Issue 18, 2018

Near-field exciton imaging of chemically treated MoS2 monolayers

Abstract

The exciton-dominated light emission of two-dimensional (2D) semiconductors is determined largely by the doping state and the formation of defects. Extensive studies have shown that chemical treatment critically modifies the doping state and defect state of chemical vapor deposition (CVD)-grown or exfoliated monolayer MoS2 (1L-MoS2), suggesting a promising possibility for engineering the optoelectronic properties of 2D semiconductors. However, chemical treatment inevitably modifies both the doping state and defect states, and their independent roles in the exciton emission of 1L-MoS2 have been difficult to study, significantly limiting the practical and reliable uses of chemical treatment to improve the optical properties of 1L-TMDs. Herein, we used near-field imaging and spectroscopy to investigate the effects of chemical treatment on the exciton emission of 1L-MoS2. CVD-grown 1L-MoS2 was treated with bis(trifluoromethane)-sulfonimide (TFSI) or 7,7,8,8-tetracyanoquinodimethane (TCNQ), and nanoscale maps of neutral exciton and trion emission before and after chemical treatment were obtained with 80 nm spatial resolution. A comparison of the local spatial and spectral compositions of neutral excitons and trions suggested that the p-doping effect of TFSI was especially strong around local defects, whereas electron depletion by TCNQ was spatially uniform. The specific reaction of TFSI to defect locations observed in our study provides the clue for the reason that TFSI is notably effective at improving the light emission of 1L-MoS2.

Graphical abstract: Near-field exciton imaging of chemically treated MoS2 monolayers

Supplementary files

Article information

Article type
Paper
Submitted
22 јан. 2018
Accepted
10 апр. 2018
First published
11 апр. 2018

Nanoscale, 2018,10, 8851-8858

Near-field exciton imaging of chemically treated MoS2 monolayers

Y. Kim, Y. Lee, H. Kim, S. Roy and J. Kim, Nanoscale, 2018, 10, 8851 DOI: 10.1039/C8NR00606G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements