Pt-Nanoparticles on ZnO/Carbon Quantum Dots: A Trifunctional Nanocomposite with Superior Electrocatalytic Activity Bosting Direct Methanol Fuel Cell and Zinc-Air Battery

Abstract

Architecting efficient, multifunctional, and low-cost nano-electrocatalysts plays a vital role in electrochemical energy conversion and storage systems. Low-Pt hybrid catalysts are in high demand, offering cost-effective solutions for electrode materials in direct methanol fuel cells and Zn-air batteries. Herein, we synthesized a ternary nanocomposite (PtNP-ZnO@CQDs) composed of ultrafine platinum nanoparticles (PtNPs) of below 5 nm on photosensitive ZnO and carbon quantum dots (CQDs) via a simple one-pot hydrothermal process for efficient photoinduced electrocatalytic methanol oxidation reaction (MOR), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) with commendable durability. Comprehensive characterizations through XRD, FT-IR, XPS, BET, SEM, EDX, and HRTEM confirm the nanocomposite's structure and properties. The catalyst attains a MOR current density of 9.1 mA cm-2 in photoinduced electrocatalytic methanol oxidation with high CO tolerance and durability. During OER, the PtNP-ZnO@CQDs catalyst reveals a lower overpotential than the commercial RuO2 at higher current densities over 30 mA cm-2. In ORR, the catalyst showed a higher half-wave potential of 0.96 V, higher limiting current density, mass activity, and chronoamperometric stability than the commercial Pt/C used as a standard here. The PtNP-ZnO@CQDs also exhibited low peroxide yield, a high number of electron transfers, and photoinduced ORR capability, indicating its superiority over commercial Pt/C catalysts. When used in a rechargeable aqueous zinc-air battery (ZAB), the PtNP-ZnO@CQDs air cathode delivered an open circuit potential of 1.55 V with an impressive energy density of 668 Wh/kg and a specific capacity of 532 mAh/g, outperforming ZABs with commercial Pt/C and RuO2. Interestingly, the ZAB composed of PtNP-ZnO@CQDs air cathode shows outstanding long-term cycle stability, maintaining the round trip efficiency of 66.87% after 60 h. The assembled ZABs in series successfully powered LED panels, demonstrating the potential of this low-cost, bifunctional Pt-based electrocatalyst for future ZAB commercialization.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 авг. 2024
Accepted
13 ноем. 2024
First published
14 ноем. 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2024, Accepted Manuscript

Pt-Nanoparticles on ZnO/Carbon Quantum Dots: A Trifunctional Nanocomposite with Superior Electrocatalytic Activity Bosting Direct Methanol Fuel Cell and Zinc-Air Battery

A. K. Pradhan, S. Halder and C. Chakraborty, J. Mater. Chem. A, 2024, Accepted Manuscript , DOI: 10.1039/D4TA05630B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements