriction to single
phonon terms is insufficient for accurate quantification even
in the weak coupling limit.51 One reason for this is that the
intermediate-state vibronic coupling strength is typically strong
even when the ground-state coupling is weak. This drives
vibrational modes into high occupation levels in the
intermediate-state, which has a significant impact on the
intensity of the first harmonic peak in the final state.51 The
intermediate-state phonon scattering also mixes modes at
different q vectors making the intensity of the first harmonic
peak dependent on the vibronic coupling strength throughout
the Brillouin zone and invalidating a picture in which each
q-point may be evaluated independently.31 Given the expecta-
tion that the intermediate-state coupling strength is strong
even when the ground-state coupling is weak, it is essential to
treat these vibronic contributions to high order. In this section,
we review an alternate Green’s function formulation of the RIXS
cross section that sums phonon contributions to infinite order
in the intermediate state and to arbitrary order in the final
state.31,39,51

The objective of this and the next section is to establish a
foundation for a many-body perturbation theory description of
the RIXS phonon excitation spectrum that is suitable for first-
principles calculations. We begin in Section III A by describing
the electronic excitation process in the absence of phonon
interactions. This is done within the context of the Bethe–
Salpeter equation (BSE), which is appropriate for describing
excitonic states in weakly to moderately correlated systems. In
Section III B we introduce a vibronic interaction into the BSE at
an approximate level and demonstrate how to generate phonon

Fig. 4 RIXS spectra for the displaced and distorted oscillator model. The
grey curve gives the spectrum for the undistorted displaced oscillator. The
blue (red) curve shows the spectrum for an excited-state PES with an
oscillator frequency increased (decreased) by 20%. In each case, g/2oph =
1. Inset: Schematic of the displaced and distorted harmonic potential
energy surfaces. Lower lying grey curve represents the ground-state
PES. The three higher energy, core-excited intermediate state surfaces
are used to generate the RIXS spectra in the main figure.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
 2

02
2.

 D
ow

nl
oa

de
d 

on
 2

8.
1.

20
26

 1
8:

46
:1

3.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2cp00968d


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 217–231 |  223

sidebands within an X-ray absorption calculation via use of a
cumulant Green’s function. In Section III C we extend these
concepts to the RIXS scattering process. Finally, in Section IV,
we argue that RIXS probes an effective exciton–phonon scatter-
ing process, present two approaches for numerically evaluating
such coupling constants from first-principles, and relate this
exciton–phonon scattering to the usual electron–phonon cou-
pling constants.

A. Bethe–Salpeter equation

Solving the Bethe–Salpeter equationsX
h0c0

Hh0c0
hc AS

h0c0 ¼ ESAS
hc; (15)

yields excitonic eigenstates Sj i ¼
P
hc

AS
hc h; cj i within a two-

particle approximation that consist of linear combinations of
electron (c) and hole (h) pairs with coefficients AS

hc and energies
ES. The contribution of a given electron–hole pair |h,ci to the
eigenstate |Si is quantified by AS

hc. For the RIXS intermediate
state, c specifies the band index and wavevector for the con-
duction electron and h corresponds to a set of atomic quantum
numbers for the core-level hole state, depending on the parti-
cular resonance selected (h runs over the occupied valence
bands for the RIXS final state or in the case of optical
absorption).

The elements of the Bethe–Salpeter Hamiltonian

Hh0c0
hc ¼ ec � ehð Þdhh0dcc0 þ Kh0c0

hc (16)

consist of an independent quasiparticle contribution and an
interaction kernel

Kh0c0
hc ¼ hch jK h0c0j i

¼
ð
dð1234Þfhð2Þfc

�ð1ÞKð1234Þfh0
�ð3Þfc0 ð4Þ: (17)

Numerical indices represent combined space-spin-time vari-
ables. The interaction kernel

K(1234) = �id(12)d(34)v(1,4) + id(14)d(23)W(1,2)
(18)

contains both a repulsive exchange term through the bare
Coulomb interaction v and an attractive direct term via the
screened Coulomb interaction W. Further details about the
solution of the Bethe–Salpeter equations can be found in
various ref. 52–57

To present the power of the Bethe–Salpeter method Fig. 5
and 6 present example spectra of the optical and X-ray absorp-
tion spectra, respectively, of MgO in the rocksalt crystal struc-
ture. In addition to the absorption spectra, solution of HBSE

also yields the weights AS
hc of the corresponding exciton eigen-

states. Selecting a specific exciton eigenstate, indicated by the
arrows in Fig. 5(a), (b) and 6(a), (b) show the band structure
decomposition of the exciton. For optical absorption into the
lowest bright exciton state, both the electron and hole are
largely confined to a region around the G-point. This suggests
the excitonic state is somewhat dispersed in real-space. For the

case of a core excitation (from the Mg 1s shell), the excited
electron component of the lowest energy bright exciton is quite
dispersed in k-space. This is consistent with the notion of a
bound exciton localized in real-space.

We introduce some basic nomenclature before proceeding
further. Neglecting phonons for the moment, we designate the
purely electronic absorption coefficient as m0(o) and use the

corresponding electron–hole propagator GðoÞ ! LðoÞ ¼
o�HBSE
� ��1

where HBSE is the Bethe–Salpeter Hamiltonian
for the electron–hole interaction. At a formal level, the exciton
propagator L(o) can be expressed in terms of the bare electron–
hole propagator L0(o) via a Dyson equation with the interaction
kernel K. In the next subsection we introduce phonons and
obtain the full X-ray absorption coefficient m(o) including
vibronic interactions. L(o) will designate the corresponding
phonon-dressed exciton propagator.

B. Vibronic coupling in XAS

Phonons and vibronic interactions can impact absorption
spectra in various ways. One can generally separate these
interactions into initial-state and final-state effects. Initial-

Fig. 5 (a) Optical absorption spectrum of MgO calculated by the Bethe–
Salpeter equation. (b) Representation of the excitonic eigenvector AS

hc of
the lowest energy exciton, indicated by the arrow in (a). The sizes of the
blue (red) circles correspond to the weights of given band and k-points for
the conduction (valence) band contributions to the electron (hole) part of
the exciton wavefunction.
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state effects relate to structural disorder and atomic displace-
ments caused, e.g. by thermal motion. Such atomic displace-
ments impact spectra by modifying the quasiparticle energy
levels, orbital hybridization, breaking local symmetries and
lifting degeneracies. The impact of these atomic displacements
have been studied by basing spectral calculations on disor-
dered structures generated from molecular dynamics
simulations58–60 and from thermally sampled phonon mode
displacements.61,62 Initial-state vibrational interactions tend to
cause broadening of spectral features, which can be extreme for
some small organic molecules, but they can also activate
otherwise optically-dark transitions.

In the present work, we assume that atoms are located at
their equilibrium positions in the initial state and focus on the
contribution of vibronic interactions in the final-state. Final-
state vibronic interactions generate phonon satellite peaks to
the main electronic transitions. These satellite features may be
distinguishable when experimental and lifetime resolutions
allow. More often, they appear as an asymmetric broadening
of the electronic transitions.44,45 Our objective is to study the
phonon contribution to RIXS spectra due to final-state effects

that occur within the intermediate state of the RIXS scattering
process.

To illustrate our method, we first consider the Green’s
function representation of the X-ray absorption cross section

mðoÞ ¼ �1
p
Im 0h j r � êð ÞyG E0 � oð Þ r � êð Þ 0j i: (19)

The argument of the Green’s function is references with
respect to the ground-state energy, E0. Absorption of an X-ray
creates a photoelectron and core–hole, which may interact with
each other and with the lattice. One can either first treat the
lattice scattering of the electron and hole individually and then
include the Coulomb interactions of the phonon–dressed elec-
tron and hole,63 or consider first the electron–hole binding and
then incorporate lattice interactions as an exciton–phonon
scattering process.64–66 When excitonic effects near the thresh-
old of a core-level excitation are strong, excitonic binding can
occur on a time-scale faster than the phonon dynamics. This
motivates following the second approach.

At optical and soft X-ray energies, photons carry negligible
momentum, as do the excitons they create. However, phonons
can subsequently scatter excitons to states of finite momentum.
We designate these states as |S(Q)i where Q is the center of
mass momentum of the electron–hole pair. (A numerical
example of a finite momentum exciton state for MgO is
provided in Fig. 7 and will be discussed in further detail in
Section IV). To simplify notation, we will not always explicitly
write the exciton momentum when Q = 0.

Starting from the phonon-free exciton propagator L(o) and
the corresponding excitonic eigenstates S, we construct a
phonon-dressed exciton propagator L(o) such that the full
absorption spectrum, including both excitonic effects and
exciton-lattice scattering, is given by

mðoÞ ¼ �1
p

X
S;S0

dS0
�dSIm 0h jÂS0ðQ¼0ÞL E0 � oð ÞÂySðQ¼0Þ 0j i (20)

where dS p hS|(r�ê)|0i are again the dipole matrix elements. The

operator Â
y
S ¼

P
hc

AS
hcĉ
y
cĉh (ÂS ¼

P
hc

AS�
hc ĉ
y
hĉc) creates (annihilates)

an exciton in state S.
Since it is critical to obtain a dressed exciton Green’s

function that gives a spectral function with good phonon
satellite structure it is important to build L(o) from the bare,
phonon-free exciton propagator L(o) not via the usual Dyson
equation, but using the following cumulant representation in
the time-domain

L(S,t) = L(S,t)eC(S,t). (21)

Up to second-order, the cumulant may be expanded as

CðS; tÞ ¼ LðS; tÞ½ ��1�
ðt
0

ðt
0

dtdt0LðS; t� tÞ
X

S; t� t0ð ÞLðS; tÞ

(22)

where we approximate the exciton self-energy with a

Fig. 6 (a) Mg K-edge X-ray absorption spectrum of MgO calculated by
the Bethe–Salpeter equation. (b) Representation of the excitonic eigen-
vector AS

hc of the lowest energy exciton, indicated by the arrow in (a). The
sizes of the blue circles correspond to the weights of given band and
k-points for the conduction band contributions to the electron part of the
exciton wavefunction.
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generalized Fan–Migdal term as

SFMðS; tÞ ¼ i
X
S0;n

ð
dq Mn

SS0 ð�q; qÞ
� �2

L S0ð�qÞ; tð ÞDnqðtÞ: (23)

This expression contains a factor of the phonon propagator
Dnq for mode n and momentum q, and the exciton–phonon
scattering matrix elements Mn

SS0 Q; qð Þ. We discuss the latter in
more detail in Section IV.

C. Vibronic coupling in RIXS

We now generalize the cumulant Green’s function procedure to
the evaluation of the Kramers–Heisenberg equation for the
phonon contribution to RIXS spectra. It is useful to observe
that while the intermediate state typically accesses high oscil-
lator levels, only a few phonon levels are observed in the RIXS
final state. Therefore, it is advantageous to employ a mixed
Green’s function and wavefunction representation of the RIXS
cross section that maintains an explicit summation of a limited
number of final oscillator levels, but replaces the summation
over the intermediate states with a Green’s function. In this
mixed notation we express the RIXS cross-section in terms of
vibrationally off-diagonal elements of the dressed exciton pro-
pagator L(nF) that are evaluated between the vibrational ground-
state and the nF vibrational level. Writing nF - n for simplicity
of notation, we have

In oi;oo; qð Þ ¼ �1
p

X
S1S2

do
S2

� ��
d i
S1
LðnÞS1;S2

oið Þ
�����

�����
2

ImDn oloss; qð Þ:

(24)

Dn(oloss,q) represents a product of phonon Green’s functions
constrained such that the vibrational system carries an energy
of oloss and total momentum q. Since the number of phonon
peaks observed in RIXS spectra is limited to a very small
number for many periodic systems (e.g. two or three) only a
few terms of eqn (24) need to be considered. Evaluation of the
phonon off-diagonal exciton propagators L(n) represents the
main task while we use a harmonic approximation for the
phonon propagator Dn(o,q).

When the final-state contains no phonon excitations (n = 0) we

recover the XAS exciton propagator Lð0ÞS1;S2
¼ LS1S1dS1S2 � LS1 .

The exciton propagators corresponding to the one- and two-
phonon final states, expressed in the time-domain, are

Lð1ÞS1;S2
ðq;tÞ

¼ i
X
n
Mn

S1S2
ð0;qÞ

ðt
0

dtLS2ð�q;t�tÞD4
n ðq;t�tÞLS1ð0;tÞ (25)

Lð2ÞS1;S2
ðq;tÞ ¼ i2

X
n0n00

X
S0

ð
dq1

ð
dq2d q1þq2�qð ÞMn00

S2S
0 ð�q1;q2Þ

�Mn0
S0S1

0;q1ð Þ
ðt
0

dt1

ðt
0

dt2LS2 �q1�q2;t�t2ð Þ

�D4
n00 q2;t�t2ð ÞLS0 �q1;t2�t1ð Þ

�D4
n0 t�t1ð ÞÞLS1 0;t1ð Þ: (26)

Higher order terms can be constructed using the standard
diagrammatic rules that each vertex contributes a factor of

Fig. 7 Schematic description of optical exciton–phonon scattering in MgO. The left portion of the figure presents the electron–hole k-space
decomposition of the exciton wavefunction corresponding to the lowest energy bright optical exciton in MgO (hence, Q = 0 in this case). The right
side shows a similar depiction of the wavefunction of a low energy exciton with center-of-mass momentum Q + q that could result from scattering with
a phonon of momentum q. In this example, q = (0.3,0.3,0.3) in reciprocal lattice units.
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iMn0
SS0 while factors of LS and D4

n0 are added for each exciton or
phonon line, respectively. Eqn (26) makes it clear that for a
given momentum transfer q the intensity of higher harmonic
peaks depend on the vibronic coupling at all points throughout
the Brillouin zone. E.g. at the second harmonic all phonon
pairs with momenta q1 + q2 = q will contribute. Although not
explicit in eqn (25), this dependence on the coupling strength
at all points in the Brillouin zone holds for the first harmonic as
well. This dependence on all q-points occurs even for the first
harmonic because the exciton propagator LS is dressed by
virtual phonons appearing in the intermediate state, and is
thus coupled to phonons throughout the Brillouin zone.

Dashwood et al.31 applied a preliminary implementation of
the above Green’s function method to reproduce the phonon
features measured in graphite for a range of detunings across
both the s* and p* resonances. This allowed a quantitative
determination of the momentum-dependent vibronic coupling
strengths across the Brillouin zone. Furthermore, the authors
demonstrated that combining RIXS experiment and the com-
putational technique just described can easily discern different
coupling strengths for different electronic excitations, i.e. to the
p* versus s* excitation in graphite.

IV. Exciton–phonon coupling

The main objective of measuring the phonon excitations of
periodic systems with RIXS is to quantify the electron–phonon
coupling strength throughout the Brillouin zone. Within the
framework of density functional perturbation theory and linear
response, the electron–phonon coupling matrix elements are

gnmnðk; qÞ ¼
�h

2monq


 �1=2

n; kþ qh jDnqVKS m; kj i: (27)

In this expression, DnqVKS is the variation of the Kohn–Sham
potential due to a lattice distortion by the normal-mode coor-
dinates of a phonon of mode n, momentum q and energy onq.
The average ion mass of the crystal is m. The electron–phonon
coupling strength is

lnq ¼
1

NFonq

X
mn;k

wk gnmnðk; qÞ
�� ��2d en;kþq

� 	
d em;k
� 	

(28)

where NF is the density of states at the Fermi level and wk is the
weight associated to the discrete point k for appropriately
sampling the Brillouin zone. The delta functions restrict the
participating electronic states to the Fermi surface.

While gnmn(k,q) and lnq relate to the coupling of phonons to a
single electron, such as determined through transport mea-
surements, the electron–lattice interaction that occurs during a
RIXS measurement involves the generation of phonons through
the perturbation caused by the intermediate-state core-
conduction exciton. This scattering of excitonic states with
lattice vibrations may be expressed by the following vibronic

Hamiltonian

Hex�ph ¼
X
S;Q

ESðQÞÂ
y
SðQÞÂSðQÞ þ

X
nq

�honqb̂
y
nqb̂nq

þ
X
SS0n

X
qQ

Mn
SS0 ðQ; qÞÂ

y
S0ðQþqÞÂSðQÞ b̂n;q � b̂

y
n;�q

� �
:

(29)

The last term represents scattering of an exciton from state S
with center of mass momentum Q to the state S0 with momen-
tum Q + q by a phonon of mode n and momentum q. Phonon

creation (annihilation) operators are given by b̂
y
nq b̂n;q

� �
. An

example calculation of this scattering process is presented in
Fig. 7 for the scattering of a valence-conduction exciton (e.g.
optical excitation) in MgO.

In analogy to the electron–phonon matrix elements in
eqn (27), the exciton–phonon matrix elements can be written as

Mn
SS0 ðQ; qÞ ¼

�h

2monq


 �1=2

S0ðQþ qÞh jDnqHBSE SðQÞj i: (30)

The expression involves evaluating the phonon-induced
variation of the Bethe–Salpeter Hamiltonian between exciton
states. Improving the quantitative understanding of RIXS mea-
surements requires developing practical methodology to calcu-
late these exciton–phonon matrix elements and finding a
relation between them and the usual electron–phonon matrix
elements.

The most direct approach to evaluating the exciton–phonon
matrix elements in eqn (30) is to employ supercells to perform
ground-state and Bethe–Salpeter calculations with finite atomic
displacements along particular phonon normal modes. The
energy of the excited-state vibrational surface may be expressed
as ES(R) = E0(R) + OS(R) where E0(R) is the ground-state energy
and OS(R) is the excitation energy. The position vector R = R0 +
du is restricted to small displacements du around the equili-
brium positions R0. The variation of the excited-state energy
with respect to atomic displacements gives the excited-
state force

F(du) = qRES|R = [qRE0 + qROS]|R. (31)

Ismail–Beigi and Louie performed such finite displacement
GW-BSE calculations to determine the optical excited-state
forces for the CO molecule64 while Tinte and Shirley calculated
the BSE forces for core excitations at the Ti site of SrTiO3

44 and
Geondzhian and Gilmore reported similar calculations for core
excitations at the oxygen site of acetone.51 These results,
particularly for SrTiO3, reveal that exciton–phonon coupling
values can differ noticeably from expectations based on normal
electron–phonon coupling values. Such supercell calculations
are typically limited by computational costs to a few high
symmetry points in the Brillouin zone. It would be desirable
in the future to develop methods analogous to density func-
tional perturbation theory for calculating these excited-state
forces for any q using only the primitive cell. Promising work in
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this direction, such as the quantitative description of polaron
clouds from unit cell calculations,67,68 is ongoing.

Under the assumption that atomic displacements primarily
impact the electron wavefunctions while the variation of
the BSE interaction kernel may be neglected to first order,
the exciton–phonon coupling constant may be expressed in
terms of the usual electron–phonon coupling constants gnmn

(k,q) as65,66

Mn
SS0 ðQ; qÞ ¼

X
k

X
hee0

A
SðqþQÞ�
hðkÞ;eðkþQþqÞA

S0ðQÞ
hðkÞ;e0ðkþQÞg

n
e0eðq; kþQÞ

"
:

�
X
ehh0

A
SðqþQÞ�
hðk�qÞ;eðkþQÞA

S0ðQÞ
h0ðkÞ;eðkþQÞg

n
hh0 ðq; k�QÞ

#
:

(32)

In this expression, h and e designate single particle states
where h runs over all occupied, core states of the appropriate
core level while e runs over unoccupied, conduction levels. This
simplification treats exciton–phonon scattering as a superposi-
tion of electron–phonon and hole–phonon scattering events,
weighted by the coefficients of the exciton wavefunctions. Fig. 8
provides a visual interpretation of these scattering processes for
the case of a valence-conduction exciton in MgO.

Eqn (32) provides a route toward predictive, first-principles
evaluation of the exciton–phonon coupling constant based on
standard many-body perturbation theory techniques. Neverthe-
less, it presents some challenges and, even within the present

simplifying assumptions, indicates that the exciton–phonon cou-
pling is a more complicated object than the normal electron–
phonon coupling parameter. First, the exciton–phonon parameter
includes a summation over all electron–phonon coupling values,
weighted by their contribution to the given excitonic state. Sec-
ond, numerical convergence of eqn (32) likely requires dense
k-point sampling of the excitonic state. Third, the contribution of
coupling between the core–hole and phonons appears with equal
weight as compared to the conduction level electron–phonon
coupling and must be carefully evaluated. Considerable work
remains to address these numerical challenges.

The approximation made in eqn (32) for the exciton–phonon
coupling constant assumes that the electron and hole scatter
with phonons independently. Each scattering event creates or
destroys a phonon and must conserve energy and momentum.
In eqn (32) and Fig. 8, this energy and momentum conservation
applies microscopically to each e � e0 and h � h0 scattering
process. On the other hand, for eqn (30) and Fig. 7, the kinetic
constraint is applied macroscopically to the entire exciton state,
i.e. energy and momentum conservation is applied globally to S
and S’ and not to the individual electron and hole states of
which they are comprised. By comparing Fig. 7 and 8, one can see
that the two descriptions of exciton–phonon scattering involve
different accessible scattering phase-spaces. Thus, while eqn (32)
provides a practicable route toward obtaining the exciton–phonon
coupling from the electron–phonon coupling, the numerical
results may be less reliable than those obtained directly from
eqn (30).

Fig. 8 Schematic representation of eqn (32) for the lowest energy bright optical exciton in MgO. In each bandstructure diagram, the colored circles
indicate the weight of a given k-point and band index to the electron (blue) or hole (red) portion of the exciton wavefunction. The left portion of the figure
highlights two particular conduction band states (filled blue circles) to depict the electron–phonon scattering process while the highlighted hole state
acts as a spectator. The right side provides a similar representation of the hole–phonon scattering process with a spectator electron state. Eqn (32) sums
over all such combinations, weighted by the amplitudes of the corresponding excitonic wavefunctions.
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Eqn (32) assumes that the variation of the BSE interaction
kernel with respect to finite atomic displacements is negligible.
This approximation appears reasonable when the excitonic
binding energy is small.69 However, with larger excitonic bind-
ing energy, as expected for core-level excitons at resonance, this
picture may break down. In this case, the kinetically available
phase-space for exciton–phonon scattering will differ notice-
ably from that of electron–phonon scattering65 and it will be
necessary to numerically evaluate eqn (30).

V. Conclusion

The typical objective of using resonant inelastic X-ray scattering
to measure phonon excitations in periodic solids is to quantify
the electron–phonon coupling strength at different points in
reciprocal space. The capability to do so has not yet been
rigorously demonstrated. Most data analysis still relies on the
basic displaced Einstein oscillator model. We have shown that
simple extensions of this model – to two vibrational modes, or
to allow a change in oscillator frequency between the ground-
and excited-states – can noticeably impact the value of the
vibronic coupling extracted from fitting experimental data.
Furthermore, since the model is based on a local electronic
level and a local Einstein oscillator, it does not offer access to
the q-dependence of the coupling strength.

We have presented a Green’s function based description of
the phonon contribution to RIXS that is suitable for first-
principles calculations. The methodology combines a density
functional theory based Bethe–Salpeter equation solution for
the purely electronic component of the absorption and emis-
sion processes with a phonon contribution to the electronic
self-energy generated using a cumulant Green’s function
approach. This formulation of the phonon contribution to RIXS
incorporates the full momentum dependence of both the
electronic states and the phonon modes and limits computa-
tional costs from becoming prohibitive by avoiding an explicit
summation over intermediate states.

The RIXS calculations still require a momentum-dependent
vibronic coupling parameter as input. Within our description, this
is in fact an exciton–phonon interaction parameter. Under the
assumption that the variation of the BSE interaction kernel with
respect to small atomic displacements may be neglected, the
exciton–phonon interaction relates to the usual electron–phonon
coupling constants and can be numerically obtained from them.
When the variation of the BSE interaction kernel cannot be
neglected, we demonstrate that the exciton–phonon coupling
parameter can be calculated directly through the use of supercells
and finite displacements. The method described herein is practical
to implement and will allow for rigorous testing of the theoretical
understanding of phonon excitations in RIXS measurements.
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Appendix computational details

All first-principles Bethe–Salpeter equation (BSE) calculations
for MgO were performed with the Exciting code.70,71 Exciting is
an all-electron density functional theory (DFT) code that
employs periodic boundary conditions and the full-potential
linearized augmented plane wave basis.

The lattice constant of MgO was set to 7.96 Å. This value
was then checked with a structural relaxation calculation.
The ground-state electron density was obtained using the
PBEsol approximation to the exchange–correlation potential
and 8 � 8 � 8 k-point sampling. The BSE calculations used
6 � 6 � 6 k-point sampling, 60 empty bands for the BSE
basis and 30 empty bands for the screening response.
The BSE calculations for both the optical and X-ray absorption
spectra were performed on the DFT electronic structure
without GW corrections or a scissor shift. The X-ray absorp-
tion spectrum was shifted by +57 eV to align the first peak
with the experimentally observed absorption onset of the
Mg K-edge.

The code used to generate the phonon RIXS spectra for the
harmonic oscillator models (displaced, displaced and dis-
torted, and double oscillator) is available here https://github.
com/geonda/rixs.phonons.
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