Hydrogen Bond-Mediated Polar Structure Engineering of PVDF toward Superior Energy Storage
Abstract
Dielectric capacitors have emerged as a pivotal class of energy storage devices in modern electronics. A major challenge is the low volumetric energy density hinders further development. To address this challenge, all-organic film has gained attention as a promising and scalable alternative. Here we developed an all-organic xylitol-PVDF film, which maximizes energy density by constructing a hydrogen bond network between PVDF and xylitol. The network enhances the crystallinity of PVDF, reduces the grain size of the α phase, β phase and γ phase, and increases the β phase content. The xylitol-PVDF composite film containing 5 wt% xylitol demonstrates a remarkable energy density of 23.64 J cm-3 and an impressive charge-discharged efficiency of 84.2%. A facile and scalable approach for fabricating high-performance PVDF-based dielectric film in this work, demonstrating exceptional energy storage performance.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers