

 Cite this: *RSC Adv.*, 2015, 5, 97611

DOI: 10.1039/c5ra90098k

www.rsc.org/advances

Correction: Dietary flavone chrysin (5,7-dihydroxyflavone ChR) functionalized highly-stable metal nanoformulations for improved anticancer applications

G. Sathishkumar,^a Rashmi Bharti,^b Pradeep K. Jha,^b M. Selvakumar,^c Goutam Dey,^b Rakhi Jha,^b M. Jeyaraj,^d Mahitosh Mandal^b and S. Sivaramakrishnan*^a

Correction for 'Dietary flavone chrysin (5,7-dihydroxyflavone ChR) functionalized highly-stable metal nanoformulations for improved anticancer applications' by G. Sathishkumar *et al.*, *RSC Adv.*, 2015, 5, 89869–89878.

The authors regret the errors in the horizontal axis of Fig. 8a, in which the positive control was labelled as NC instead of PC. The correct Fig. 8 is shown below.

Fig. 8 *In vitro* hemocompatibility assay of (a) formulated ChR–AgNPs and ChR–AuNPs, and (b) free ChR. No (0%) lysis was noticed in the negative control (NC–HEPES buffer) whereas the positive control (PC–1% Triton X-100) shows 100% lysis. Formulated NPs exhibit much less hemolytic activity than free ChR.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India. E-mail: sivaramakrishnan123@yahoo.com; Fax: +91-431-2407045; Tel: +91-431-2407086

^bSchool of Medical Science & Technology, Indian Institute of Technology (IIT), Kharagpur-721302, West Bengal, India

^cRubber Technology Centre, Indian Institute of Technology (IIT), Kharagpur-721302, West Bengal, India

^dNational Centre for Nanosciences and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India