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l activity of an amphiphilic
polyacrylate terpolymer system comprised of
same-centered comonomers with 2-carbon and 6-
carbon spacer arms and an uncharged repeat unit†

Kamia Punia,‡a Ashish Punia,‡a Kaushiki Chatterjee,b Sumit Mukherjee,c Jimmie Fata,b

Probal Banerjee,c Krishnaswami Rajaa and Nan-Loh Yang*a

The global health threat of antimicrobial resistance has created a pressing need to develop practical alternatives

to conventional antibiotic agents. Peptidemimetic synthetic amphiphilic polymers are known to non-specifically

disrupt the bacterial cell surface thus leading to highly hindered bacterial resistance development. We

investigated the antibacterial activities of a terpolymer macromolecular architecture with a combination of 6-

carbon and 2-carbon spacer arms (distance from polymer backbone to pendent cationic center) interspersed

with counits with hydrophobic side groups. A random copolymer with a combination of 6-carbon spacer

arm repeat units (60 mol%) and 2-carbon spacer arm (40 mol%) units is moderately active against bacteria

and shows very low hemolytic activity. Incorporation of comonomer units with alkyl side groups, by replacing

different levels of 2-carbon spacer arm counit, led to substantial increments in antibacterial activities without

detrimental effects on hemolytic activities leading to highly selective (bacteria over red blood cells)

antibacterial activity. Time-kill studies revealed rapid bactericidal activity of the terpolymer against both

Staphylococcus aureus and Escherichia coli with 100% killing efficiency achieved within 1 h of polymer

treatment, corresponding to a 5-log reduction of bacterial colony forming units. These results indicate the

high potential of this amphiphilic terpolymer architecture in the development of alternatives to antibiotics.
Introduction

The global threat of antimicrobial resistance has created
a pressing need for alternatives to conventional antibiotics.1–5 A
recent report has estimated more than 10 million annual deaths
by 2050 as a result of antimicrobial resistance, which would
surpass the number of fatalities caused by cancer.6 A steep decline
in the introduction of new antibiotics has further exacerbated the
threat from superbugs, a trend resulting in part from the huge
costs involved in the development through clinical approval of
new antibiotics followed by rapid development of antimicrobial
resistance resulting in limited therapeutic utilization.1 Synthetic
amphiphilic polymers which mimic the design and activity of
Center of the City University of New York,
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uate Center of the City University of New
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natural antimicrobial peptides (AMPs) can provide the urgently
needed solution to the superbug threat.7–9 The non-specic mode
of antibacterial action (membrane rupture through electrostatic
and lipophilic interactions) of AMPs and their synthetic poly-
mericmimics hinders the development of bacterial resistance.10,11

High activity of synthetic amphiphilic polymers against antibiotic
resistant bacteria and the inability of bacteria to develop resis-
tance against synthetic amphiphilic polymers, in contrast to
conventional antibiotic, has been documented.12

Understanding the role that polymeric design features plays
in their antibacterial activities and toxicities towardsmammalian
cells is critical for their successful wide scale application as
therapeutic agents. For biomedical applications, selective activity
of amphiphilic polymers against bacteria over mammalian cells
is highly desired. However, the macromolecular design features
affecting the bacterial cell versus mammalian cell toxicity have
not been well understood, and a number of studies in recent
years have focused on the development of structure–activity
relationships for synthetic amphiphilic polymers.13–44

We have recently shown that control of spatial cationic
charge density through variation in spacer arm (distance from
polymer backbone to cationic center) design can lead to highly
selective (bacteria over red blood cells) antibacterial activity.41

The homopolymer of 6-carbon spacer arm is highly antibacterial
This journal is © The Royal Society of Chemistry 2017
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and hemolytic, whereas the homopolymer of 2-carbon spacer
armmonomer has low activity against Escherichia coli (E. coli) but
displayed non-hemolytic activity.41 Interestingly, copolymeriza-
tion of just a small mol% of 2-carbon spacer arm monomer with
6-carbon spacer arm monomer led to three orders of magnitude
reduction in hemolytic activity without signicant deterioration
of antibacterial activities.41 On the other hand, it has been shown
in earlier reports that “separate center” copolymer architecture
with cationic and hydrophobic groups on separate repeat units
shows higher antibacterial and hemolytic activity in comparison
with “same center” homopolymer with cationic and hydrophobic
groups on same repeat unit.44

Here we report a new terpolymer architecture with a combina-
tion of “same center” 6-carbon and 2-carbon spacer arm design
with “separate center” architecture by interspersing cationic
repeat units with hydrophobic repeat units. The mol% content of
6-carbon spacer arm repeat units was kept approximately constant
while the effects of variation in mol% of 2-carbon spacer arm with
respect to alkyl acrylates and the length of alkyl side group were
investigated on the antibacterial and hemolytic activities of these
terpolymers. Our investigations found that the combination of
spacer arm and separate center design can have a synergistic effect
leading to increment in antibacterial activity and the optimization
of amphiphilic balance and lipophilicity can result in concomitant
lower hemolytic activity. Moreover, the resultant copolymer dis-
played rapid bactericidal activity against both Gram negative and
Gram positive bacteria underlining the anti-infective potential of
these amphiphilic macromolecules.
Experimental
Materials and instrumentation

6-Amino-1-hexanol, 2-(methylamino)ethanol, 2,20-azobis(2-
methylpropionitrile) (AIBN), methyl 3-mercaptopropionate
Scheme 1 Synthesis of cationic amphiphilic polyacrylate terpolymers.

This journal is © The Royal Society of Chemistry 2017
(MMP), N,N-diisopropylethylamine, acetonitrile (anhydrous),
hexane, diethyl ether, and methanol were purchased from
Sigma-Aldrich and were used without further purication.
Acryloyl chloride was purchased from Sigma-Aldrich and was
puried by distillation prior to use. Ethyl acrylate, methyl
acrylate, and butyl acrylate were obtained from Sigma-Aldrich
and were treated with inhibitor remover prior to use. Tri-
uoroacetic acid and di-tert-butyl dicarbonate (t-Boc) were
purchased from Alfa Aesar and were used without further
purication.

1H NMR spectra were obtained on a Varian Unity NMR
spectrometer (600 MHz) using CDCl3 or D2O as solvents.
Molecular weights of polymers were estimated against linear
polystyrene standards via gel permeation chromatography
using an EcoSec HLC-83220 gel permeation chromatography
instrument (RI detector, TSKgel SuperHZ-N (3 mm 4.6 mm
ID) and TSKgel SuperHZ-M (3 mm 4.6 mm ID) columns).
Tetrahydrofuran was used a solvent for GPC at a ow rate of
0.35 mL min�1.
Synthesis of monomers and polymers

N-Boc protected amine functionalized acrylate monomers (M6
andM2, Scheme 1) were synthesized as described in literature.41

Copolymers were synthesized via free radical polymerization
and N-Boc protecting groups were subsequently cleaved by
treatment with excess triuoroacetic acid.40–44 A representative
synthesis procedure is as follows. 1.30 g (4.8 mmol) of monomer
M6, 0.51 g (2.24 mmol) of monomer M2, and 0.096 g (0.96
mmol) of ethyl acrylate were added into a 100 mL round bottom
ask already charged with 0.013 g (0.08 mmol) of AIBN. In this
reaction mixture, 0.048 g (0.4 mmol) of methyl 3-mercaptopro-
pionate was added as a chain transfer agent. Acetonitrile
(8 mL) was added as a solvent and the reaction mixture was
RSC Adv., 2017, 7, 10192–10199 | 10193
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subsequently degassed with nitrogen for 15 minutes using
a stainless steel needle. The mixture was stirred at 65 �C for 18 h
followed by evaporation of solvent using rotavapor. The polymer
was then repeatedly precipitated in hexane by rst dissolving in
small quantity of tetrahydrofuran. To cleave N-Boc protecting
groups, polymer was treated with excess triuoroacetic acid
(TFA) for 3 h. Aer the completion of reaction, excess TFA was
removed using rotavapor and polymer was dissolved in small
quantity of methanol and repeatedly precipitated into diethyl
ether. The resultant polymer was dried under vacuum for 2 days
and lyophilized. Yield 0.58 g.

Determination of antibacterial activity

Polymer stock solutions were prepared in dimethyl sulfoxide
and two-fold dilutions were prepared using distilled water. All
biological activity experiments were performed as per modi-
cations of our previous publications.40–44 An aliquot of E. coli
(TOP 10, ampicillin resistant) was inoculated into freshly
prepared Luria–Bertani (LB) broth. Aer overnight incubation
of E. coli at 37 �C (under stirring); 1 mL of bacterial suspension
was diluted with 9 mL of freshly prepared LB broth to enable log
phase growth. Log phase growth of E. coli was conrmed by an
increase in optical density from OD600 � 0.1 to OD600 � 0.45–
0.5. This bacterial cell suspension in log phase was diluted with
fresh LB broth to prepare a nal stock cell suspension with
OD600 ¼ 0.001. 90 mL of this stock cell suspension was added
into each well of the 96 well tissue culture plate followed by the
addition of 10 mL of polymer concentrations. The 96 well plates
were incubated at 37 �C (under stirring) for 18 h and bacterial
cell growth was measured as turbidity at optical density at l ¼
600 nm (OD600). Minimum inhibitory concentration (MIC) is
dened as the lowest polymer concentration required to inhibit
100% bacterial cell growth. MICs were similarly determined
against Staphylococcus aureus (S. aureus) (ATCC 25923) with the
exception that Muller–Hinton broth was used in place of Luria–
Bertani broth. The MIC values shown here are the averages of
three separate experiments performed on different days.

Determination of hemolytic activity

Freshly drawn mice blood was centrifuged at 3000 rpm for 15
minutes, and white blood cells and plasma were removed as
supernatant followed by washing (2�) red blood cells (RBCs)
with Tris-buffered saline (TBS). 1 mL of RBCs were diluted with
TBS to obtain 2.5% RBC stock suspension. 130 mL of this RBC
suspension, 15 mL of TBS, and 15 mL of polymer concentration
were added to each 0.6 mL microcentrifuge tubes. The tubes
were incubated under shaking at 37 �C for 1 h. The suspension
was centrifuged at 4000 rpm for 5 minutes and 30 mL super-
natant was added (in triplicate) into each well of the 96 well
tissue culture plate. The lysing ability of polymers towards RBCs
was determined in terms of hemoglobin concentration by
measuring optical density at l ¼ 414 nm (OD414). Hemolytic
concentration-50% (HC50) value is dened as the minimum
polymer concentration required to lyse 50% of the RBCs within
an incubation period of 1 h. For 100% hemolysis, 1% triton was
used as a positive control. The HC50 values reported here are the
10194 | RSC Adv., 2017, 7, 10192–10199
averages of three separate experiments. Following formula was
used to calculate HC50:

Hemolysis% ¼ OD414 polymer�OD414 negative control

OD414 triton 1%�OD414 negative control

� 100

All experiments were performed in compliance with the
relevant laws and institutional guidelines of Institutional
Animal Care and Use Committee (IACUC). The experiments
have been approved by IACUC at College of Staten Island.
Field emission scanning electron microscopy (SEM) analysis
of bacterial membrane rupture

E. coli and S. aureus cells were incubated (at 37 �C under
shaking) overnight in Luria–Bertani broth and Muller–Hinton
broth respectively. Bacterial cells from the overnight cell culture
were bought to log phase growth by following the similar
procedure as described above in determination of antibacterial
activity. This cell suspension in log phase growth was subse-
quently diluted with freshly prepared nutrient broth to obtain
a nal stock cell suspension of approximately 108 CFU mL�1

(OD600 � 0.1 for E. coli; and OD600 � 0.2 for S. aureus). 900 mL of
this cell suspension was mixed with 100 mL of polymer
concentration in a 1.5 mL centrifugation tube and incubated for
2 h at 37 �C under shaking. Aer 2 h, the cell suspension was
centrifuged at 4000 rpm for 5 minutes and supernatant was
decanted. Bacterial cells were washed twice with phosphate-
buffered saline and subsequently xed using glutaraldehyde
(2.5%) treatment for 1 h. Cells were then washed with distilled
water and dehydrated sequentially with 30%, 50%, 70%, 80%,
90%, and 100% (v/v%) aqueous ethanol solutions. E. coli and S.
aureus cell suspensions without polymer treatment were used as
control. The resultant dehydrated cells were dried under
vacuum (room temperature) for 2 days and were then mounted
on SEM sample holder using carbon tape. For SEM analysis,
gold/palladium (60 : 40) alloy coating was applied on samples
via sputter coater and samples were analyzed at an operating
voltage of 5 kV on an AMRAY 1910 eld emission scanning
electron microscope.
Determination of time dependent killing efficiency

E. coli and S. aureus cell suspensions were prepared at log phase
growth as described above. Bacterial cell suspensions with
approximately 105 CFUs mL�1 were treated with polymer
concentrations (1�MIC and 2�MIC) at 37 �C under shaking. At
time intervals of 0 h, 1 h, and 2 h; the cell suspension was taken
out and serially diluted (in ten folds). 20 mL of nal cell
suspension was streaked on agar plate and incubated for 24 h
(at 37 �C). The CFUs were counted using the Image J processing
and analysis soware. Bacterial cell suspension without poly-
mer treatment was used control. Results reported here are the
averages of two separate experiments and the detection limits of
experiments were in the range of 228–320 CFUs in agar plates.
This journal is © The Royal Society of Chemistry 2017
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Results and discussion
Design and synthesis of copolymers

Copolymers were synthesized via free radical polymerization as
shown in Scheme 1. The feed mol% of M6 monomer was kept
constant at 60mol% and the relativemol% ofM2monomer and
alkyl acrylate was gradually varied as the mol% of alkyl acrylate
was changed from 0 mol% to 24 mol% (Scheme 1 and Table 1).
The purity and composition of copolymers were determined by
1H NMR and the actual mole percentages of comonomers were
found to be in close approximation to corresponding feed mole
percentages. Molecular weights of N-Boc protected polymers
were estimated by gel permeation chromatography (GPC) using
linear polystyrene standards. All polymers were synthesized at
similar molecular weights as conrmed by GPC (Table 1 and
ESI†). “PolyM6–M2” represents the polymer with 60 mol% of
M6monomer and 40mol%M2monomer and other copolymers
in this series are represented by the representative nomencla-
ture “PolyX–Y%” where X indicates the identity of alkyl acrylate
(X ¼ M (methyl acrylate); E (ethyl acrylate); and B (butyl acry-
late)) and Y% is the feed mol% of corresponding alkyl acrylate.
Fig. 1 Antibacterial activities (MIC) of copolymers towards (a) E. coli
and (b) S. aureus. Error bars represent standard deviation.
Antibacterial activity

Antibacterial activities of polymers were determined against
Gram negative E. coli and Gram positive S. aureus in terms of
MICs and are as shown in Fig. 1 and Table 1. It has been shown
in earlier reports that homopolymer with 2-carbon spacer arm
repeat units display low activity against E. coli.41,44,45 We have
earlier reported that incorporation of a longer 6-carbon spacer
arm repeat unit with 2-carbon spacer arm counits in a random
copolymer led to signicant increase in antibacterial activity.41

Incorporation of longer spacer arm can reduce the local cationic
charge density andmay also result in higher membrane rupture
ability due to “snorkel effect” in which the cationic centers
attach to negatively charged bacterial cell surface and longer
alkyl spacer arms can then permeabilize through the hydro-
phobic core of bacterial lipid bilayer.41,45 Furthermore, inclusion
of repeat unit with longer spacer arms increases the spatial
Table 1 Characterization and biological activities of copolymers

Polymer
Feed mol% of
alkyl acrylate

Actual mol%
of alkyl
acrylatea

Mn
b

(kDa) PDIc

PolyM6–M2 0 0 3.8 1.4
PolyM-4% 4 3 3.7 1.4
PolyM-12% 12 10 3.7 1.4
PolyM-24% 24 21 3.7 1.4
PolyE-4% 4 4 3.7 1.4
PolyE-12% 12 12 3.7 1.4
PolyE-24% 24 21 3.8 1.4
PolyB-4% 4 4 4.1 1.4
PolyB-12% 12 11 3.9 1.3
PolyB-24% 24 24 4.4 1.3

a Calculated from 1H NMR. b Number average molecular weight estimat
calculated from GPC.

This journal is © The Royal Society of Chemistry 2017
distance between cationic groups. Increase of backbone spacer
distance has been reported to result in higher antibacterial
activity in cationic polymers obtained from alternating ring-
opening metathesis polymerization.22

In contrast with this combination of 6-carbon and 2-carbon
spacer arm copolymer design, “separate center” random copol-
ymers with cationic groups and hydrophobic alkyl groups
present on separate repeat units show higher antibacterial
activity as compared with “same center” homopolymers with
both cationic centers and hydrophobic groups attached on the
same repeat unit.21,44,46Higher antibacterial activities in “separate
E. coli MIC
(mg mL�1)

S. aureus MIC
(mg mL�1)

HC50

(mg mL�1)

Selectivity (HC50/MIC)

E. coli S. aureus

125 62 >2000 >16 >32
125 62 >2000 >16 >32
62 62 >2000 >32 >32
30 62 423 14 7
93 62 >2000 >21 >32
62 62 >2000 >32 >32
22 46 384 17 8
62 62 1428 23 23
15 38 250 16 7
7.8 22.5 12.6 1.6 0.56

ed from gel permeation chromatography (GPC). c Polydispersity index

RSC Adv., 2017, 7, 10192–10199 | 10195
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Fig. 2 Hemolytic activity (HC50) of polymers towards mice RBCs.
Results shown are averages of three experiments (size of error bars is
negligible).
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center” random copolymers can be obtained through increasing
the mol% of hydrophobic comonomers in random copolymers.

We postulated that an amphiphilic terpolymer architecture
consisting of hydrophobic repeat unit copolymerized with 6-
carbon and 2-carbon spacer arm counits – a combination of
“separate center” and “same center” spacer arm design – can
show unique biological activities resulting from judicious vari-
ation of spacer arm lengths and amphiphilicity conducive to
permeability through bacterial cell membrane. In order to
explore antibacterial activities of this terpolymer design, we
synthesized a series of copolymers in this study to assess
various combinations of spacer arm repeat units with hydro-
phobic side groups. PolyM6–M2 with 60 mol% of 6-carbon
spacer arm (M6) repeat unit and 40 mol% of 2-carbon spacer
arm repeat unit (M2) displayed moderately high antibacterial
activity against E. coli (MIC ¼ 125 mg mL�1). Incorporation of 12
mol% of repeat unit with methyl side group led to a signicant
increase in antibacterial activity, and the copolymer with
approximately 24 mol% of methyl acrylate comonomer unit
demonstrated high activity against E. coli (MIC¼ 32 mgmL�1). It
should be noted that the mol% of M6 was kept constant at
approximately 60% in all these copolymers andmol% ofM2 was
reduced to compensate for the inclusion of increasing mol% of
hydrophobic comonomer.

Similar to the effects of adding methyl side groups, copoly-
merization of ethyl and butyl side groups led to increase in
activity against E. coli, albeit to a much higher extent than
incorporation of methyl side groups. Incorporation of just 12
mol% of comonomer units with butyl side group led to
a dramatic increase in antibacterial activity towards E. coli (MIC
¼ 15 mg mL�1). Longer alkyl side groups substantially increase
the lipophilicity of copolymers leading to enhanced perme-
ability of copolymers through the hydrophobic core of lipid
bilayer.

Antibacterial activities of these polymers were also deter-
mined against Gram positive S. aureus. Interestingly, activities
of these polymers demonstrate a subdued effect of hydrophobic
comonomer inclusion on their activities against S. aureus.
Copolymerization of up to 24 mol% of methyl side groups did
not lead to any increment in the activity against S. aureus,
whereas a dramatic increase in activity against E. coli was
observed, as discussed above. Similarly, increasing the mol% of
ethyl acrylate till 24% did not lead to substantial impact on the
activity of polymer against S. aureus. Incorporation of butyl side
groups resulted in higher activity against S. aureus, but the
increase in activity against S. aureus was signicantly lower as
compared with increase in activity against E. coli at same mol%
of butyl side groups. These observations indicate that a much
higher level of lipophilicity is required to enhance activity of
these polymers against S. aureus. Substantial differences in the
cell surface morphology of S. aureus and E. coli may be a reason
behind this observation. The cell wall of the S. aureus is made of
a thick negatively charged peptidoglycan layer (15–80 nm thick),
whereas the E. coli cell wall consists of a thin peptidoglycan
layer sandwiched between the outer and inner cell membrane.47

Strong electrostatic interactions between these highly charged
polymers and negatively charged peptidoglycan layer can
10196 | RSC Adv., 2017, 7, 10192–10199
hinder the permeabilization of polymers through thick cell wall
of S. aureus. Thus, an increase in activity against S. aureus may
require a substantially higher content of longer alkyl side
groups, as compared with E. coli.

It was recently shown that sedimentation of bacterial and
nanoparticle suspension can result due to adhesion of highly
charged nanoparticles on the surfaces of negatively charged
bacterial cells.48 This phenomena was shown to result in large
errors and led to disqualication of MIC measurements. In
contrast to this nanoparticle system, terpolymers in our study
described here are readily soluble in aqueous broth/nutrient
media used in MIC determinations and formed clear solu-
tions rather than suspensions, as reported in earlier study. We
did not observe any aggregations or formation of suspensions,
except for the turbidity observed at below MIC concentrations
(due to bacterial cell growth) and thus sedimentation of bacte-
rial and polymer complexes is not expected. Moreover, as shown
below, time-dependent killing efficiency studies conrmed
bactericidal activity of the polymer PolyE-12% at 1� MIC
concentration.
Hemolytic activity

Hemolytic activity has been widely used as a benchmark to
assess the toxicity of synthetic amphiphilic polymers against
mammalian cells. Hemolytic activities of polymers were deter-
mined against mice RBCs in terms of HC50 and are as shown in
Fig. 2 and Table 1. HC50 is the minimum polymer concentration
required to lyse 50% of RBCs within an incubation period of 1 h.
The cell surface of erythrocytes is primarily comprised of zwit-
terionic lipid head groups and cholesterol, and lacks net
negative charge in contrast with the net negatively charged
surface of bacterial cells.10,11 Thus, the hemolytic activity of
synthetic amphiphilic polymers mainly arises from the lipo-
philic interactions between the RBCs' lipid bilayer and hydro-
phobic groups in polymers.11 PolyM6–M2 with cationic charge
on each repeat unit demonstrated non-hemolytic activity. High
cationic charge density can be expected to reduce lysing ability
of polymers towards RBCs, as high charge density can thwart
the permeabilization of the polymers through lipophilic core of
This journal is © The Royal Society of Chemistry 2017
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Fig. 3 FE-SEM micrographs of (a) E. coli without polymer treatment;
(b) E. coli after treatment with PolyE-12%; (c) S. aureuswithout polymer
treatment; and (d) S. aureus after treatment with PolyE-12%.
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lipid bilayer.41,44 Higher degree of quaternization was shown to
result in lower hemolytic activities of 1,3-thiazol and 1,2,3-tri-
azole functionalized polymethacrylates.31 However, it has been
reported earlier that homopolymer with 6-carbon spacer arm
repeat unit and cationic charge on each repeat unit demon-
strated very high hemolytic activity, and copolymerization of 2-
carbon spacer arm units with 6-carbon spacer arm units led to
drastic decline in hemolytic activity.41,45 These observations
underline the crucial interplay in charge density and lengths of
spacer arms in determining the hemolytic activity of synthetic
amphiphilic polymers.

In the terpolymer system described here, a third comonomer
with alkyl side group i.e. methyl, ethyl, or butyl side group was
copolymerized with M6 and M2 in various molar percentages.
Incorporation of a hydrophobic comonomer should increase
the hemolytic activity of these copolymers. However, optimiza-
tion of mol% of hydrophobic comonomer and presence of
higher cationic charge density originating from M6 and M2 can
mitigate the RBC cell rupture ability of these polymers. Indeed,
up to 12 mol% of methyl acrylate we did not observe an increase
in hemolytic activity (HC50 > 2000 mg mL�1). At 24 mol% of
methyl acrylate, the copolymer displayed higher hemolytic
activity (HC50 ¼ 423 mg mL�1). Similarly, no increase in hemo-
lytic activity was observed with up to 12 mol% of ethyl acrylate
repeat units but a higher mol% of 24% led to increased cell
surface rupture ability against erythrocytes. This precipitous
increase in hemolytic activity indicates that a certain mol% of
M2 repeat units is required to prevent the penetration of these
polymers through RBC's cell membrane. As mol% of M2 is
reduced, there is probably not sufficient number of M2 como-
nomer units to prevent the “snorkel effect” and leads to
copolymer's ability to penetrate through RBCs' lipid bilayer.
Relative to incorporation of methyl and ethyl acrylate como-
nomers, addition of just 12 mol% of butyl acrylate resulted in
substantial increase in hemolytic activity (HC50 ¼ 250 mg mL�1).
At approximately 24 mol% of butyl acrylate, PolyB-24%
demonstrated high hemolytic activity (HC50 ¼ 12.6 mg mL�1).

Polymethacrylate copolymers of 6-carbon spacer arm repeat
units, M6, and comonomer units with ethyl side groups have
been previously shown to possess very high hemolytic activity.45

High hemolytic activity of 6-carbon spacer arm homopolymer
severely hinders the therapeutic potential of this highly anti-
bacterial synthetic macromolecule. One of the reasons behind
the high hemolytic activity of 6-carbon spacer arm homopol-
ymer can be its high hydrophobicity resulting from hexyl spacer
arms. Copolymerization of 6-carbon spacer arm monomer, M6,
with a comonomer with low hydrophobicity can be expected to
reduce its hemolytic effect. However, copolymerization of M6
comonomer units with ethyl side groups was shown to result in
no reduction of hemolytic activity.45 In copolymer system re-
ported here, it is apparent that inclusion of 2-carbon spacer arm
comonomer units, M2, can substantially subdue the hemolytic
activity arising from 6-carbon spacer arm counits. Furthermore,
controlled incorporation of ethyl or methyl side groups did not
lead to signicant increase in hemolytic activity. As shown
above, this terpolymerization of 6-carbon spacer arm, 2-carbon
spacer arm, and alkyl acrylate repeat units have further
This journal is © The Royal Society of Chemistry 2017
improved the antibacterial activities with no detrimental
effect on hemolytic activity at optimum levels of alkyl acrylate
copolymerization.
Selectivity of copolymers

Selective activity of synthetic amphiphilic polymers against
bacteria over human cells is highly desired for biomedical
applications. The selectivity is dened as the ratio (HC50 : MIC)
of hemolytic activity to MIC and has been widely used in liter-
ature to assess the selective activity of synthetic amphiphilic
polymers. As shown in Table 1, majority of polymers synthe-
sized in this study displayed high selectivity towards both E. coli
and S. aureus over RBCs. Incorporation of methyl or ethyl side
groups led to higher selectivity against E. coli over RBCs. PolyB-
12% and PolyB-24% showed low selectivity values due to their
high hemolytic activities arising from higher hydrophobicity.
Scanning electron microscopy analysis

To ascertain the bacterial cell surface rupture ability of
these polymers, eld emission scanning electron microscopy
(FE-SEM) analysis was performed on E. coli and S. aureus cells
aer treatment with PolyE-12%. As shown in Fig. 3, control
(without polymer treatment) E. coli and S. aureus cells show
intact cell surface morphologies. Treatment of E. coli cells with
PolyE-12% for 2 h led to drastic rupture of bacterial cell surface.
Similarly, cell surface disruption ability of PolyE-12% was
conrmed against S. aureus. FE-SEM analysis conrmed that
these copolymers have high bacterial cell membrane rupture
ability in addition to possible intracellular mechanisms11 of
bacterial cell killing activity. Such severe bacterial cell surface
damage caused by non-specic electrostatic and hydrophobic
activity of these polymers indicates that the development of
bacterial resistance would be highly hindered.
RSC Adv., 2017, 7, 10192–10199 | 10197
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Time dependent killing efficiency

Time-kill studies were performed for PolyE-12% against E. coli
and S. aureus at 1� MIC and 2� MIC polymer concentrations.
As shown in Fig. 4, more than 99.9% (ESI, Fig. S4†) of both
E. coli and S. aureus CFUs were killed within 1 h of PolyE-12%
treatment (1� MIC) and no viable CFUs mL�1 were observed
of both E. coli and S. aureus aer 2 h of PolyE-12% treatment (1�
MIC), corresponding to a 5 log reduction of bacterial CFUs.
During the same time period, substantial proliferation of
bacterial CFU mL�1 in control experiment (without polymer
treatment) was observed.

These time kill studies demonstrate rapid bactericidal
activity for our terpolymer system and substantiate very high
bacterial killing potency. To the best of our knowledge, there are
only few other types of cationic amphiphilic polymers that have
shown rapid bacterial killing activity.31,49–51 Antibacterial poly-
carbonates synthesized with same centered approach achieved
100% killing efficiency aer 4 h of polymer treatment.50 In
another example, biodegradable polycarbonates (at 2� MIC
concentration) could eliminate S. aureus aer 2 h of polymer
Fig. 4 Colony forming units of S. aureus at (a) t ¼ 0 h (undiluted) and
(b) at t¼ 1 h after treatment with PolyE-12% (1�MIC). Time-dependent
killing efficiency analysis of PolyE-12% against (c) E. coli and (d) S.
aureus. Error bars represent standard deviation.

10198 | RSC Adv., 2017, 7, 10192–10199
treatment.49 1,2,3-Triazole and 1,2-thiazole functionalized pol-
ymethacrylates have also shown rapid bactericidal activity.31

Rapid bactericidal activity of these terpolymers is in contrast
to much slower bacterial killing kinetics of PEGylated poly-
acrylates with 6-carbon spacer arm repeat unit.40 Aer 1 h of
challenging E. coli with PEGylated polyacrylates, only 20% to
50% of E. coli CFUs were killed and 5 log reduction in E. coli
CFUs was obtained only aer prolonged treatment for 6 h.40

Moreover, substantial number of S. aureus CFUs survived even
aer 8 h of bacterial incubation with PEGylated polyacrylates as
shown in our earlier nding.40 These observations underline
signicantly different interaction of bacterial cells with PEGy-
lated versus non-PEGylated synthetic amphiphilic polyacrylates
reported in this study. Even though amphiphilic polyacrylates
with non-ionic PEG side groups demonstrated high bacterio-
static ability (low MIC values); their signicantly slower bacte-
rial killing kinetics indicates the thwarted bacterial membrane
rupture ability. Hydrogen bonding associations between PEG
side groups and peptidoglycans in the cell wall of bacteria can
hinder permeabilization of polymer chains through bacterial
cell surface leading to reduced bacteria killing potency.

Conclusions

We have previously reported that amphiphilic polyacrylate
copolymers with a combination of 6-carbon and 2-carbon spacer
arms counits demonstrated high antibacterial activities with
concomitant low hemolytic activities. In this study, we explored
a novel amphiphilic terpolymer system with hydrophobic
monomer copolymerized with 6-carbon and 2-carbon spacer arm
comonomers – a combination of “separate center” and “spacer
arm” design. Controlled incorporation of hydrophobic alkyl
comonomer with corresponding replacement of 2-carbon spacer
arm counit led to substantial increase in antibacterial activities
without detrimental effects on hemolytic activities. This strategy
led to polymers with highly selective antibacterial activities
towards bacteria over RBCs. Furthermore, time-dependent
bacterial killing efficiency studies demonstrated rapid bacterial
killing action by polymers with 100% S. aureus killing efficiency
achieved within one hour of treatment, corresponding to a 5-log
reduction of bacterial CFU mL�1. These results demonstrate the
potential of this new amphiphilic polymer architecture in the
development of urgently required antibacterial agents to deter
the severe threat of antimicrobial resistance.
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