Integration of multiwalled carbon nanotubes with MoS2/BiFeO3: a hybrid matrix for high-energy asymmetric supercapacitors

Abstract

Perovskite-structured bismuth ferrite (BiFeO3, BFO) possesses considerable promise as a pseudocapacitive material due to its enhanced theoretical capacitance. Nevertheless, its use is constrained by low electrical conductance and limited ion diffusion rates. To address these challenges, a ternary nanomaterial was constructed by integrating bismuth ferrite (BFO) with molybdenum disulfide (MoS2) and multiwalled carbon nanotubes, resulting in a BiFeO3/MoS2@MWCNT hybrid electrode architecture specifically engineered for asymmetric supercapacitor devices. The inclusion of MoS2 introduces numerous reactive sites for faradaic processes, while MWCNTs enhance the overall conductive and architectural properties of the hybrid matrix. Electrochemical testing revealed that the composite electrode achieves a specific capacitance of 1765 F g−1 at 1 A g−1 while exhibiting consistent performance across multiple scan rates. Assembled into a full ASC device using AC as the anode, the system delivers an impressive specific energy of 65.7 Wh kg−1 at the rate of 802.7 W kg−1. Moreover, a retention of 96.7% was observed after 10 k cycles. The superior electrochemical behaviour is owing to the combined effect of BiFeO3, MoS2, and MWCNTs, facilitating efficient charge transfer and stable ion transport pathways. This investigation reveals a promising technique for designing advanced composite electrodes for high-efficiency energy storage applications.

Graphical abstract: Integration of multiwalled carbon nanotubes with MoS2/BiFeO3: a hybrid matrix for high-energy asymmetric supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2025
Accepted
21 Nov 2025
First published
08 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Energy Adv., 2026, Advance Article

Integration of multiwalled carbon nanotubes with MoS2/BiFeO3: a hybrid matrix for high-energy asymmetric supercapacitors

E. A. Alabdullkarem, J. Khan and H. Alrobei, Energy Adv., 2026, Advance Article , DOI: 10.1039/D5YA00268K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements