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Glass-ceramic materials with composition 0.9Nd**-80Si0O,-20LaFs were successfully obtained and further
heat-treated at 450 °C for 6 h. Stable and homogeneous LaFs nanoparticle suspensions with and without
Nd** were first prepared by a chemical route, incorporating polyvinylpyrrolidone (PVP) as dispersant. The
suspensions were then concentrated and characterised by XRD, HRTEM and zeta potential, confirming that
LaFs crystallises as the only phase, with particle size around 16 nm. The suspensions were incorporated in a
silica sol to obtain a 0.9Nd**-20LaFs—80SiO, particulate sol, xerogel and glass-ceramic. HRTEM confirmed
the homogeneous incorporation of the doped nanocrystals into the SiO, matrix without modification of the
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nanoparticle structure. Rietveld refinement was used to determine the crystallinity and quantity of LaFz nano-
particles present in the glass-ceramic after treatment of the particulate sol at 450 °C for 6 h. Luminescence
DOI: 10.1039/d0ma00708k measurements of near infrared Nd** ion emissions in the lanthanum fluoride nanoparticles and SiO,-LaFz

glass-ceramic showed well-structured emission spectra with lifetimes similar to those of theoretical Nd** in
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Introduction

Glass is a key material with a wide range of applications,
ranging from traditional glassware products to advanced
optical materials. Optical transparency in an extended spec-
trum, chemical durability, and manufacturability render glass
optimal for producing materials of different shapes. In addi-
tion, significant improvements in certain properties may be
achieved on preparation of glass ceramics (GCs) through
controlled crystallisation.

S. D. Stookey first developed a glass-ceramic named Fotoceram
in 1957, later called Pyroceram,” coining the term glass-ceramic
and defining it as: “..made by first melting and forming special
glasses containing nucleating agents and then causing controlled
crystallization of the glass particles”.> For many years, this definition
only included materials containing more than 50% of crystals.
However, GCs with lower crystal fraction have also been developed
in the last 60 years. The definition was updated after the “12th
International Symposium on Crystallization in Glasses and Liquids”,
organized by TCO07 of the International Commission on Glass (ICG),
to include different technologies and processing methods.
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“Glass-ceramics are inorganic, non-metallic materials prepared
by controlled crystallization of glasses via different processing
methods. They contain at least one type of functional crystalline
phase and a residual glass. The volume fraction crystallized may
vary from ppm to almost 100%".>

Particular attention is currently devoted to the preparation
of oxide glasses containing fluoride nanocrystals (NCs). Such
materials, known as oxyfluoride glass-ceramics (OxGCs), were
obtained for the first time in 1998 by Dejneka (1998). Fluoride
nanocrystals add unique properties to oxide glasses, making
them attractive for photonic applications. They combine the
very low phonon energy (300-450 cm ™ ') of fluoride nanocrys-
tals with the high chemical, mechanical and thermal stability
of the glass matrices, thereby increasing the luminescence
efficiency.”® The resulting oxyfluoride glass-ceramics have
notable advantages compared with pure glass or ceramic
materials. The LaF;-SiO, system has been investigated due to
the behaviour of the LaF; crystals as rare-earth (RE) hosts. LaF;
has superior solid solubility compared with other fluoride
crystal phases.”®

Among the different techniques employed for the prepara-
tion of OxGCs, glass melting-quenching (MQ) is the most
relevant. However, high melting temperatures (1400-1700 °C)
cause significant fluorine loss, limiting the final fluorine
content of the crystal phase and resulting in uncontrollable
compositions with respect to fluorine and lanthanide (Ln’")
ions. Many researchers have proposed alternative processing
methods to overcome these limitations® such as Spark Plasma
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Sintering (SPS). The preparation of xZrO,-(100-x)SiO, glass-
ceramics by SPS with a high content of crystalline phase (higher
than 45 mol%)'® has been reported, but LaF;-SiO, materials
have not yet been reported. Moreover, the SPS process is rather
expensive and the size and shape of samples are quite limited.'

On the other hand, the sol-gel process is a promising route
for production of glass-ceramic materials, which avoids the
drawbacks of melting-quenching, with the versatility to allow
differently shaped products such as thin films, powders, and
bulk materials obtained at low temperatures. Further advan-
tages of the method include homogeneity and high purity of
the resultant materials. However, sol-gel was not widely
applied for glass-ceramic processing until significant improve-
ments in structural and optical properties appeared in the late
nineties. Precise control of the synthesis and crystallisation
process is required to obtain transparent oxyfluoride glass
ceramics, which avoids both uncontrolled particle growth and
the formation of undesirable phases. Careful process design is,
therefore, critical for obtaining well-ordered, transparent, and
efficient optical glass-ceramics.

The most studied oxyfluoride compositions prepared by sol-gel
are LnF; (Ln = La, Y, Gd) and RLnF, (R = Na, K, Li; Ln = Gd, Y),
doped with different rare-earth (RE*") ions (Er*", Eu**, Nd**, etc.)."""?

The first papers reporting the processing of pure LaF; on
silica glass substrates by sol-gel were published in 1998 by
Fuhijara and Tada (1999), who showed that control of the
synthesis parameters and heat-treatment were essential to
obtain transparent LaF; materials avoiding the precipitation
of other phases such as LaOF.****

Up to 2018, the literature typically reported the preparation
of oxyfluoride glass-ceramics with nominal contents of 5-10 mol%
of active crystal phases, with little innovation related to synth-
esis and processing conditions.">"® Nevertheless, in the past
decade, the GlaSS Group of the Instituto de Ceramica y Vidrio
(CSIC) has optimised the sol-gel process to obtain oxyfluoride
glass-ceramics with high active-phase contents (up to 20 mol%)
by sol-gel. Quantitative Rietveld refinement of 80SiO,-20LaF;
bulk samples doped with 0.5Er*" and treated at 550 °C for 1 min
indicated a crystal fraction ~18 wt%,'® the highest reported
in the literature for transparent oxyfluoride glass-ceramics
prepared by sol-gel and the highest compared to any glass-
ceramics prepared by melting. However, photoluminescence
emission and excitation spectra of SiO,:LaF; samples exhibited
only a few, broad structured bands due to the small size of the
nanocrystals (~2 nm for thin films and 8 nm for bulk samples).
Gorni et al."® proposed that the weak luminescence properties
are due to uncontrolled nucleation and growth of the LaF;
crystals in the sol-gel matrix, because, at high temperatures,
the crystals tends dissolve and reach chemical-potential equili-
brium. It is essential, therefore, to improve the optical proper-
ties by obtaining larger nanocrystal sizes, which is difficult
using current synthesis methods based on a two-step chemical
process.

An alternative, recently proposed procedure to obtain glass-
ceramics is the production of nano-crystalline powders
followed by their dispersion in a sol-gel matrix. Although this
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method is promising, the luminescence studies are not
conclusive.'®

The aim of the current work is the preparation of Nd**
doped-LaF; nanoparticle suspensions and their incorporation
into silica (SiO,) sols prepared by acid catalysis. The dispersion
of the nanoparticles and stability of the LaF; and LaF;-SiO,
suspensions were studied, confirming that LaF; appears as the
only crystalline phase. Xerogels and glass-ceramic powders
were produced by thermal treatment and characterized by
different techniques with promising luminescence results.

Experimental
Synthesis of LaF; and Nd**:LaF; nanoparticle suspensions

Lanthanum chloride (LaCl;, Alfa Aesar) and ammonium fluor-
ide (NH,F, Merck) were used as reagents without further
purification and mixed with deionized water to a La*" concen-
tration of 0.04 M."” The solution was maintained at 75 °C for
2 h with continuous stirring to obtain the LaF;-0.04 M nano-
particle suspension with a final pH = 7. Following the same
process, neodymium acetate (Nd(CH3CO,);, Alfa Aesar) was
added to NH,F/LaCl;/H,O solution in a molar ratio Nd*'/
LaCl; = 0.9. The solution was maintained at 75 °C for 2 h under
continuous stirring to obtain a 0.9Nd**-LaF;-0.04 M nano-
particle suspension.

Polivinylpirrolidone (PVP) dispersant was added to LaF;-
0.04 M and 0.9Nd**-LaF;-0.04 M nanoparticle suspensions
with concentrations of LaF; nanoparticles in the range 1-10 wt%.
Subsequently, the LaF;-0.04 M and 0.9Nd*"-LaF;-0.04 M sus-
pensions were sonicated using an ultrasound probe (Ultraso-
nication Probe, GM 2200, Bandelin electronic, Germany) for 2
min. The resulting suspensions were labelled as LaF;-0.04
M-PVP(X) or 0.9Nd*'-LaF;-0.04 M-PVP(X), where X indicates
the wt% of added PVP.

All the suspensions were concentrated using a rotary eva-
porator (R-210 with vacuum pump V-700, Buchi) to reach a
concentration of 0.25 M, and labelled as LaF;-0.25 M-PVP(X)
and 0.9Nd*'-LaF;-0.25 M-PVP(X).

Characterisation of Nd**-LaF; nanoparticle suspensions

The dispersibility and stability of a LaF;-0.04 M nanoparticle
suspension was studied through the variation of zeta potential
as a function of pH using a Zetasizer Nano ZS instrument
(Malvern S, UK). Suspensions of different pH in the range 3-12
were prepared on addition of nitric acid (HNO;, Sigma Aldrich)
and tetramethylammonium hydroxide (TMHA, Merck) then
stabilised for 12 h.

Particle size was also measured as a function of wt% PVP
for LaF;-0.04 M-PVP(X) nanoparticle suspensions (X=1, 3, 5, 7,
9 and 10) using the Zetasizer Nano ZS instrument.

LaF;-0.04 M and 0.9Nd**-LaF;-0.25 M-PVP(X) suspensions
were centrifuged at 6000 rpm for 5 min, and the resulting
powders rinsed with deionized water; the process was repeated
three times to remove all the organic components. Powders
were further dried at 80 °C for 12 h and characterized by X-ray

This journal is © The Royal Society of Chemistry 2020
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diffraction (XRD). Diffractograms were acquired in the range
20-70° 20 with a step size of 0.02° and 1 second of integration
time using a D8 Advance diffractometer (Bruker, MA). The
crystal size was calculated by applying Scherrer’s equation,

KA

r= (B—b)cosf

where 1 is the wavelength of Cu Ka radiation (4 = 0.15405 nm),
B the full width half maximum of the LaF; peak at 26 = 44°,
0 the corresponding diffraction angle and b the correction of
the instrument; the constant factor, K, corresponds to spherical
crystals and a value of 0.94 is commonly adopted.

High Resolution Transmission Electron Microscopy
(HRTEM) and Energy-dispersive X-ray spectroscopy (EDX)
were used to characterize 0.9Nd*'-LaF;-0.04 M and 0.9Nd*'-
LaF;-0.25 M-PVP(X) nanoparticles dried at 80 °C for 12 h and
redispersed in ethanol employing a JEOL 2100F microscope.
The samples were prepared by dropping the suspensions onto a
carbon-coated copper grid (Lacey Carbon, LC-200-Cu 25/pk).
HRTEM images were processed using Image]® software. The
lattice parameters of LaF; nanoparticles in 0.9Nd**-LaF;-0.25
M-PVP(10) were determined from the corresponding electron-
diffraction pattern.

The crystal fraction of 0.9Nd*'-LaF;-0.25 M-PVP(10) nano-
particles in a glass ceramic treated at 450 °C for 6 h was
estimated by the Rietveld method as described previously®
using the FULLPROF program,'® with NaF as internal weight
standard in an appropriate quantity (5 wt%). The XRD data
were collected in the range 20° < 26 < 120° in a step width of
0.0167° employing a PHILIPS X-PERT PRO 60/26 diffractometer
operating at 45 kV and 40 mA.

Synthesis of 0.9Nd**-20LaF;:808i0, particulate sols

20LaF;-80SiO, particulate sols (weight relation 80/20 between
SiO, and LaF;) with and without Nd*" doping were prepared
from 14.5 ml of tetraethyl orthosilicate (TEOS, Sigma Aldrich)
and 13 ml of methyl-triethoxysilane (MTES, ABCR) mixed with
continuous stirring under ambient conditions. Subsequently,
28 g of a concentrated suspension of 0.9Nd**-LaF;-0.25
M-PVP(X) nanoparticles was incorporated and concentrated,;
hydrochloric acid (HCl, Sigma Aldrich) was then added under
vigorous stirring to produce the hydrolysis and condensation
reactions,'” and achieve 0.9Nd**-80Si0,:20LaF;-PVP(X) parti-
culate sols on rapid cooling in ice baths for one minute; a
final concentration of 171 g 1" * SiO, was attained on diluting
with 11 ml of absolute ethanol.

Two further sols of composition 0.9Nd**-5LaF;:955i0, and
0.9Nd*"-10LaF;-90Si0O, were also synthesised following the
same process, incorporating the corresponding molar ratios
of 0.9Nd*"-LaF;-0.25 M-PVP(10) nanoparticle suspensions to
TEOS and MTES solutions.

Characterisation of 0.9Nd**-20LaF;:80Si0, materials

The stability of the 0.9Nd>*-80Si0,:20LaF; particulate sols was
determined using an AND Vibro Viscometer on measuring the
viscosity once a day for five days.

This journal is © The Royal Society of Chemistry 2020
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Differential thermal analysis (DTA) and thermogravimetric
analysis (TGA) were performed with a SDT Q600 instrument (TA
Instruments, New Castle, DE, USA). Approximately 15 g of
0.9Nd**-20LaF;:80Si0, xerogel, dried at 80 °C for 12 h, was
measured in air from room temperature to 800 °C with a
heating rate of 10 °C min™ .

The compositional and morphological characterization of
the xerogels and glass-ceramics obtained from particulate sols
was performed by HRTEM and EDX spectroscopy (JEOL 2100F).
The 0.9Nd*'-20LaF;:80Si0, particulate sol was dried and trea-
ted at 450 °C for 6 h. The powder was re-dispersed in ethanol
and a drop of the suspension deposited onto carbon-coated
copper grids (Lacey Carbon, LC-200-Cu 25/pk); the size distri-
bution of the particles was determined using Image]® software.

The quantitative crystalline fraction of 0.9Nd**-20LaF;:80-
SiO, samples treated at 450 °C for 6 h was determined by the
Rietveld method using the parameters and internal weight
standard indicated earlier.

Optical characterisation of LaF; nanoparticles and Nd**-LaF;-
SiO, glass-ceramics

0.9Nd*"-LaF;-0.25 M-PVP(10) nanoparticle suspensions with-
out any additive were dried at 80 °C and treated at 450 °C before
pressing in a uniaxial press for 3 min at 1000 MP for lumines-
cence analysis. The final compact samples were excited with a
tuneable Ti-sapphire ring laser (0.4 cm™" linewidth) in the 770~
920 nm spectral range. The emitted light was analysed with a
single grating monochromator (focal length 0.25 m), detected
by an extended IR Hamamatsu H10330A-75 photomultiplier,
and amplified by a standard lock-in technique. Luminescence
decay curves were obtained by exciting the samples with a Ti-
sapphire laser pumped by a pulsed frequency-doubled Nd:YAG
laser (9 ns pulse width), and detecting the emission with a
Hamamatsu H10330A-75 photomultiplier. All measurements
were performed at room temperature.

Optical characterisation of the glass-ceramics was per-
formed by luminescence measurements on samples of
0.9Nd*'-5LaF;:955i0,, 0.9Nd*'-10LaF;:90Si0, and 0.9Nd*'-
20LaF;-80Si0, powders treated for 6 h at 450 °C and then
pressed at 1000 MP for 3 min. The steady-state emission spectra
and luminescence decay curves were collected as
described above.

Results and discussion

Characterisation of LaF; and Nd;.:LaF; nanoparticle
suspensions

Fig. 1a shows the variation of zeta potential as a function of pH
for the LaF;-0.04 M nanoparticle suspension from an initial pH
of 7, corresponding with a zeta potential of —22 mV. The
addition of HNO; modified the zeta potential to more positive
values, from —22 mV (pH 7) to 10 mV (pH 3), reaching the
isoelectric point (¢-potential = 0) at a pH of 4.8. On the other
hand, the zeta potential remains practically constant, ~—25 mV,
with the addition of TMAH. The variation of the zeta potential

Mater. Adv., 2020, 1, 3589-3596 | 3591
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Fig. 1 (a) Variation of the ZP (Mv) of LaFz—0.04 M nanoparticle suspensions

as a function of pH and (b) variation of the zeta potential and particle size of
LaFs—0.04 M nanoparticle suspensions at pH = 7 as a function of PVP wt%.

provides information on the stability of the nanoparticle suspension,
which greatly depends on the pH. A high zeta potential, in absolute
values, often indicates more stable suspensions, hence a pH of 7 was
selected to prepare the LaF;-0.04 M nanoparticle suspension,
corresponding with a zeta potential of —22 mV.

Zeta potential and particle size of LaF;-0.04 M nanoparticle
suspensions at pH 7 were measured as a function of PVP wt%,
Fig. 1b. Although a slight decrease of the zeta potential is
observed up to 3 wt% PVP, it remains constant, around
—35 mV, with the increment of PVP. However, as observed in
Fig. 1b, the hydrodynamic particle size of the nanoparticles
decreases with the addition of PVP. In general, the addition of
PVP to LaF;-0.04 M-PVP(X) nanoparticle suspensions produces
a significant increase in its stability, related to the repulsive forces
from the hydrophobic carbon chains of the PVP molecules.'
In comparison with previous works of G. Gorni et al.,'® starting
from a two-step process with further precipitation of NP,
larger particle sizes have been obtained using this new method.
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View Article Online
Materials Advances
-------- LaF3 Reference

LaF,_0.04M
Nd*'-LaF,-0.25M-PVP

0,8+
/3 T=12,5 nm
f /

M /

| /|
‘ KV"NM,,M“’M‘LWMWW “

ot

o
=)
1

Intensity
o
ES
L

024

0,0

T . - I. - T T - —
20 30 40 50 60 70
26

Fig. 2 XRD patterns of LaFs—0.04 and Nd**~LaF3-0.25 M—PVP(10) nano-
particle suspensions dried at 80 °C for 12 h.

No limitation to crystal growth occurs because crystallization
occurs in the liquid phase and the ion mobility facilitates the
diffusion and growth of NPs. A maximum hydrodynamic size of
27 nm was obtained, which is an order of magnitude greater than
that reported by G. Gorni.>* Concentrations of 0 and 10 wt% PVP
were selected to prepare the corresponding suspensions that were
later added to the SiO, sol.

Fig. 2 shows the XRD patterns of LaF; nano powders
obtained after drying the LaF;-0.04 M and 0.9Nd**-LaF;-0.25
M-PVP(10) suspensions at 80 °C. The XRD analysis revealed
crystallisation of LaF; with hexagonal symmetry (JCPDS 03-1013);
no other crystalline phases were detected. The desired crystal-
lisation was achieved for the LaF;-0.04 M suspension as well as
for the doped and concentrated suspensions. This confirms
that nanocrystal growth is affected neither by the incorporation
of the rare-earth acetates nor by the dispersant. Moreover, the
nanocrystals remain stable in size after the concentration of the
suspensions from 0.04 to 0.25 M in the rotavapor.

The particle size (T) of the powders determined using the
Debye-Scherrer equation, was 12 and 15 nm respectively, much
higher than particle sizes reported in the literature.>*>*

0.9Nd**-LaF;-0.04 M and 0.9Nd*"-LaF;-0.25 M-PVP(10) NP
suspensions were dried at 80 °C and analysed by HRTEM to
complete characterisation of the morphology. Fig. 3a shows
the presence of aggregated LaF; nanoparticles with a tubular
form and average size, ~18 nm. In the case of 0.9Nd>*~LaF;-
0.25 M-PVP(10), the increase in concentration from 0.04 to
0.25 M produces greater aggregation of the LaF; nanoparticles
(Fig. 3b), although the morphology and the particle size
remained constant. The crystal phase was analysed with the
Image]™ software (Fig. 3c), giving a planar distance (d spacing)
of 0.325nm, which corresponds to the lattice distance between
the (101) planes of the LaF; hexagonal phase. A Fast Fourier
Transform (FFT) also performed with Image]®, Fig. 3(d), shows
the corresponding diffraction rings and white spots in the
electron-diffraction pattern where (101) is identified at 20 = 27.42°.

Fig. 3e shows the EDX analysis of the 0.9Nd**~LaF;-0.25 M-
PVP(10) sample corresponding to the area shown in Fig. 3c. The
chemical analysis reveals the presence of F, La and Nd, provid-
ing clear evidence of Nd*" incorporation in the nanoparticles.

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 HRTEM images of (a) Nd>*-LaFz;—0.04 M powder and (b) Nd**—
LaFs—-PVP(10)-0.25 M powder (c) single nanocrystal showing a lattice
spacing of 0.325 nm for sample 0.9Nd**-LaFs—0.25 M—PVP(10) (d) FFT
pattern corresponding to (c) and (e) EDX analysis of the region.

Quantitative Rietveld refinement of LaF; (not shown) was
performed for 0.9Nd*'-LaF;-0.25 M-PVP(10) nanoparticles
treated at 450 °C for 6 h. A crystallised fraction of 13 wt%
was determined, below that expected and indicating that the
LaF; nanoparticles are highly amorphous. It should also be
considered that a lower limit of detection occurs when the
peaks become so broad due to the small particle size that they
disappear into the background radiation. Although there is no
exact limit to define when this occurs, particles of low size are
likely to appear amorphous and special conditions such as a
slow stem scan are required.

Characterisation of 0.9Nd**-20LaF;:80Si0, particulate sol

The stability of the sol with time was studied through the
evolution of viscosity. Fig. 4 shows the variation of the viscosity
with aging time of the 0.9Nd**-20LaF;:80Si0, particulate sol up
to its gelification. The initial viscosity, measured two hours
after the sol synthesis, was 4.1 mPa s. increasing to 4.2 mPa s.
after 42 hours. During the following days, the viscosity was
measured once per day achieving a value of 8.5 mPa s on the
fifth day, before gelation occurred the following day. Although
these values are high for depositing thin films, they are suitable
for producing xerogels in a shorter time from stable sols.

Fig. 5 shows the DTA and TGA analysis for the 0.9Nd*'-
20LaF;:80Si0, xerogel measured in air. Weight loss occurs
in four different steps. The first step, around 25-100 °C, is

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Variation of the viscosity of the 0.9Nd**-80Si0,:20LaF5 particu-
late sol as a function of aging time up to the gelification point.

associated with an endothermic process at 76.7 °C, corres-
ponding to the elimination of water and adsorbed ethanol,
confined in large pores. The OH groups of the silica network
generate hydrogen bridges, increasing the energy required
to desorb the ethanol and water.>® The second step, between
100-200 °C, is usually assigned to the evaporation of solvents
absorbed in small pores. The combustion of remaining organic
material is responsible for the third step, occurring in the range
250-500 °C, along with final elimination of trapped solvents
and water molecules in nanopores up to 500 °C.>* A sharp
exothermic peak at 607 °C appears associated with the final
weight loss event, corresponding to the crystallisation of LaOF,
as confirmed by XRD (not shown).

The structural characterisation of LaF; nanoparticles
incorporated in the 0.9Nd**-20LaF;:80Si0, particulate sol was
analysed by HRTEM. Fig. 6a shows the HRTEM image of
the 0.9Nd*>"-20LaF;:80Si0, sample treated at 450 °C for 6 h,
showing well-dispersed nanoparticles. The average particle size
is ~16 nm according to the size distribution given in Fig. 6b.
This particle size is consistent with that determined by XRD
and HRTEM (Fig. 2 and 3). Furthermore, the LaF; nanoparticles
maintained their oval shape after incorporation into the silica
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Fig.5 TGA and DTA analysis of the 80 °C-12 h dried 80SiO,:20LaFs
particulate sol.
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Distance (nm)

sol. Fig. 6¢c shows a planar distance of 0.32 nm corresponding
to the (101) plane for the nanocrystalline particles, similar to
that of the 0.9Nd>*~LaF; nanoparticles before their incorpora-
tion into the silica sol. Fig. 6d confirms the presence of Nd
accompanying La and F, measured by STEM analysis.

It is confirmed that no new crystallisation process occurs,
and that the shape and size of the LaF; nanoparticles are not
affected either by incorporation into the silica sol or by the heat
treatment at 450 °C for 6 h. Incorporation in the silica matrix does
not produce agglomerations or growth of the nanoparticles.

Quantitative Rietveld refinement of the 0.9Nd>**-20LaF;:80-
SiO, glass-ceramic treated at 450 °C for 6 h provided a weight
fraction of 5.2 wt% of crystalline phase (Fig. 7). Considering the
low crystalline fraction obtained for the nanopowders of LaF;
(13%), it is likely that incorporation in the silica sol and further
thermal treatment increases the average particle size and
improves crystallisation of the NPs, leading to a higher relative
crystalline fraction.

Optical characterisation of Nd**:LaF; nanoparticles before and
after their incorporation in a silica matrix

The near-infrared emission spectra corresponding to the
4F*? - 41"V laser transition were obtained for all samples
at room temperature by exciting at 786 nm in the 41°% — 4F*/>
absorption band. Fig. 8a shows the emission spectrum of the
0.9Nd**-LaF; nanoparticle suspension treated at 80 °C, together
with the experimental decay of the 4F level. The emission
spectrum shows similar spectral features to the Nd** emission of
the LaF; crystal. However, the experimental decay of the 4F*? level
obtained under excitation at 786 nm with collection
of luminescence at 1064 nm shows a different behaviour.
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Fig. 7 Observed (red circles), calculated (continuous black line) and
difference (continuous blue line) X-ray diffraction profiles of 0.9Nd>*—
80SiO,:20LaF3 particulate sol powders treated at 450 °C for 6 h with 5%
NaF as internal standard. The Bragg peaks of NaF and LaFs are indicated by
top and bottom vertical bars, respectively.

The decay deviates from a single exponential function and the
lifetime is unexpectedly short. The average lifetime.

 Jo I (n)dr
[ I(nde

where I(t) represents the luminescence intensity at time ¢
corrected for the background, is reduced to 61 ps.

On the other hand, the near-infrared emission spectrum of
0.9Nd**-LaF; nanoparticles treated at 450 °C for 6 h (Fig. 8b)
shows a series of peaks with emissions of comparable intensity,
around 1047 and 1064 nm. The spectral features correspond
to the emission of Nd*' ions in LaF;,>® which confirms the
incorporation of the rare-earth ion in the LaF; NPs. Moreover,
the fluorescence decay curve of the 4F*2 level obtained under

(@
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Fig. 8 (a) Emission spectrum of 0.9Nd*"—LaFs nanoparticles treated at
80 °C and corresponding semi-logarithmic plot of the experimental decay
under excitation at 786 nm collecting the luminescence at 1064 nm. (b)
Emission spectrum of 0.9Nd*—LaFs nanoparticles treated at 450 °C for
6 h obtained under excitation at 786 nm and corresponding semi-
logarithmic plot of the experimental decay obtained after excitation at
786 nm collecting the luminescence at 1064 nm.
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Fig. 9 Emission spectrum of 450 °C~6 h 0.9Nd>*-80SiO,:20LaFs sol and
its corresponding semi-logarithmic plot of the experimental decay under
excitation at 786 nm collecting the luminescence at 1064 nm.

excitation at 786 nm on collecting the luminescence at 1064 nm
can be described to a good approximation by a single exponen-
tial function with a lifetime of 528 ps, which is close to the
lifetime reported for Nd*" in a LaF; crystal (522 ps). These
results unambiguously confirm the incorporation of Nd** ions
in the LaF; NPs.

The lifetime of NPs treated at 80 °C is nearly one order of
magnitude shorter than that observed in the NPs heat treated
for 6 h at 450 °C. This strong quenching of the lifetime could
be related to the presence of aggregated LaF; nanoparticles;
however, this is not appreciated in the HRTM micrographs.
The most probable explanation is that NPs treated at 80 °C
still contain a high percentage of PVP, which is eliminated on
treatment at 450 °C.

For the 0.9Nd**-20LaF;:80Si0, sample treated at 450 °C for
6 h, both the emission spectrum and the lifetime (Fig. 9)
correspond to those obtained for LaF; NPs with the same
treatment. This result agrees with the structural characterisa-
tion, which indicates that LaF; nanoparticles are not affected
by their incorporation in the silica sol, maintaining their high
efficiency as active phase.

On the other hand, emission measurements performed in
0.9Nd*'-LaF;:SiO, glass-ceramics with three different LaF;
concentrations (5, 10 and 20%), treated at 450 °C for 6 h,
confirmed that the increase in the crystalline fraction results in
a nearly linear increase of the emission intensity (Fig. 10).

This promising innovative process which produces optically
active oxyfluoride glass-ceramics is under further investigation
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Fig. 10 Emission spectrum of 450 °C—6 h 0.9Nd*"-SiO,:LaFs GCs with
three different crystalline fractions 5% (black), 10% (red) and 20% (blue)
obtained under 786 nm excitation.

This journal is © The Royal Society of Chemistry 2020

View Article Online

Paper

to produce optically efficient transparent glass-ceramics coat-
ings with wide and diverse applications.

Conclusions

Stable Nd**-doped LaF; nanoparticle suspensions with particle
size ~ 16 nm, were obtained using a rather simple precipita-
tion process. The incorporation of PVP as dispersant increases
the stability of the LaF; NP suspensions.

The incorporation of Nd** ions into the LaF; nanoparticles,
as well as in SiO,-LaF; powders, was confirmed by HRTEM,
STEM and optical characterisation. The luminescence spectra
of Nd**-doped LaF; nanoparticles treated at 450 °C for 6 h
confirms the incorporation of Nd** ions in the nanoparticles
and the complete elimination of PVP after suitable heat treat-
ment. A lifetime of 528 ps was determined, similar to that of
Nd*' in pure LaF; crystals.

Moreover, stable SiO,-LaF; sols with and without Nd** were
prepared by mixing the LaF; NP suspension with a silica sol, up
to a maximum molar ratio of 20% LaF; NPs. To the best of our
knowledge, this is the first time that Nd*" NPs incorporated
into a glass-ceramic has been produced by this route.

Rietveld refinement indicated that LaF; NPs present a
crystalline fraction of 13%, likely related to a high percentage
of amorphous fraction. However, the relative crystallised frac-
tion in the silica matrix with 20% of NP determined by the same
method increases to ~5%.

The Nd**-LaF; nanoparticles are not affected by their incor-
poration into the silica sol, maintaining their composition,
shape and size. The luminescence response of 0.9Nd*'-
20LaF;:80Si0, glass-ceramic treated at 450 °C for 6 h confirms
the efficiency of the active phase.
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