Issue 8, 2021

Liquid metal batteries for future energy storage

Abstract

The search for alternatives to traditional Li-ion batteries is a continuous quest for the chemistry and materials science communities. One representative group is the family of rechargeable liquid metal batteries, which were initially exploited with a view to implementing intermittent energy sources due to their specific benefits including their ultrafast electrode charge-transfer kinetics and their ability to resist microstructural electrode degradation. Although conventional liquid metal batteries require high temperatures to liquify electrodes, and maintain the high conductivity of molten salt electrolytes, the degrees of electrochemical irreversibility induced by their corrosive active components emerged as a drawback. In addition, safety issues caused by the complexity of parasitic chemical reactivities at high temperatures further complicated their practical applications. To address these challenges, new paradigms for liquid metal batteries operated at room or intermediate temperatures are explored to circumvent the thermal management problems, corrosive reactions, and challenges related to hermetic sealing, by applying alternative electrodes, manipulating the underlying electrochemical behavior via electrolyte design concepts, and engineering the electrode–electrolyte interfaces, thereby enabling both conventional and completely new functionalities. This report briefly summarizes previous research on liquid metal batteries and, in particular, highlights our fresh understanding of the electrochemistry of liquid metal batteries that have arisen from researchers’ efforts, along with discovered hurdles that have been realized in reformulated cells. Finally, the feasibility of new liquid metal batteries is discussed along with their distinct chemistries and performance characteristics to answer the question of how liquid metals can be accessible for next-generation battery systems.

Graphical abstract: Liquid metal batteries for future energy storage

Article information

Article type
Review Article
Submitted
19 Febr. 2021
Accepted
08 Jūn. 2021
First published
08 Jūn. 2021

Energy Environ. Sci., 2021,14, 4177-4202

Liquid metal batteries for future energy storage

S. Zhang, Y. Liu, Q. Fan, C. Zhang, T. Zhou, K. Kalantar-Zadeh and Z. Guo, Energy Environ. Sci., 2021, 14, 4177 DOI: 10.1039/D1EE00531F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements