Open Access Article
This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence

Tailoring the properties of guaiacol-derived high sulfur-content materials through post-polymerization modification with dithiols

Nawoda L. Kapuge Donaa, Rhett C. Smith*a and Andrew G. Tennyson*ab
aDepartment of Chemistry, Clemson University, Clemson, South Carolina 29634, USA. E-mail: rhett@clemson.edu
bDepartment of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA. E-mail: atennys@clemson.edu

Received 10th March 2025 , Accepted 7th May 2025

First published on 20th May 2025


Abstract

High sulfur content material (HSM) prepared from biomass-derived guaiacol and elemental sulfur (GS80) was modified with dithiols at varying mass ratios. Dithiol modification allowed tuning of the material properties, such as a predictable relationship between glass transition temperature and proportion of added dithiol. Dithiol modification is thus a promising new strategy for customized HSMs.


High sulfur content materials (HSMs) are gaining significant attention in various fields due to their unique chemical and physical properties.1–6 HSMs are often prepared by inverse vulcanization, the reaction of majority component elemental sulfur with organics,7–16 and comprise sulfur catenate-crosslinked materials (Scheme 1). Many sustainable organics have been utilized to prepare HSMs, including biomass compounds,17–21 animal fats,22–25 plant oils,26–39 and lignin derivatives such as GS80, a composite prepared from 80 wt% sulfur and 20 wt% guaiacol (Scheme 1).40–45
image file: d5cc01306b-s1.tif
Scheme 1 A proposed reaction pathway for modifying GS80 with benzene-1,4-dithiol (BDT) or 4,4′-biphenyldithiol (BPDT).

Recent work has amplified the versatility of post-vulcanization modification for tuning the properties of HSMs. For example, improvements in mechanical strength/strain profiles can be achieved by adding polybutadiene to HSM formulations,46 by post-vulcanization crosslinking via added an epoxide-bearing monomer,47 by changing the reaction temperature to induce cyclization/aromatization of terpene monomers,48,49 or via a two-stage sequential crosslinking approach.50

The mechanical properties of vulcanized rubber have been similarly enhanced by incorporating crosslinkers such as thiazoles, sulfenamides, thioureas, polycysteine and dithiols.51–54 We hypothesized that dithiols could also be used to effect the post-vulcanization property tuning of HSMs. To test this hypothesis, GS80 (prepared from 20 wt% guaiacol and 80 wt% sulfur)43 was treated with dithiols in various mass ratios followed by spectroscopic, thermal, and mechanical analysis. Dithiols were expected to insert into flexible sulfur catenates in GS80 as shown in Scheme 1, so it was reasoned that incorporating rigid segments would elicit the greatest change in properties. Moreover, aryl thiols generally exhibit low homolytic S–H bond dissociation energies compared to alkyl analogues, further facilitating desired reactivity.55 Rigid benzene-1,4-dithiol (BDT) and 4,4′-biphenyldithiol (BPDT) were thus selected for the initial study. Each dithiol was heated with GS80 in GS80:dithiol mass ratios of 2[thin space (1/6-em)]:[thin space (1/6-em)]1, 3[thin space (1/6-em)]:[thin space (1/6-em)]1, 4[thin space (1/6-em)]:[thin space (1/6-em)]1, 5[thin space (1/6-em)]:[thin space (1/6-em)]1, and 10[thin space (1/6-em)]:[thin space (1/6-em)]1 at 180 °C for 1 h under N2 in sealed pressure tubes. Upon cooling to room temperature, all the products formed were remeltable and ranged from light brown to nearly black color.

The Fourier-transform infrared (FT-IR) spectra of dithiol-crosslinked composites (Fig. S1–S14, ESI) provide evidence for dithiol insertion through the disappearance of the S–H stretching peak at 2549 cm−1 (Fig. S1 and S8, ESI). The relative intensity of the dithiol aromatic ring mode band (1473 cm−1 for both BDT and BPDT) relative to that in GS80 (1500 cm−1) progressively increased with added BDT (Fig. 1A) or BPDT (Fig. 1C). In the case of BDT-modified GS80, well-resolved C–S stretches were observed attributable to C–S bonds to guaiacol in GS80 (740 cm−1) and to benzene in BDT (802 cm−1), with a progressive increase in relative intensity of the BDT C–S stretch with increasing BDT addition (Fig. 1B). These spectral features indicate complete consumption of thiol S–H bonds with retention of the –S–Ar–S– units.


image file: d5cc01306b-f1.tif
Fig. 1 Infrared spectra show that progressive addition of dithiol is accompanied by proportional increases in the relative intensity of dithiol-derived bands including (A) the aromatic ring mode of BDT versus that of the guaiacol rings of GS80, (B) the C–S bond stretch mode of BDT versus that of GS80, and (C) the aromatic ring mode of BPDT versus that of the guaiacol rings in GS80. These trends are accompanied by the disappearance of the band attributable to dithiol S–H stretches (Fig. S1 and S8 in the ESI).

Scanning electron micrographs (SEM) with element mapping by energy dispersive X-ray analysis (EDX) (Fig. S29 and S30, ESI) also confirmed the homogeneity of the materials with a uniform distribution of sulfur, carbon, and oxygen across all samples.

Whereas EDX data reveal uniform distribution of sulfur in the materials, the sulfur in the HSMs generally exists in two forms: (a) as oligo/polysulfide chains that are covalently attached to organic species via C–S bonds, and (b) as physically entrapped oligosulfur species within the polymer network, here collectively referred to as “dark sulfur”.56 Because dark sulfur is not covalently bound to the crosslinked network solid, it can be effectively extracted and quantified using a UV-vis method developed by Hasell et al.57 All of the S–S bonds in GS80 – whether covalently anchored to organics or in dark sulfur – are susceptible to reaction with dithiols, so as progressively more dithiol is added, concomitantly less extractable sulfur is anticipated. This general trend was observed (Table 1) for BDT-modified materials, with dark sulfur decreasing from 23 wt% in unmodified GS80 to 1 ± 3 wt%, as well as in BPDT-modified materials, with dark sulfur again decreasing from 23 wt% in unmodified GS80 to 2 ± 3 wt%. These data provide further evidence for the anticipated chemistry.

Table 1 Thermo-morphological properties and Shore A hardness measurements for dithiol-modified GS80 products compared to unmodified GS80
Material Tda/°C Char yieldb (wt%) Tg,DSCc/°C Dark sulfur (wt%)d Shore A hardness/HA
BDT BPDT BDT BPDT BDT BPDT BDT BPDT BDT BPDT
a The local maximum temperature of the major mass loss by the TGA derivative curve.b The residue remaining at the end of TGA at 800 °C (directly taken from the TGA curve).c Glass transition temperature.d Percent ethyl acetate-extractable sulfur species.e GS80 was prepared from 80 wt% sulfur and 20 wt% guaiacol.
GS80-dithiol (2[thin space (1/6-em)]:[thin space (1/6-em)]1) 333 329 20 27 6 6 6 ± 3 2 ± 3 53 74
GS80-dithiol (3[thin space (1/6-em)]:[thin space (1/6-em)]1) 328 323 16 19 4 4 1 ± 3 11 ± 3 62 92
GS80-dithiol (4[thin space (1/6-em)]:[thin space (1/6-em)]1) 320 321 11 16 −6 −6 13 ± 3 17 ± 3 60 89
GS80-dithiol (5[thin space (1/6-em)]:[thin space (1/6-em)]1) 312 316 11 13 −6 −7 22 ± 3 16 ± 3 74 87
GS80-dithiol (10[thin space (1/6-em)]:[thin space (1/6-em)]1) 311 313 5 5 −16 −21 22 ± 3 14 ± 3 75 82
GS80e 272 0 −34 23 85


The thermal properties of the composites were analysed using thermogravimetry analysis (TGA; TGA and DTG curves are provided in Fig. S15–S18, ESI). The decomposition temperatures (Td, provided as the local maximum of the derivative TGA curve, corresponding to the maximum rate of mass loss) are summarized in Table 1. For GS80-BDT-modified composites, the major decomposition was observed at 272–333 °C (0–33.3 wt% of BDT), attributed to the sublimation of sulfur from the material. In contrast, BPDT-modified materials having low amounts of added BPDT showed an initial minor decomposition at 99–114 °C and a major decomposition of the BPDT-modified composites at 272–329 °C due to the sublimation of sulfur. The Td values for the main decomposition event increased progressively with higher weight percentages of added dithiol, consistent with the expected progressively shorter and more stable sulfur catenates. BDT-modified composites generally exhibited slightly higher decomposition temperatures than BPDT-modified composites. A minor decomposition event at a higher temperature (>348 °C) attributable to the decomposition of aryl organosulfur species was discerned for materials made with higher amounts of added aryl thiol. The increase in char yield followed a predictable trend, correlating with a higher proportion of dithiol content (Fig. 2A), consistent with the increased aryl content in the materials.


image file: d5cc01306b-f2.tif
Fig. 2 Graphical representation of the general trend showing the effect of increasing the percentage of BDT (dark blue) and BPDT (light blue) dithiol crosslinkers on (A) char yield% and (B) glass transition temperature (Tg).

Differential scanning calorimetry (DSC; full traces shown in Fig. S19–S28, ESI) analysis from −60 °C to 140 °C revealed a progressive increase in the glass transition temperature (Tg) with increasing addition of rigid dithiols (Fig. 2B). The trend in Tg values shown in Fig. 2B highlights a relationship between incorporated dithiol and glass transition temperature (Tg), which spans the range from −34 °C to 6 °C for BDT-modified materials and −34 °C to 14 °C for BPDT-modified materials, offering a wide range of tunability. For a given ratio, BPDT-modified materials exhibited higher Tg values compared to BDT-modified materials, attributable to the longer rigid spacer in biphenyl versus phenyl moieties.

Shore A hardness is a common assessment of hardness for factices, HSMs, and post-vulcanization-modified rubber.47,58–61 Shore A hardness measurements (Table 1) show substantial variability in hardness from parent GS80 (85 A) to BDT-modified materials 53–75 A, and BPDT-modified systems range from 74–92 A. These values do not follow a predictable trend. Overall, the hardness of these materials falls within the range for soft rubbers, synthetic resins and semirigid plastics, which are commonly used in commercial items such as pencil erasers (50 A), shoe heels (70 A), leather belts (80 A), tire treads (70 A) and shopping cart wheels (90 A).62,63 Reproducibility in Shore A hardness values across multiple positions within the samples indicates effective diffusion and uniform incorporation of dithiols on a macroscale.

In conclusion, this study demonstrates that post-vulcanization modification of GS80 with rigid dithiols is an effective strategy for tuning the properties of high sulfur-content materials. The incorporation of benzene-1,4-dithiol (BDT) and 4,4′-biphenyldithiol (BPDT) not only facilitated the predictable increase in glass transition temperature but also reduced the extractable “dark sulfur” content. Thermal and mechanical evaluations further revealed enhanced decomposition profiles and tailored hardness properties. These findings underscore the potential of dithiol crosslinking to customize HSMs for diverse applications, paving the way for further exploration of post-vulcanization strategies in advanced material design.

We thank the National Science Foundation (CHE-2203669 to RCS) for financial support.

Data availability

The data supporting this article have been included as part of the ESI.

Conflicts of interest

There are no conflicts to declare.

Notes and references

  1. A. Nayeem, M. F. Ali and J. H. Shariffuddin, Environ. Res., 2023, 216, 114306 CrossRef CAS PubMed.
  2. A. Nayeem, M. F. Ali and J. H. Shariffuddin, Mater. Today: Proc., 2022, 57, 1095–1100 CAS.
  3. A. Amin, N. M. Mahmoud and Y. W. Z. Nisa, Green Mater., 2020, 8, 172–180 CrossRef.
  4. J. M. Chalker, M. J. H. Worthington, N. A. Lundquist and L. J. Esdaile, in Sulfur Chemistry, ed. X. Jiang, Springer International Publishing, Cham, 2019, pp. 125–151 DOI:10.1007/978-3-030-25598-5_4.
  5. F. Zhao, Y. Li and W. Feng, Small Methods, 2018, 2, 1–34 CAS.
  6. D. A. Boyd, Angew. Chem., Int. Ed., 2016, 55, 15486–15502 CrossRef CAS PubMed.
  7. W. J. Chung, J. J. Griebel, E. T. Kim, H. Yoon, A. G. Simmonds, H. J. Ji, P. T. Dirlam, R. S. Glass, J. J. Wie, N. A. Nguyen, B. W. Guralnick, J. Park, Á. Somogyi, P. Theato, M. E. Mackay, Y.-E. Sung, K. Char and J. Pyun, Nat. Chem., 2013, 5, 518–524 CrossRef CAS PubMed.
  8. C. M. Marshall, J. Molineux, K.-S. Kang, V. Kumirov, K.-J. Kim, R. A. Norwood, J. T. Njardarson and J. Pyun, J. Am. Chem. Soc., 2024, 146, 24061–24074 CrossRef CAS PubMed.
  9. J. Lim, J. Pyun and K. Char, Angew. Chem., Int. Ed., 2015, 54, 3249–3258 CrossRef CAS PubMed.
  10. J. J. Griebel, G. Li, R. S. Glass, K. Char and J. Pyun, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 173–177 CrossRef CAS.
  11. I. Gomez, D. Mecerreyes, J. A. Blazquez, O. Leonet, H. Ben Youcef, C. Li, J. L. Gomez-Camer, O. Bundarchuk and L. Rodriguez-Martinez, J. Power Sources, 2016, 329, 72–78 CrossRef CAS.
  12. I. Gomez, A. F. De Anastro, O. Leonet, J. A. Blazquez, H.-J. Grande, J. Pyun and D. Mecerreyes, Macromol. Rapid Commun., 2018, 39, 1800529 CrossRef PubMed.
  13. J. A. Smith, S. J. Green, S. Petcher, D. J. Parker, B. Zhang, M. J. H. Worthington, X. Wu, C. A. Kelly, T. Baker, C. T. Gibson, J. A. Campbell, D. A. Lewis, M. J. Jenkins, H. Willcock, J. M. Chalker and T. Hasell, Chem. – Eur. J., 2019, 25, 10433–10440 CrossRef CAS PubMed.
  14. K. Orme, A. H. Fistrovich and C. L. Jenkins, Macromolecules, 2020, 53, 9353–9361 CrossRef CAS.
  15. T. S. Kleine, N. A. Nguyen, L. E. Anderson, S. Namnabat, E. A. LaVilla, S. A. Showghi, P. T. Dirlam, C. B. Arrington, M. S. Manchester, J. Schwiegerling, R. S. Glass, K. Char, R. A. Norwood, M. E. Mackay and J. Pyun, ACS Macro Lett., 2016, 5, 1152–1156 CrossRef CAS PubMed.
  16. P. Yan, W. Zhao, S. J. Tonkin, J. M. Chalker, T. L. Schiller and T. Hasell, Chem. Mater., 2022, 34, 1167–1178 CrossRef CAS.
  17. M. S. Karunarathna, C. P. Maladeniya, M. K. Lauer, A. G. Tennyson and R. C. Smith, RSC Adv., 2023, 13, 3234–3240 RSC.
  18. M. K. Lauer, A. G. Tennyson and R. C. Smith, ACS Appl. Polym. Mater., 2020, 2, 3761–3765 CrossRef CAS.
  19. M. K. Lauer, A. G. Tennyson and R. C. Smith, Mater. Adv., 2021, 2, 2391–2397 RSC.
  20. B. G. S. Guinati, P. Y. Sauceda Oloño, N. L. Kapuge Dona, K. M. Derr, S. K. Wijeyatunga, A. G. Tennyson and R. C. Smith, RSC Sustainability, 2024, 2, 1819–1827 RSC.
  21. A. Hoefling, D. T. Nguyen, Y. J. Lee, S.-W. Song and P. Theato, Mater. Chem. Front., 2017, 1, 1818–1822 RSC.
  22. C. V. Lopez, A. D. Smith and R. C. Smith, RSC Adv., 2022, 12, 1535–1542 RSC.
  23. A. D. Smith, A. G. Tennyson and R. C. Smith, Sustain. Chem., 2020, 1, 209–237 CrossRef.
  24. C. V. Lopez, A. D. Smith and R. C. Smith, Macromol. Chem. Phys., 2023, 224, 2300233 CrossRef CAS.
  25. C. V. Lopez, K. M. Derr, A. D. Smith, A. G. Tennyson and R. C. Smith, Chemistry, 2023, 5, 2166–2181 CrossRef CAS.
  26. C. Herrera, K. J. Ysinga and C. L. Jenkins, ACS Appl. Mater. Interfaces, 2019, 11, 35312–35318 CrossRef CAS PubMed.
  27. A. D. Tikoalu, N. A. Lundquist and J. M. Chalker, Adv. Sustainable Syst., 2020, 4, 1900111 CrossRef CAS.
  28. C. V. Lopez, M. S. Karunarathna, M. K. Lauer, C. P. Maladeniya, T. Thiounn, E. D. Ackley and R. C. Smith, J. Polym. Sci., 2020, 58, 2259–2266 CrossRef CAS.
  29. A. E. Davis, K. B. Sayer and C. L. Jenkins, Polym. Chem., 2022, 13, 4634–4640 RSC.
  30. F. Stojcevski, M. K. Stanfield, D. J. Hayne, M. Mann, N. A. Lundquist, J. M. Chalker and L. C. Henderson, Sustainable Mater. Technol., 2022, 32, e00400 CrossRef CAS.
  31. A. Gupta, M. J. H. Worthington, H. D. Patel, M. R. Johnston, M. Puri and J. M. Chalker, ACS Sustainable Chem. Eng., 2022, 10, 9022–9028 CrossRef CAS.
  32. I. Gomez, O. Leonet, J. A. Blazquez and D. Mecerreyes, ChemSusChem, 2016, 9, 3419–3425 CrossRef CAS PubMed.
  33. B. Zhang, L. J. Dodd, P. Yan and T. Hasell, React. Funct. Polym., 2021, 161, 104865 CrossRef CAS.
  34. M. P. Crockett, A. M. Evans, M. J. H. Worthington, I. S. Albuquerque, A. D. Slattery, C. T. Gibson, J. A. Campbell, D. A. Lewis, G. J. L. Bernardes and J. M. Chalker, Angew. Chem., Int. Ed., 2016, 55, 1714–1718 CrossRef CAS PubMed.
  35. D. J. Parker, H. A. Jones, S. Petcher, L. Cervini, J. M. Griffin, R. Akhtar and T. Hasell, J. Mater. Chem. A, 2017, 5, 11682–11692 RSC.
  36. M. J. H. Worthington, R. L. Kucera, I. S. Albuquerque, C. T. Gibson, A. Sibley, A. D. Slattery, J. A. Campbell, S. F. K. Alboaiji, K. A. Muller, J. Young, N. Adamson, J. R. Gascooke, D. Jampaiah, Y. M. Sabri, S. K. Bhargava, S. J. Ippolito, D. A. Lewis, J. S. Quinton, A. V. Ellis, A. Johs, G. J. L. Bernardes and J. M. Chalker, Chem. – Eur. J., 2017, 23, 16219–16230 CrossRef CAS PubMed.
  37. N. A. Lundquist, M. J. H. Worthington, N. Adamson, C. T. Gibson, M. R. Johnston, A. V. Ellis and J. M. Chalker, RSC Adv., 2018, 8, 1232–1236 RSC.
  38. K. B. Sayer, V. L. Miller, Z. Merrill, A. E. Davis and C. L. Jenkins, Polym. Chem., 2023, 14, 3091–3098 RSC.
  39. M. E. Duarte, B. Huber, P. Theato and H. Mutlu, Polym. Chem., 2020, 11, 241–248 RSC.
  40. N. L. Kapuge Dona, P. Y. Sauceda-Oloño and R. C. Smith, J. Polym. Sci., 2024, 63, 789–799 CrossRef.
  41. C. P. Maladeniya, N. L. Kapuge Dona, A. D. Smith and R. C. Smith, Macromol, 2023, 3, 681–692 CAS.
  42. K. A. Tisdale, N. L. Kapuge Dona and R. C. Smith, Molecules, 2024, 29, 4209 CrossRef CAS PubMed.
  43. M. S. Karunarathna, M. K. Lauer and R. C. Smith, J. Mater. Chem. A, 2020, 8, 20318–20322 RSC.
  44. N. L. Kapuge Dona, C. P. Maladeniya and R. C. Smith, Eur. J. Org. Chem., 2024, 27, e202301269 CrossRef CAS.
  45. K. A. Tisdale, N. L. Kapuge Dona, C. P. Maladeniya and R. C. Smith, J. Polym. Environ., 2024, 32, 4842–4854 CrossRef CAS.
  46. V. Hanna, M. Graysmark, H. Willcock and T. Hasell, J. Mater. Chem. A, 2024, 12, 1211–1217 RSC.
  47. P. Yan, W. Zhao, S. J. Tonkin, J. M. Chalker, T. L. Schiller and T. Hasell, Chem. Mater., 2022, 34, 1167–1178 CrossRef CAS.
  48. C. P. Maladeniya, M. S. Karunarathna, M. K. Lauer, C. V. Lopez, T. Thiounn and R. C. Smith, Mater. Adv., 2020, 1, 1665–1674 RSC.
  49. J. J. Dale, V. Hanna and T. Hasell, ACS Appl. Polym. Mater., 2023, 5, 6761–6765 CrossRef CAS.
  50. T. Thiounn, M. S. Karunarathna, L. M. Slann, M. K. Lauer and R. C. Smith, J. Polym. Sci., 2020, 58, 2943–2950 CrossRef CAS.
  51. C. M. Hull, L. A. Weinland, S. R. Olsen and W. G. France, Ind. Eng. Chem., 1948, 40, 513–517 CrossRef CAS.
  52. Y. Nakamura, K. Mori and F. Akaishi, Rubber Chem. Technol., 1977, 50, 660–670 CrossRef CAS.
  53. K. Tsuchiya, K. Terada, Y. Tsuji, S. S. Y. Law, H. Masunaga, T. Katashima, T. Sakai and K. Numata, Polym. J., 2024, 56, 391–400 CrossRef CAS.
  54. K. Tamási and M. S. Kollár, Int. J. Eng. Res. Sci. Technol., 2018, 4, 28–37 Search PubMed.
  55. D. M. Beaupre and R. G. Weiss, Molecules, 2021, 26, 3332 CrossRef CAS PubMed.
  56. J. J. Dale, S. Petcher and T. Hasell, ACS Appl. Polym. Mater., 2022, 4, 3169–3173 CrossRef CAS.
  57. J. J. Dale, J. Stanley, R. A. Dop, G. Chronowska-Bojczuk, A. J. Fielding, D. R. Neill and T. Hasell, Eur. Polym. J., 2023, 195, 112198 CrossRef CAS.
  58. S. M. Erhan and R. Kleiman, J. Am. Oil Chem. Soc., 1993, 70, 309–311 CrossRef CAS.
  59. R. Hodges, Rubber Plast. Wkly., 1961, 21, 666–668 Search PubMed.
  60. Y. Nakamura, K. Mori and T. Nakamura, Rubber Chem. Technol., 1976, 49, 1031 CrossRef CAS.
  61. Y. Nakamura, K. Mori and F. Akaishi, Rubber Chem. Technol., 1977, 50, 660 CrossRef CAS.
  62. Shore Hardness Durometer Chart and Comparisons, https://hapcoincorporated.com/resources/hardness-chart/, accessed January 24, 2025.
  63. D. McClements, All About the Shore A Hardness Scale, https://www.xometry.com/resources/materials/shore-a-hardness-scale/, accessed January 24, 2025.

Footnote

Electronic supplementary information (ESI) available: FT-IR spectra, TGA curves, DTG curves and DSC curves. See DOI: https://doi.org/10.1039/d5cc01306b

This journal is © The Royal Society of Chemistry 2025
Click here to see how this site uses Cookies. View our privacy policy here.