Issue 1, 2013

Slow magnetization dynamics in a series of two-coordinate iron(ii) complexes

Abstract

A series of two-coordinate complexes of iron(II) were prepared and studied for single-molecule magnet behavior. Five of the compounds, Fe[N(SiMe3)(Dipp)]2 (1), Fe[C(SiMe3)3]2 (2), Fe[N(H)Ar′]2 (3), Fe[N(H)Ar*]2 (4), and Fe(OAr′)2 (5) feature a linear geometry at the FeII center, while the sixth compound, Fe[N(H)Ar#]2 (6), is bent with an N–Fe–N angle of 140.9(2)° (Dipp = C6H3-2,6-Pri2; Ar′ = C6H3-2,6-(C6H3-2,6-Pri2)2; Ar* = C6H3-2,6-(C6H2-2,4,6-Pri2)2; Ar# = C6H3-2,6-(C6H2-2,4,6-Me3)2). Ac magnetic susceptibility data for all compounds revealed slow magnetic relaxation under an applied dc field, with the magnetic relaxation times following a general trend of 1 > 2 > 3 > 4 > 56. Arrhenius plots created for the linear complexes were fit by employing a sum of tunneling, direct, Raman, and Orbach relaxation processes, resulting in spin reversal barriers of Ueff = 181, 146, 109, 104, and 43 cm−1 for 1–5, respectively. CASSCF/NEVPT2 calculations on the crystal structures were performed to explore the influence of deviations from rigorous D∞h geometry on the d-orbital splittings and the electronic state energies. Asymmetry in the ligand fields quenches the orbital angular momentum of 1–6, but ultimately spin–orbit coupling is strong enough to compensate and regenerate the orbital moment. The lack of simple Arrhenius behavior in 1–5 can be attributed to a combination of the asymmetric ligand field and the influence of vibronic coupling, with the latter possibility being suggested by thermal ellipsoid models to the diffraction data.

Graphical abstract: Slow magnetization dynamics in a series of two-coordinate iron(ii) complexes

Supplementary files

Article information

Article type
Edge Article
Submitted
23 јун. 2012
Accepted
31 авг. 2012
First published
25 окт. 2012

Chem. Sci., 2013,4, 125-138

Slow magnetization dynamics in a series of two-coordinate iron(II) complexes

J. M. Zadrozny, M. Atanasov, A. M. Bryan, C. Lin, B. D. Rekken, P. P. Power, F. Neese and J. R. Long, Chem. Sci., 2013, 4, 125 DOI: 10.1039/C2SC20801F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements