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Integrated mechanistic engineering models and
macroeconomic input–output approach to model
physical economy for evaluating the impact of
transition to a circular economy†

Venkata Sai Gargeya Vunnava a and Shweta Singh *ab

Sustainable transition to low carbon and zero waste economy requires a macroscopic evaluation of

opportunities and impact of adopting emerging technologies in a region. However, a full assessment of

current physical flow and waste is a tedious task, thus leading to a lack of comprehensive assessment before

scale up and adoption of emerging technologies. Utilizing the mechanistic models developed for

engineering and biological systems with the macroeconomic framework of Input–Output models, we

propose a novel integrated approach to fully map the physical economy, that automates the process of

mapping industrial flows and wastes in a region. The approach is demonstrated by mapping the agro-based

physical economy of the state of Illinois, USA by using mechanistic models for 10 agro-based sectors, which

have a high impact on waste generation. Each model mechanistically simulates the material transformation

processes in the economic sector and provides the necessary material flow information for physical

economy mapping. The model for physical economy developed in the form of a Physical Input–Output

Table (PIOT) captures the interindustry physical interactions in the region and waste flows, thus providing

insight into the opportunities to implement circular economy strategies i.e., adoption of recycling technolo-

gies on a large scale. In Illinois, adoption of technologies for industrial waste-water and hog manure

recycling will have the highest impact by reducing 462% of hog industry waste outputs, 499% of soybean

hull waste, and 496% of dry corn milling (corn ethanol production) waste reduction. A small % reduction in

nitrogen fertilizer manufacturing waste was also observed. The physical economy model revealed that the

urea sector had the highest material use of 5.52 � 108 tons and green bean farming with the lowest material

use of 1.30 � 105 tons for the year modeled (2018). The mechanistic modeling also allowed elemental flows

across the physical economy to be captured, with the urea sector using 8.25 � 107 tons of elemental

carbon per operation-year (highest) and green bean farming using 3.90 � 104 tons of elemental carbon per

operation-year (least). The approach proposed here establishes a connection between engineering and

physical economy modeling community for standardizing the mapping of physical economy that can

provide insights for successfully transitioning to a low carbon and zero waste circular economy.

Broader context
Transitioning current economic systems towards zero waste and low carbon systems will require synergistic efforts among various industrial systems and adoption of
appropriate technologies at scale in a region for recycling or decarbonization. However, selection of sustainable technologies for this transition requires a
macroscopic view of physical flows (wastes, emissions, resources) in the economy along with evaluating the impact of adopting potential emerging technologies on
economy wide physical flows. The work here proposes an approach to create this macroscopic view of physical flows (interindustry flows, wastes, emissions) in an
economy through integration of mechanistic engineering models and macroeconomic framework of Input–Output (IO) models. Furthermore, the work demonstrates
the advantage of this approach in evaluating the opportunity for reducing waste and the impact of adopting a new technology in a region on economy wide waste/
material flows for transition towards a circular economy. In summary, this work establishes an approach that connects mechanistic engineering simulations with
macroeconomic framework for identifying potential transition opportunities and evaluating the impact of adopting any emerging technology on economy wide
material flows. This approach will facilitate micro to macro scale integration for sustainable transition to a low carbon and circular economy.
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1 Introduction

Earth has entered a phase of Anthropocene where anthropogenic
mass is larger compared to the overall living mass.1 A large portion
of this anthropogenic mass is discarded as waste that affects the
environment negatively. Waste and emissions generated by
human activities are projected to increase by 60% for solid waste
and 52% for GHG emissions by 2050,2 from the already high
values of 49.2 Giga metric tons (GT) of waste and emissions
(approx. 49% of total material use in 2017). Hence, it is crucial
to identify pathways for sustainable transition to low carbon and
zero waste or a circular economy. While significant advancements
are being made in renewable energy and recycling technologies,
identifying the most suitable technology based on an existing
industrial set up of a regional economy is not obvious.
Furthermore, evaluating the impact in terms of reducing waste
and emissions while maintaining the same level of production in
a region is also important to inform adoption of proposed
technological solutions. In order to gain insights into these open
questions, a full-scale physical map of the whole economic region
in terms of material flows among industries, waste generation and
associated emissions is necessary. Material Flow Analysis (MFA) is
one such approach that enables comprehensive flow accounting,
thus helping to better understand how materials flow from one
industrial/human activity to another, and eventually back into
nature as emission or waste flows.3 Apart from quantifying flows,
MFAs need to be designed to make crucial connections between
economics and other engineering or social science fields.4

Economy Wide Material Flow Analysis (EW-MFA),5 such as shown

in Fig. 1, on a global scale have been performed in recent years.2

Such analyses provide a clear insight into the relationship between
consumption or production activities in the economy and
associated waste or emissions. This understanding of flow mobility
enables development of sustainable resource use strategies ranging
from identifying hot-spots for increasing production efficiencies
at a single process or an industry level to economy-wide circular
economy implementations that will reduce impacts on the
environment. Furthermore, it can inform development of policies
or technologies to reduce waste and emissions.6 While EW-MFAs
have been performed at national7 and multi-national levels,2 there
are very few studies that perform EW-MFA at regional levels with
high sectoral level resolution.8 One key reason behind lack of
mapping regional physical economies is unavailability of data at
finer spatial resolution (Fig. 1). Another reason is that the current
approach to create these MFAs is tedious and slow due to manual
collection of data and mapping to different industrial sectors.
Furthermore, reliance on empirical data in creating these MFAs
poses additional challenges of continuity, reproducibility, validation,
and increased efforts for collecting data on a sub-regional scale.
As decisions are made at a local scale for implementing
technologies for transitioning to lower waste/emissions or
meeting environmental regulations, lack of MFAs at a regional
scale lead to sub-optimal decisions or adoption of technologies
that may have unintended long term consequences.

In this work, we address these challenges by proposing a novel
integrated mechanistic–macroscopic approach. The proposed
approach uses computational mechanistic Engineering Models
(EMs) to simulate material flows at high regional and sectoral

Fig. 1 Economy wide material flow analysis at different spatial resolution (Global EW-MFA numbers taken from the circularity gap report2).
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level resolutions and connect these flows to the macroeconomic
framework of input–output (IO) models to generate detailed
material flow maps of a regional economy. Although IO models
were predominantly used by economists in the past, these are now
actively being used to quantify environmental flows and assessing
environmental impact of economic activities both at national9 and
multi-national levels.10 This use was originally envisioned by
Wassily Leontief who won the Nobel prize for proposing the IO
model.11 As envisioned originally, IO models are now increasingly
being used for performing EW-MFAs at national levels.12 However,
these studies were performed over large spatial scales as empirical
data that feed into these studies are often only available at a
country or multi-national level.13,14 On the other hand, engineers,
chemists, physicists and other physical scientists have been using
mechanistic models for a long time to simulate the physical flows
of any system as governed by first principles. We utilize the
strength of such computational models and build scaled mecha-
nistic models that mimic the material transformation processes in
various economic sectors of a given region.15 The rationale behind
this approach is that physical economy is a manifestation of
production processes, consumption of goods and waste
generation, with circular economy bringing these back into the
production cycle. Hence, the models based on fundamental mass
balance and physics-based equations that mechanistically simulate
production of various commodities and wastes can provide neces-
sary physical data without only relying on empirical data related to
outputs of an economic sector. This mechanistic approach greatly
reduces allocation challenges as material flow information can be

simulated at an individual sector level of a given region. Next, we
establish an approach that integrates the sectoral EMs with the
standard IO methods to generate Physical Supply Tables (PSTs),
Physical Use Tables (PUTs) and Physical Input Output Tables
(PIOT) that captures the material flow interactions between
industries. This enables us to develop a physical economy model
at regional levels that can be used to perform EW-MFAs and
evaluate the impact of implementing circular economy (CE) strate-
gies on waste and emissions reduction in a region at a macroscopic
scale using PIOTs. We first provide an overview of the proposed
methodology for PIOT generation and the methodology to evaluate
the impact of CE strategies in Section 2. In Section 3, we demon-
strate the application of the approach to map the physical economy
of Illinois in the year 2018 and also show the potential impact of
adopting recycling technologies for CE on overall economy-wide
waste reduction. In Section 4, we discuss the strengths, limitations
and potential for wide scale adoption of the proposed approach as
a critical bridge between engineering, physical sciences and
economics research communities for sustaining production while
minimizing waste and environmental impacts.

2 Methodology

The methodology developed in this work integrates mechanistic
EMs with the Input–Output (IO) macroeconomic framework.
The method proposed will facilitate automating and standardizing
the process of mapping physical flows among industries and waste

Fig. 2 Proposed integration of mechanistic EMs with a macroeconomic Input–Output framework for modeling physical economies and EW-MFAs.
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generation in a regional economy. As shown in Fig. 2, EMs form the
core of the methodology that can allow for automation while
integrating the EMs to the macroeconomic framework of Physical
Supply Tables (PSTs), Physical Use Tables (PUTs) and Physical
Input–Output Tables (PIOTs) allows for standardization.

There are two key steps in the method: EM development for
sectors in a region, and mapping the simulation results from
EMs to build standardized PSTs, PUTs and PIOTs. The first step
of the EM development process consists of three stages (Section
2.1): (i) identifying the economic sectors to be modeled and
mapping to economic sector codes used in a region, (ii) using
physical, chemical or physiological based mechanistic
approaches to model material transformation processes in
the identified economic sector, and (iii) scaling the developed
EM to represent material flows of the region being studied.
Once the EMs are developed and scaled to represent various
industries/sectors of a region, in the second step, the material
flow information is organized to quantify the physical economy
model using PSTs, PUTs and PIOTs which provide the physical
model of the economy (Section 2.2). This model can then be
used to study the impact of any technology introduction/
changes in a region or strategies for transition to a circular
economy as described in Section 2.3.

2.1 EM development for sectors to map regional physical
flows

2.1.1 Identifying economic sectors to develop EMs. The
first step in connecting EMs to the macroeconomic framework of
an IO model is identification of economic sectors in the region
for which we need to develop EMs. Standard classification
systems such as the North American Industry Classification
System (NAICS)16 of economic sector classification is used first
to identify economic sectors. Specifically, all economic sectors
need to be tagged at the most detailed economic sector classi-
fication system available. For the US, it corresponds to the 6-digit
NAICS code. The most detailed sector classification should be
selected to ensure the EMs developed accurately represent the
production technology of economic sectors. At higher level of
sectoral aggregation, the underlying model of production tech-
nologies get more unrealistic and only represent an averaged
material transformation process for all the sub-sectors in the
aggregated sector. Hence, finer scale of sectoral representation is
selected so that the EMs developed are reliable engineering
depictions for each sector to model material and waste flows.
If required, EMs can always be aggregated (by combining multiple
EMs) to higher levels of classification.

2.1.2 Classification and modeling the material transformation
processes using EMs. A single EM type cannot be used to model the
flows for all industries (sectors) in the economy as the underlying
material transformation processes are different for different
industries. For example, agricultural industries involve growth of
various biomass such as crops and livestock, whereas chemical
industries involve chemically transforming materials from one
form to another, while metal transforming industries involve
operations such as welding and machining. Hence, several types
or categories of EMs will be needed to capture physical flows, such

as materials and wastes, reliably for different sectors in any
region. For the US, we have developed this classification at the
6-digit NAICS code (see SI-2, Tab NAICSClassification, ESI†).
This classification will be used as a guide for the selection of a
modeling tool for developing EMs relevant to the region. All the
industries that involve growing biomass (such as crops and live
animals) were categorized as ‘‘Biomass’’ type and all the
industries involving chemical transformation were categorized
as ‘‘Process’’ type. Industries that do not perform any material
transformation but use joining/separating techniques such as
in assembly were categorized as ‘‘operations’’ type. In this
paper, three categories of EMs were used based on the scope
and variations in production technologies of the economic
sectors considered in the case study (see Section 3). After
categorizing the sectors by EM type needed, EMs are developed
using appropriate computational tools such as Python/Matlab
code for biomass growth, ASPEN/ChemCad (process modeling
software) models for process type and Python based model to
simulate operations. These EMs capture the non-linear
relationship between material inputs and outputs such as
products/wastes/emissions for the sector, which can be scaled
to represent the actual input and output flows for a sector
following the non-linear relationship. Hence, this approach can
overcome a key challenge17 of true representation of ‘‘production
technologies’’ to track material flows for a sector in any region
utilizing the mechanistic EM approach.

2.1.3 Scaling and validating EMs to represent material
flows in the economy. After selecting the economic sectors to be
modeled and developing the EMs using appropriate computational
techniques, these EMs need to be scaled to accurately represent the
material flows in the selected region and year. The EMs are scaled
using either input side or output side data. Scaling for a region and
a particular year using input or output side empirical data ensures
representation of actual sectoral operation, thus eliminating the
uncertainties in flows for mapping a physical economy. A key
advantage of using mechanism-based EMs is that it can capture
the nonlinear scaling for material and waste flows, i.e. material
input requirements may change non-linearly based on the amount
of output produced (unlike LCA or similar approaches that scale
models linearly18). A typical EM is shown in Fig. 3 along with
possible scaling variables shown in Table 1.

In Table 1, we propose ‘‘Input side’’ or ‘‘Output side’’
scaling. Whenever input scaling data in the form of commodity
consumption (as raw material or intermediate input) is available,
the material flow input data for all possible input commodities
can be used to scale EMs. Since EMs are based on underlying
production or operation methodology, it will scale the rest of the
physical flows as defined by the mechanistic rules. When only
‘‘Output side’’ information is available, scaling EMs to represent
the sector in an economy is not straightforward. This is because
most mechanistic EMs are built as ‘‘input’’ driven models.
In this case, we have proposed using a stochastic approach. A
range of input flows can be used to simulate the EMs and the
resulting output can be compared with available ‘‘output flow’’
data. This is an iterative approach; however, a reasonable level of
accuracy can be obtained. Automation of simulation allows for
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testing a vast range of input flows, which is not a challenge due
to increasing computation power availability. An example of the
output side scaling is shown in the ESI† (SI-2, Table S2).

Validation of scaled Ems. While scaling the EMs, care has to
be taken to make sure that each material flow (input or output)
associated with an EM should be a realistic representation of
the material flows in the region in order to model the true size
of the physical economy. Hence, it is recommended to cross
validate the flows against empirical data as per the availability.
If input side scaling was used and there is data on one of the
‘‘output’’ flows, the model simulation can be cross checked to
ensure that EMs have been developed correctly. In the case of
output side scaling, the validation is harder. If additional
‘‘output’’ flows such as a co-product or emissions data is
reported by sectors, that can be used for validation. If both
inputs and outputs are not available, then a decision must be
made about how to use the only available input/output data,
however such cases are rare as all industrial sectors collect
some information on input or output side flows. Since the EMs
are mechanistic in nature, if they are correctly modeled and
scaled, their outputs should be close to the ‘‘validating’’ stream
material flow information, which is calculated as % error.

Once validated, the confidence of using the EMs for modeling
physical economy at scale and reusing the EMs for different
operating scales in the economy is established.

2.2 Transforming material flow information from EMs to
PSUTs and PIOTs

In order to standardize models for mapping physical economy
and use the model for evaluating the impact of technology
interventions at an economy scale, the input and output
material flow information from scaled EMs are transformed
into PSTs, PUTs and PIOTs. PIOTs allow for standardization of
depicting physical interconnections among sectors (industries)
in an economy. IO models allow for analyzing macro-scale
economic and environmental impacts of production changes
or technology interventions.17 The data from EM provides
information about use and supply of different ‘‘commodities’’
along with ‘‘natural resource’’ use and ‘‘waste’’ generation in
the region for the modeled industrial sector (Fig. 3). The
information from EMs is then organized into Physical Supply
Table (PST) and Physical Use Table (PUT) as shown in Tables 2
and 3. The tables PST and PUT are ‘‘commodity � industry’’
with dimensions m � n (m is no of commodities and n is no of
industries). RoE is the supply and use of commodities by
industries in the rest of the economy, i.e. the sectors which
are not being modeled or are out of scope for analysis. Since,
these industrial sectors are not modeled there is not a straight-
forward way to fill this data at this stage and it is proposed to be
used as the balancing column in our approach.

In Tables 2 and 3, the data in matrices EM_IN, EM_NAT_IN,
EM_OUT, and EM_W_OUT are obtained directly from the
material flow information provided by the EMs. Additional

Fig. 3 Typical EM and various material flows associated with it.

Table 1 Typical flows available as scaling variables in an EM

Model material flow feature Type

Raw material Input
Intermediate input Input
Intermediate output Output
Commodity production Output
Waste and emissions Output
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information about exports (EX), imports (IM), and final
consumption (FC) of each commodity can be obtained from
empirical data sources such as survey data or consumption
statistics.19 The imports and exports can also be filled in
using interregional trade models.20 Once these tables are
populated using data from EM simulation and empirical data
for EX, IM and FC, the tables are checked for imbalances and
balanced to satisfy the IO framework requirement, as
discussed below.

Balancing PSUTs. As the commodities are physical entities,
for the whole region, a mass balance constraint of Total
Commodity Used (TCU) = Total Commodity Supplied (TCS)
for the whole region is applied first. This is based on the
balanced commodity flow system at basic prices from the
supply use table manual by Eurostat.21 Additionally, assuming
a steady state system or no accumulation for the industries
modeled an industry level mass balance of Total Industry Input
(TII) = Total Industry Output (TIO) is also applied. At each
industry level, using mechanistic EMs ensures that the total
mass input in an industry is equal to the mass output from the
industry, thus industry level mass balance is already ensured
via modeling. As the data in the PST and PUTs are in physical
units, the commodity level mass balance must also hold true.
Hence, we first check PSTs and PUTs for commodity level mass
balance before transforming them into a PIOT. Fig. 4 shows the
approach used to balance PSTs and PUTs.

As shown in Fig. 4, industry level mass balances are checked
first. If imbalanced, EMs are modified to ensure that the
inherent mechanistic equations used ensure mass balance. In
the next stage, all available empirical data on EX, IM and FC is
appended to the PST and PUT containing data from EMs. This is
then followed by a commodity level balance check for the region.
Since imports, exports and final demand of commodities are
already taken care of in the empirical data addition stage, the
remaining commodity imbalances are assigned to the RoE (Rest
of the Economy, i.e. industries not modeled) industry that either
supplies or uses any deficit or excess in commodities. Since the
ROE commodity adjustment may create an imbalance in the
ROE industry level balances, a slack stock variable is used (S-IN
and S-OUT in Tables 2 and 3) to account for the imbalances in
industries included in RoE. As detailed information about stocks

of commodities are not available, at this stage a simple deficit
balance is assumed.

Converting PST and PUT to PIOT. After populating all the
variables in Tables 2 and 3, and followed by balancing them
using the approach in Fig. 4, the PST and PUT are converted to
an ‘‘Industry � Industry’’ PIOT using an adaptation of the
conversion model D described in the Eurostat manual.21 Model
D assumes a fixed product consumption structure assumption
where each product has its own consumption/sales patterns,
irrespective of where it is produced, which closely matches our
economy as we trace use of commodities regardless of which
sector it is produced.21 First a transformation matrix T (indus-
try by commodity matrix) is defined (eqn (1)). T matrix can be
interpreted as the proportion contribution of each industry to
the supply of each commodity. Inter-industry flows, Z, is
calculated using eqn (2). The commodity level final demand
(FC) is converted to industry level final demand (FD) using
eqn (3) and similarly ‘‘commodity exports’’ (EX) are converted
to ‘‘industry exports’’ (EX_D) using eqn (4).

T = V�diag(TCS)�1 (1)

where V = [EM_OUT ROE_OUT]T

Z = T�U (2)

where U = [EM_IN ROE_IN]

FD = T�FC (3)

EX_D = T�EX (4)

Finally, the imports data available at a commodity level are
redistributed and allocated to sectors, final consumption and
exports (cross-hauling). The allocation was done by weighting a
sector’s or final consumption or export column’s usage of
commodity imported. For example, if a commodity ‘‘A’’ is used
20% by sector 1, 50% by sector 2, 25% by final consumption
and 5% by exports based on PUT data, then any imported
commodity ‘‘A’’ was allocated 20%, 50%, 25%, and 5% to sector
1, sector 2, final consumption and exports respectively. At the
end, these inter-industry flows, Z, and industry level FD, EX_D
and IM_D are used to construct a PIOT as shown in Table 4.

Table 2 Structure of physical use table (PUT)

Commodities Industry 1 ‘‘’’’’’’ Industry N ROE Exports FC Total commodity used

Commodity 1
‘‘ EM_IN ROE_IN EX FC TCU
’’
Commodity M
Natural resources
Natural resource 1
‘‘ EM_NAT_IN
’’
Natural resource P
Stocks (balancing slack) S_IN
Total industry IN TII

(EM_IN: material input data from EMs, EM_NAT_IN: natural resource input data from EMs, ROE_IN: material inputs from ROE, FC: commodity
final demand, EX: commodity exports, S_IN: balancing slack variable in PST, TCU: total commodity used, TII: total industry input.).
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Uncertainty quantification of material flows in economy
from Ems. Uncertainty in accounting for material flows in the
economy from EMs pertain to two sources: (1) uncertainty in a
model depicting the flows of the sector and (2) uncertainty in
the input/output data used for scaling the model to represent
total flows. These uncertainties can then propagate to the final
PSTs/PUTs/PIOTs constructed from the simulated physical
flows for sectors. In order to calculate these uncertainties,
methods such as Monte carlo etc. are used and are described
in detail in the literature.22,23 For the case of EMs, the model

uncertainty can be studied as scenario analysis using variations
in EMs for same sectors. The second case of uncertainty in
scaling data will need additional empirical data for a reliable
uncertainty propagation study similar to the work described in
the literature.22,23

2.3 Simulating impact of technology adoption for a circular
economy

The symmetric PIOTs developed can be used to perform standard
Environmentally Extended Input–Output (EEIO) analysis to study
the impact of novel technology adoption or implementing new
recycling technology on the inter-industry dependence and waste/
emissions generation for the region. EEIO models provide a
systematic way to assess environmental impacts based on dollar
based (ex: impact per USD) emission factors24 and recently, in the
work by Donati et al.25 further expanded on the EEIO approach
to study global material flows. While EEIO models were
conventionally employed using monetary IO tables (MIOTs) as
their primary source to quantify inter-industry dependencies, we
use the proposed PIOTs to quantify the dependencies.8 The flows
represented by MIOTs are prone to variability in the prices
assigned to different materials26 (purchaser’s price, producer’s
price, margins, etc.) and create further uncertainty in quantifying
material flows in an economy. Hence, to overcome such
challenges, PIOTs are used to ensure the correct representation
of material flows.27 For example, all material flows that do not
have an economic value are not accounted for in MIOTs. Whereas
in PIOTs, all flows, irrespective of their economic value are
included in the table and it removes the variability associated
with pricing of materials (e.g., a ton of steel is always a ton of steel
irrespective of the region/industry/sector using it). Finally, since
the underlying mathematical framework behind IO methodology
remains the same, we can use similar equations used in
conventional EEIO studies to simulate the impacts of final
demand in the economy on material flows. Eqn (5) shows the
change in total physical through flows for a change in Final
Demand (FD) of the specific industries in the economy. To
calculate overall impact using eqn (5), we calculate L as (I �A)�1

which is called the Leontiefs inverse (L). L quantifies the changes
in total material throughput including direct and indirect impacts
for industries (sectors) in response to per unit change in final

Table 3 Structure of physical supply table (PST)

Commodities Industry 1 ‘‘’’‘‘’’ Industry N ROE Imports Total commodity supplied

Commodity 1
‘‘ EM_OUT ROE_OUT IM TCS
’’
Commodity N
Waste flows
Waste flow 1
‘‘ EM_W_OUT
’’
Waste flow P
Stocks (balancing slack) S_OUT
Total industry IN TIO

(EM_OUT: material output data from EMs, EM_W_OUT: waste output data from EMs, ROE_OUT: material outputs from ROE, IM: commodity
imports, S_OUT: balancing slack variable in PST, TCS: total commodity supplied, TIO: total industry output.).

Fig. 4 Approach to balance PSUTs for commodity and industry level mass
balances.
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demand.17 A is called the technical coefficient matrix which is
derived using information from the Z matrix and the X column
vector (eqn (6)). X is the matrix of total useful output from each
sector, calculated as [TIO-W]. TIO and W are from PIOT in Table 4.
In eqn (6), zi,j represents each element of the Z matrix and Xj

represents each element of the column sum vector of matrix X. It
has to be noted that waste flows were not included in calculating
the A matrix since waste flows are not primary or co-products that
are used by other industries and not driving the production
process as discussed in detail in the IO literature.28 Furthermore,
the coefficients A calculated here are Regional Input Coefficients
(RICs), which capture the industrial interaction within the region.
As import data were used to separate industrial uses of
commodities between regional input and import use, it was
feasible to calculate RICs.

DX = L�DFD (5)

ai,j = zi,j/Xj (6)

Two types of structural changes can be observed as a result
of emerging technology adoption or implementation of CE
strategies. Since the A matrix quantifies the material requirements
of an industry per unit output produced (technical coefficients),
owing to the economies of scale, the A matrix may change as a
result of introducing structural changes in the economy due to
adoption of new technologies. If Ab and Aa represent the A
matrices before and after implementing CE, then the changes
in material requirements of industries to produce unit outputs
can be quantified by:

DA = Aa �Ab (7)

Since each element in the A matrix represents the requirement
of inputs per unit output, the difference between the two A matrices
will quantify by how much the input requirements change to
produce the same unit output. The other type of change can be
observed in the Leontief matrix. The L matrix before (Lb) and after
(La) technology adoption for CE implementation can provide
insights into how industrial interactions change in response to
new technology adoption for the same per unit changes in final
demands of industries. If changes in industry outputs before are
represented by DXb and after CE implementation are represented
by DXa and if the change in final demand is DFD then the

difference in change of outputs can be calculated using eqn (8).
In eqn (8), subscript DL refers to the fact that the physical changes
throughout are due to the changes in direct and indirect impact
coefficients after implementing the CE strategy.

DXDL = (La�DFD) � (Lb�DFD) (8)

This analysis allows evaluation of the impact of adopting
new recycling technology in any region by improving overall
material efficiency and reduction of waste in the economy.

Apart from studying the impact of structural changes, the
waste intensities of each sector can also be quantified. If W
represents the waste flow matrix, the waste intensity w (tons of
waste/ton) can be calculated by dividing each sector’s waste
with the sector’s output. The difference in waste intensities
before and after CE is calculated as wb � wa.

3 Results

We present a detailed mapping of the physical economy for the
major economic sectors that constitute the agro-based economy
in Illinois to establish the standardization process using the
proposed approach in Sections 3.1 and 3.2. Illinois was selected
based on prior studies8,29 where PIOTs for Illinois existed
that provided a benchmark for selection of sectors to model.
Furthermore, in Section 3.3, we demonstrate how the approach
developed in this work can be used to select recycling strategies
and evaluate the impact of adoption of recycling technology on
the Illinois agro-based sectors.

3.1 EMs for agro-based physical economy of Illinois

The major agro-based sectors in Illinois, USA were first identified
and tagged with a 6-digit NAICS code as shown in Table 5 and
the EM type was given to each sector based on the type of
material transformation processes. The EMs developed
capture all the material processing-related flows for waste and
emissions quantification in this case study, emissions and
upstream wastes related to energy consumption in sectors are
not included.

3.1.1 Modeling field crops. Field crops (EMs 1–5 in Table 5)
were modeled using Python Crop Simulation Environment
(PCSE). PCSE is a Python package for building crop simulation
models.33 PCSE provides the environment to implement crop

Table 4 Structure of physical input output table (PIOT)

Industry 1 ‘‘’’‘‘’’ Industry N ROE Exports Final demand Waste Total output

Industry 1
‘‘ EM_Z ROE_Z EX_D FD W TIO
’’
Industry N
Natural resources
Natural resource 1
‘‘ N
’’
Natural resource P
Stocks (balancing slack) S
Imports IM_D
Total industry IN TII
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simulation models which give crop yield information and much
more. Since only the crop yield data was used in this study,
other outputs such as plant phenology, respiration, and
evapotranspiration parameters that PCSE models produce are
not discussed. The PCSE simulation engine produces outputs
for daily time steps and requires four primary inputs: (i)
weather data, (ii) model parameters such as crop, soil and site
parameters, (iii) agro-management information such as
farming schedule, and (iv) custom configuration file for storing
outputs. For each of the four inputs, PCSE provides a range of
data provider options. For example, NASA power API34 was used
in this study as the primary weather data provider. The four
types of input information were obtained for each of the field
crops mapped to NAICS sectors being modeled and can be
found in the ESI† (SI-2). PCSE reports the crop yield in terms of
mass per unit area (kg per hectare). This yield data was
multiplied with the field crop area cultivated from USDA30 to
get the total crop biomass output for each field crop modeled in
Illinois, USA. This provided the input and output data for ‘‘Crop
sectors’’ at corresponding 6-digit NAICS code using a mechanistic
model and scale of operation for the year of 2018. These models
were validated using the output variable data obtained indepen-
dently from survey/census data shown in Table 6. Maximum %
error while validation was about 18%, which establishes that the
PCSE models can capture the mechanism well and represent the
scale of input/output flows associated with this sector in the
region with close to 80% coverage.

3.1.2 Modeling animal farming sectors. The hog farming
sector (NAICS 112210, EM – 6 in Table 5) was modeled using a
custom Python program that was built to simulate the animal
farming practices for the state of Illinois, USA. The model built
was based on hog biomass growth rate, feed consumption, and
overall mass balance equations. The model parameters for
capturing the mechanism of growth includes feed composition,
mass of feed intake, animal age distribution and average daily
mass gain rates for each age group. This input information was
obtained from USDA NASS.30 Validation of this model was done
using the total hog mass output of the state data.30 The EM
output shows a 26% underestimation (Table 6). However, the
EM provided enough confidence in using mechanistic models
for the animal farming sector to independently capture inputs/
outputs of these sectors in any economic region.

3.1.3 Biomass processing and chemical manufacturing
sectors. The sectors with conventional chemical processing
(EMs 7–10 in Table 5) were modeled using Aspen Plus process
modeling software. A typical process model developed using
Aspen plus involves rigorous application of mass and thermo-
dynamic balances that determine how different materials or
chemicals are transformed from one form to another. Once a
process model was developed for sectors in Aspen Plus, it was
scaled to match the material flows of the representing industry
in Illinois (Table 6). Details of models for each sector are
presented in the ESI† (SI-2). Since the only available empirical
data was used to scale the model, error % in outputs were not

Table 5 The agro-based sectors modeled in Illinois, USA

EM no. Sector name NAICS code EM type

1 Soybean farming 111110 Plant growth model – Python
2 Bean farming 111130 Plant growth model – Python
3 Wheat farming 111140 Plant growth model – Python
4 Corn farming 111150 Plant growth model – Python
5 Potato farming 111211 Plant growth model – Python
6 Hog farming 112210 Animal growth model – Python
7 Urea manufacturing 325311 Chemical process model – Aspen plus
8 Soybean crushing 311224 Chemical process model – Aspen plus
9 Soybean biodiesel 324199 Chemical process model – Aspen plus
10 Corn ethanol manufacturing 325193 Chemical process model – Aspen plus

Table 6 Scaling and validation data used for each model along with the error of scaling!

NAICS Code Sector name Scaling variables Output variables Model value Unit Validation source Error (%)

111110 Soybean farming Fertilizers used Soybean yield 5.74 � 101 bu per ac 30 10
111130 Bean farming Fertilizers used Bean yield 1.18 � 108 kg 30 5
111140 Wheat farming Fertilizers used Wheat yield 8.03 � 101 bu per ac 30 �18
111150 Corn farming Fertilizers used Corn yield 1.72 � 102 bu per ac 30 �18
111211 Potato farming Fertilizers used Potato yield 9.12 � 103 kg ha�1 NA
112210 Hog farming Hogs produced Hog mass 1.23 � 106 ton 30 �26
325311 Urea manufacturing Ammonia used Urea produced 5.36 � 108 ton Industry is very small

in Illinois (only used
for EM representation)

NA

311224 Soybean crushing Soybeans crushed Soybean oil 1.36 � 106 ton 31 0.07
— — — Soybean meal 3.15 � 106 ton 7
324199 Soybean biodiesel Soybean biodiesel Soybean biodiesel 1.53 � 102 Mgal 32 —
325193 Corn ethanol manufacturing Ethanol produced Ethanol produced 1.75 � 103 Mgal 32 —

Soybean crushing, bio-diesel and ethyl alcohol were scaled from the output side. Since the only available output data was used for scaling, it was
not used to measure the error percentages.
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reported except for the soybean crushing industry as data was
available for it (output error % of 0.07 for soybean oil produced
and 7% for soybean meal produced). The validation of the
soybean crushing EM proved that process modeling-based EMs
can represent the physical flows for industrial systems at
regional levels.

3.2 Physical model for the agro-based economy in Illinois

After validating all the EMs developed for the agro-based
sectors, the material flow information was extracted from these
scaled models to construct PUT and PST using the proposed
approach in Section 2.2. The various material inputs and outputs
of each EM provided commodity data for each industry which
were tabulated as individual columns following the structure
shown for PUT (Table 2) and PST (Table 3). The PST and PUT
constructed for the agro-based economy of Illinois are shown in
SI-1 (ESI†), Tabs-‘‘PST’’ and ‘‘PUT’’ which provide detailed
commodity use and supply in the region. The corresponding

Sankey diagrams for both the tables are shown in Fig. 5 and 6.
The PST and PUT were converted to PIOT following the approach
in Section 2.2. The PIOT captures the inter-industry dependence
for materials in Illinois (see SI-1, Tab-PIOT, ESI†). Since the EMs
developed are bottom-up and mechanistic in nature, information
such as any available elemental chemical composition of different
flows is also retained throughout the process.

All the tables, Sankey diagrams and heatmaps presented
here provide a highly detailed physical map of materials flowing
from one agro-based industry to another in Illinois. Such physical
economy models can be critically useful to better manage regional
resource usage and to track elemental use efficiencies of different
industries. The two Sankey diagrams comprehensively show how
different commodities are moving from one industry to another
and all the while interacting with nature by using raw materials and
emitting waste flows. One important and easy to see observation is
that water accounts for a significant amount of the total flows, and
the corn-ethanol and hog farming sectors had the highest amount

Fig. 5 Detailed commodity use by sectors in Illinois, USA in 2018, based on the physical use table (PUT) developed (tons).
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of waste being produced in 2018. Exact tracking of the waste flows
through modeling at an economy scale provides an approach to
automate projection of these flows in the future as well. Another
important observation is that dry corn milling (or bioethanol/corn
ethanol manufacturing) has the maximum number of input flows
and also has the highest number of output waste flows. Using these
quantitative observations about the type and amount of waste
flows, we develop a CE strategy in next section. The detailed
information on commodity flows can also be utilized to perform
sensitivity analysis of the dry corn milling industry supply chains
to study how the industry behaves if one of the many input
requirements is low in supply. The two Sankey diagrams and the
PST/PUT provides highly disaggregate material flow information at
detailed economic sector and commodity levels with exact
composition of material flows as well. Furthermore, using the
aggregate information from the PST, PUT, PIOT and Sankey
diagrams developed, key material flow characteristics of the
physical economy of Illinois has been identified as shown in
Table 7. The highest material inputs are for the urea manufacturing

sector consuming high volumes of ammonia and CO2, this also
makes urea manufacturing a key sector for carbon and nitrogen
flows and potentially a target for carbon capture technologies to
integrate with fertilizer manufacturing. The sector with the least
material flow intensity was the bean farming sector. This is due to
the low nutrient input requirement (as N fixation happens), thus
beans could be a target for sustainable food production. Lastly,
corn-ethanol manufacturing was the sector with highest number of
waste flows including water mixture with organic content (2.34 �
106 tons) and water with CO2 and ethanol mixing (1.49� 108 tons).
Given the organic content of these water mixtures, these form
targets for further treatment and recycling of both water and any
organic waste content.

Uncertainty in material flows from EMs. Among the two
sources of uncertainty, we have eliminated the study of
uncertainty due to EM by selecting the most representative
process for the sectors in the state of Illinois (see SI-2, ESI†).
This information was based on underlying mechanisms of
material transformation in the region. For example, the process

Fig. 6 Detailed commodity supply by sectors in Illinois, USA in 2018, based on the physical supply table (PST) developed (tons).
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of dry corn milling is fairly homogenized in terms of technology
in the US mid-west. Hence, for the selected year, the developed
EM was considered a close representation of processing in the
state and other technology scenarios were not modeled. Within
the scope of assumed technology/production methods,
computational models such as the EMs described in this work
are proven to simulate material flows close to experimental
data.35 Since experimental validation of each of the EM
developed can be potentially an independent study by themselves,
it was not considered in the scope of this study. However, the
outputs of EMs were compared with existing empirical data such
as government agricultural records30 wherever available and
percentage differences are reported in Table 6, providing confidence
in the estimation of material flows using these EMs.

The second source of uncertainty can arise from the input/
output scaling data provided to all the developed EMs. While
information such as coefficient of variation (CV) was provided
in some model output sources in USDA census data,30 the
required uncertainty parameters for all the input data was
unavailable to fit a probability distribution and perform
detailed uncertainty analysis such as Monte Carlo.22 Hence,
we did not quantify uncertainty propagation due to uncertainty in
scaling data. However, if such detailed uncertainty information is
available for all scaling variables, it then becomes possible to
quantify how uncertainty can propagate throughout the material
flow modeling framework to the estimation in PSTs/PUTs/PIOTs.

3.3 Identifying and quantifying the impact of circular
economy strategies

Since it was possible to capture highly detailed chemical
characteristic information of individual material flows across
the physical economy model, we used the compositions and
stream flow information to determine the recycling potential
and appropriate technologies for various waste flows. The
identified waste flows can then be recycled to implement a
circular economy strategy by selecting appropriate recycling
technology. It has to be noted that some waste flows may have
very high concentrations of a valuable chemical, but the
required recycling/extraction technology may not be available.
Hence, the available recycling technologies could constrain the real
potential of recycling and proper techno-economic assessment
(TEA) of the recycling technologies must be done for selection of
appropriate technology to be adopted at scale. However, TEA is not
the focus of our work and we assume that the technology selected is
economically viable for adoption at the required scale. If the
technology is available and viable, the waste flows can be supplied

as an input to the recycling industry where it transforms them into
valuable commodities. To study the impact of this strategy, new
EMs can be developed for the new recycling technology and
included in the PST, PUT and PIOT construction to reflect the
recycling of materials in a physical model of the economy. We
utilize this approach for transitioning the Illinois economy towards
a CE by adopting technologies for recycling industrial waste water
and hog manure, and evaluating their impact on physical material
flows in the economy along with inter-industry dependence
changes. However, we acknowledge the lack of uncertainty
quantification on material flows and waste flows that can affect
the actual impact of implementation of the CE strategies described
in this work. Therefore, the results presented only pertain to the
waste quantities (see SI-1, ESI†) modeled with particular EM
models (see SI-2, ESI†) and scaling values used.

Based on the waste data obtained from the PST (see SI-1,
ESI†), the manure flow from hog farming and industrial waste
from corn-ethanol manufacturing and soybean crushing were
identified as flows which can be potentially recyclable.
A manure recycling industry and water recycling industry was
introduced in the economy to process these streams and the
entire process of constructing PST, PUT and PIOT was repeated
as in the previous section. Each recycling sector was represented
as an EM. One EM was developed using Aspen Plus to recycle
waste-water flows coming from different sectors. The EM was
based on the work by Rajendran et al.36 where a modified
Anaerobic Digestion Model 1 (ADM 1) was used to simulate the
biochemical reactions of treating wastewater under anaerobic
conditions. The wastewater recycling EM divides the digestion
or fermentation reactions into two groups of reaction-sets: (a) the
reactions of hydrolysis operating based on the extent of
the reaction, and (b) reactions of other phases (acidogenic,
acetogenic, and methanogenic reactions) in AD functioning on
a kinetic basis. Hydrolysis is one of the rate-limiting steps in AD,
and henceforth a separate reaction-set was added. The second EM
was an operations model that empirically converted hog manure
into fertilizer, developed using a manure composting technology
assumption. Details on both the recycling EMs are provided in the
ESI† (SI-2, Tabs-‘‘Water Recycling’’, ‘‘Manure Recycling’’). Both the
EMs were scaled from the input side with each EM taking in the
waste flows it can process, data for which was available from PST
developed for mapping the waste in the Illinois economy.
This scaling was chosen as no empirical data was available to
scale the introduced recycling EMs with CE implementation
scenario. Since water is a natural resource, no industry had to
be scaled down to ensure water final demand. The major changes

Table 7 Physical economy characteristics for Illinois from PST, PUT and PIOT

Physical characteristics Industry name Value Units

Highest mass output Urea sector 5.52 � 108 tons per oper-yr
Least mass output Bean farming 1.30 � 105 tons per oper-yr
Highest known elemental C output Urea sector 1.07 � 108 tons per oper-yr
Least known elemental C output Bean farming 3.90 � 104 tons per oper-yr
Highest known elemental C input Urea sector 8.25 � 107 tons per oper-yr
Least commodity use intensity Bean farming 3.00 � 10�2 tons per ton
Highest waste flows Corn ethanol manufacturing 1.60 � 108 tons per oper-yr
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observed were the reduced dependence on water as a natural
resource by industries and the availability of recycled fertilizer
commodity that can be used by farming sectors.

During CE implementation, it was assumed that the final
demand of commodities will remain the same. This was done to
specifically understand the role of the recycling sector in
changing the material exchanges between industries in the
simulated CE physical model while meeting the same level of
production demand from the economy. Since the recycling
industry is now supplying water and fertilizer to the economy,
interaction with other industries that provide water and fertilizer
changes in the economy while ensuring that the economy meets
the same final demand even after implementing a CE. Since water
is a natural resource, using recycled water implies lower water
withdrawal from nature to meet the demand of water require-
ments to the same production level in all sectors in the economy.
As seen in Fig. 8, the input requirements of all the sectors change
as a result of introducing new technologies in the economy. This
increase or decrease in input requirements can depend on the
inherent mechanistic methods used to model and also the
economies of scale. The PIOT heatmap for the newly created
recycling economy is shown in Fig. 7 and captures these nonlinear
changes in industrial exchanges under CE implementation.

The heatmap also shows how the sectors are interacting with
each other and the newly introduced recycling sector.

It can be observed from the heatmap (Fig. 7) that the
recycling sectors, water recycling and manure recycling, is
taking inputs from corn-ethanol manufacturing, soybean oil
manufacturing and hog farming sectors. The recycling sector is
also supplying recycled materials such as water and fertilizer to
other sectors such as corn-ethanol manufacturing, soybean
biodiesel, bean farming, corn farming, pea farming, soybean
farming, and hog farming. Additionally, the recycling sector
provides biogas as a new commodity to the economy. Fig. 8
shows how the material requirements of industries to produce
a unit output changed as a result of introducing the recycling
sector. It can be observed that the farming industries (bean,
corn, peas, soybean, and hog) are now requiring fewer materials
from the remaining agro-based industries in the region and the
rest of the economy. This deficit is now being contributed by the
recycling industry. The recycling industry is also supplying
recycled water to sectors such as corn-ethanol, soybean processing
and hog farming, which reduces water withdrawal from natural
systems.

Furthermore, to study the impact of restructuring the
economy on total material requirements for meeting the final

Fig. 7 The heatmap of PIOT after implementing CE (numerical table in SI-2, ESI†).
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demand changes (FD), artificial demand pulls were simulated
using eqn (1)–(8). The marginal increase was simulated using a
vector of all ones (1 ton of products from sectors). Note that the
final demand changes for both the newly introduced recycling
sectors (water recycling and manure recycling) was assumed to
be 0, to only simulate the material requirement to meet the
demand of the original economy. This implies that these
recycling sectors are only recycling wastes and providing
commodities back to industries in the economy but not providing
outputs to consumers. Since these industries did not exist in
original economy, this assumption provides a fair comparison of
physical flows required to meet the original demands in economy.
The Leontief inverses (L) were calculated for both the baseline
scenario (Lb) and after implementing a circular economy (La).
Then changes in the physical throughput of all the industries were
calculated based on the simulated demand pull. The difference in
throughputs (DX) is shown in Table 8.

Overall, there was significant reduction in total material
throughflows for all but one sectors to meet the final demand
of 1 tons of products in the restructured economy. Sectors
showing reduction of material throughflow are soy-oil manu-
facturing (�11%), urea manufacturing (�53%), corn farming
(�56%), soybean farming (�27%), wheat farming (�8%) and
other sectors in ROE (�59%). These decreases are due to
reduced extraction of new materials and increased recycling
rate which can allow meeting the demand at a lower level of

external resource inputs. The significant reduction in throughflow
of urea manufacturing is because of the manure recycling
industry which is transforming hog manure into N fertilizer,
which reduces the dependency of other sectors on the urea
manufacturing sector, hence lower throughflow in this sector.
However, reliance on the urea manufacturing industry to also
supply N fertilizer increases the physical economies resilience to
fluctuations in the final demand of N fertilizer as there are now
two industries (urea manufacturing and the manure recycling
sector) in the economy supplying the same commodity. Since the
urea production industry has the capacity to produce more as
originally in the baseline scenario, it can ramp up its production
to pre-CE physical economy levels in case demand arises. This
makes the economy less prone to fluctuations in fertilizer demand
as compared to the baseline scenario. However, it has to be noted
it may be economically beneficial for the urea production
industry to produce at original capacity, however the trade-off
on environmental impact needs to be considered in cases when
extra production from virgin materials is not needed and regional
economy can meet demands by re-utilizing wastes. Alternatively,
this industry can utilize the extra production capacity to provide
fertilizers to ‘‘nitrogen/phosphorus’’ poor regions by exporting,
which can help in the imbalances of resource availability in
different parts of the world. Thus, a CE strategy in one region
can eventually help in equitable distribution of important
resources such as nitrogen/phosphorus for food production in

Fig. 8 Difference in input material requirements per 1000 tons of output before and after CE implementation.
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areas challenged with food poverty, while overcoming the envir-
onmental challenges arising due to run-off of nutrient wastes.37

The corn-ethanol sector shows an increase in throughflow
because of the increased indirect dependence of this sector on
other sectors through re-using water from the recycling sector and
corn-farming dependence on recycled manure. However, overall,
these recycling strategies reduced the total throughflows for the
economy as shown in the high reduction of throughflows in other
sectors.

Lastly, to understand the impact of adopting these recycling
technologies on overall waste reduction in Illinois, we show the
sector-wise reduction of waste flows after implementing a CE
strategy. In Table 9, one of the main differences we observe is
that the number of waste flows has decreased in the economy
as the recycling industry is consuming them to produce useful
commodities, which is an intuitive result. However, there is a
new waste flow in the system coming out of the recycling
industry which was not present in the baseline scenario, this
can be systematically quantified using generated PIOTs.
Although the recycling industry has its own waste, it is producing
far more quantities of useful commodities from the waste
compared to its own waste flows. There was a reduction of total
1.48 � 108 tons of waste flows in the economy as a result of
recycling while meeting the same demand from the economic
sectors in the region (waste before CE was 1.76 � 108 tons and
mass of waste after CE was 2.75 � 107 tons; the percentage
reductions in waste flows are shown in Table 9). Water recycling
used 1.55 � 108 tons of waste from corn-ethanol and 2.89 � 105

tons of waste from soy-oil while manure recycling used 4.62 �
106 tons of hog manure. After recycling, 3.07 � 104 tons of
nitrogen fertilizer and 1.17 � 104 tons of phosphorus fertilizer
were supplied by the recycling sector. Overall, the introduction of
the recycling sector reduced 496% of waste from the corn-
ethanol sector, 499% of soybean oil sector waste, and 462%
hog farming waste outputs. All this waste was despite a total of
7.14 � 106 tons of waste being generated from the water
recycling system. It has to be noted that, while it is true the
quality of the recycled material flows may be inferior to virgin
material flows, the scope of the current work assumes that the
recycled water is primarily used by industries and is not potable.
The EM model used in water recycling ensured that the water

Table 8 Change in material flows (DX) per unit change in final demand
(1 ton) across all original sectors in the economy

Sector DXbeforeCE DXafterCE Change % Change

Corn_ethanol 1.23 4.27 3.12 248
Soybean Biodiesel 1.01 1.00 0.00 �1
Soy_oil 2.99 2.66 �0.20 �11
Urea Manufacturing 10.65 5.00 �4.93 �53
Bean_farming 1.00 1.00 0.00 0
Corn_farming 8.45 3.69 �4.08 �56
Hog_farming 1.12 1.12 �0.15 0
Soybean_farming 5.05 3.71 �1.11 �27
Potato_farming 1.00 1.00 0.00 0
Wheat_farming 1.15 1.06 �0.08 �8
ROE 50.66 20.81 �26.10 �59
Water_Recycling 0.00 3.03 3.03 100
Manure_Recycling 0.00 0.07 0.07 100
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output meets standard requirements (all organic contaminants,
particulate matter, and volatile solids removed) to be reused by
industries. In the case of recycled hog manure as fertilizer,
elemental nutrient mass requirements were considered when
using the recycled manure as fertilizer. For example, 1 kg of
nitrogen from urea being used by crop farming sectors was
replaced by 1 kg of nitrogen from recycled hog manure, hence
the equivalent functional substitution was ensured.

4 Conclusion

The integrated bottom-up approach developed in this work by
utilizing mechanistic EMs to simulate material transformations
and using the extracted data in a standardized IO framework to
create PSTs, PUTs and PIOTs proved to be a comprehensive
technique to account for economy-wide material flows without
overly relying on empirical data. The only empirical data used
was in validating and scaling the models. Once validated, the
same EMs can now be used for other regions or to find material
flows in consequential scenario assessments, thus making this
approach highly reproducible. Hence, this approach solves a
long-lasting issue of lack of standardized techniques for
mapping material flow in the economy. In previous work, to
build a regional physical economy model as PIOTs, an empirical
approach was taken by Singh et al.8 for nitrogen flows and only
process models with manual mapping was used in Wachs &
Singh.29 Both these earlier approaches prove to be tedious in
mapping the data and were limited in scope such as lacking
standardization/reproducibility for modeling the physical economy.
Hence, this work provides a novel and significant advancement to
previous approaches to build PIOTs by establishing an approach
that allows automation and standardization of integrating
mechanistic models for all type of sectors that was not feasible in
tedious empirical and manual mapping work. Here, we have shown
how mechanistic physics-based modeling approaches can be
effectively used to simulate material flows across different
industries in a region and map the physical economy in a
standardized framework. Thus, this work also fills a critical gap
of lack of computational approaches for evaluating the economy
wide impact of emerging technologies or adoption of a new
technology in a region on overall material changes and waste flows.

Since the final output of the approach is in the form of PSTs,
PUTs and PIOTs, the approach is also compatible with other
existing top-down and hybrid flow accounting techniques
widely used in industrial ecology for assessing the economic
and environmental impact of demand changes.38,39 Finally, as
demonstrated in the case study, the established approach can
have wide ranging applications such as: providing detailed
insights into sectoral dependence on different material flows,
and sectors with the highest waste flows and streams with the
potential for recycling technologies adoption that can be simulated
to evaluate the overall impact on reducing environmental impacts
of the regional production system.

Thus, our approach can feed into the growing emphasis on
using regional material flow data to perform circular economy

implementations.25,40–42 In the work by Donati et al.,41 the
authors use a framework of supply using tables to account for
waste supplies from different sectors at a city level relying on
empirical data for highly aggregate sectors. The approach
presented in this work can supplement the data needs of the
framework of using supply use tables used in the work by
Donati et al. as well as to make the approach reproducible for
other sectors and regions, thus reducing the time effort for
building PST and PUTs. There is also work on the use of an IO
supply use table approach to model material flows and circular
economies,25 however reliance on monetary EEIO tables to map
global material flows may provide biased results as monetary
tables are generally not an accurate description of physical
economies. The work presented here overcomes this challenge
by generating the physical A matrix as explained in the method
section. Thus, our approach can also overcome a significant
challenge for data generation over time to map physical economies
reliably. In the future, the approach on reuse, recycling and
refurbishing presented in Donati et al.25 can be combined with
our work using physical A matrices. Overall, the approach
presented in this work addresses the challenge of physical
models for the economy in the current literature by both
making the approach highly reproducible and relying on a
technical coefficient matrix derived from purely physical flows
based on mechanistic models for material conversion in sectors.
Sharing of EMs will allow fast generation of physical economy
models for other regions as well. Since, the EMs can be validated,
errors on modeling a region can be easily checked and iteratively
improved for accuracy which is not feasible in current empirical
approaches. Furthermore, these EMs should be simulated with a
range of values to capture the uncertainty in material flows in the
economy that can provide insights into variations in the impact
of recycling strategies. Updating the EMs to reflect changes in
technologies will also allow the study of scenarios of adoption of
emerging technologies in various sectors.

Apart from addressing the challenges in the literature, the
authors believe that the work presented here pushes the
boundary of material flow accounting methods by inviting
mechanistic modeling researchers using physics, chemistry,
and biological models along with process systems engineering
community to integrate their work with a macroeconomic
framework to account for large scale economy-wide impact of
emerging technologies. With growing computational power
and increasing use of machine learning to develop process/
materials/physical models,43,44 the approach presented here
can act as a blueprint for automation of mapping materials
flows in the economy from any computational model derived
data. For example, once a large number of models are developed
using different techniques to represent all sectors in the
economy, all the material flows can be mapped at a global/
country/state level, providing a truly collaborative effort to solve
the challenge of environmental impact of waste generation and
design of sustainable technologies.

We discuss more about this idea of collaborative and auto-
mated effort of simulating large scale economy-wide material
flow data in another work focused on cloud-based PIOT-Hub.
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The PIOT-Hub45 uses a Python based automated tool called
Material Flow Data Extractor and Simulator (MFDES) at the
backend46 to implement the proposed approach. This cloud-
based platform at scale will provide the computational tool for
a global effort to map physical economy using the approach
presented in this work, similar to large scale efforts of mapping
the human genome. This tool will be available to researchers
for non-commercial use via Purdue’s MyGeoHub platform to
comply with license restriction (https://mygeohub.org/piot).
Recently, an effort to map global physical flows in a virtual
laboratory has been made using a top down approach,47 which
can be complemented with the approach presented in this
work. We envision that these physical maps of the local/global
economy will enable us to function within the constraints of
planetary limits48 by connecting anthropogenic material flows
with ecological and planetary mass flows.
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