Volume 202, 2017

Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides

Abstract

Generally, biorefineries convert lignocellulosic biomass into a range of biofuels and further value added chemicals. However, conventional biorefinery processes focus mainly on the cellulose and hemicellulose fractions and therefore produce only low quality lignin, which is commonly burnt to provide process heat. To make full use of the biomass, more attention needs to be focused on novel separation techniques, where high quality lignin can be isolated that is suitable for further valorisation into aromatic chemicals and fuel components. In this paper, three types of lignocellulosic biomass (softwood, hardwood and herbaceous biomass) were processed by microwave-assisted acidolysis to produce high quality lignin. The lignin from the softwood was isolated largely intact in the solid residue after acidolysis. For example, a 10 min microwave-assisted acidolysis treatment produced lignin with a purity of 93% and in a yield of 82%, which is superior to other conventional separation methods reported. Furthermore, py-GC/MS analysis proved that the isolated lignin retained the original structure of native lignin in the feedstock without severe chemical modification. This is a large advantage, and the purified lignin is suitable for further chemical processing. To assess the suitability of this methodology as part of a biorefinery system, the aqueous phase, produced after acidolysis of the softwood, was characterised and assessed for its suitability for fermentation. The broth contained some mono- and di-saccharides but mainly contained organic acids, oligosaccharides and furans. While this is unsuitable for S. cerevisiae and other common ethanol producing yeasts, two oleaginous yeasts with known inhibitor tolerances were selected: Cryptococcus curvatus and Metschnikowia pulcherrima. Both yeasts could grow on the broth, and demonstrated suitable catabolism of the oligosaccharides and inhibitors over 7 days. In addition, both yeasts were shown to be able to produce an oil with a similar composition to that of palm oil. This preliminary work demonstrates new protocols of microwave-assisted acidolysis and therefore offers an effective approach to produce high purity lignin and fermentable chemicals, which is a key step towards developing a zero-waste lignocellulosic biorefinery.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
10 Marts 2017
Accepted
29 Marts 2017
First published
29 Marts 2017

Faraday Discuss., 2017,202, 351-370

Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides

L. Zhou, F. Santomauro, J. Fan, D. Macquarrie, J. Clark, C. J. Chuck and V. Budarin, Faraday Discuss., 2017, 202, 351 DOI: 10.1039/C7FD00102A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements