Issue 2, 2020

Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles

Abstract

Cell entry of polymeric nanoparticles (NPs) bearing polynucleotides is an important stage for successful gene delivery. In this work, we addressed the influence of cell membrane lipids on the integrity and configurational changes of NPs composed of short interfering ribonucleic acid (siRNA) and polyethylenimine. We focused on NPs derived from two different PEIs, unmodified low molecular weight PEI and linoleic acid (LA)-substituted PEI, and their interactions with two membrane lipids (zwitterionic 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS)). Our experiments showed that POPS liposomes interacted strongly with both types of NPs, which caused partial dissociation of the NPs. POPC liposomes, however, did not induce any dissociation. Consistent with the experiments, steered molecular dynamics simulations showed a stronger interaction between the NPs and the POPS membrane than between the NPs and the POPC membrane. Lipid substitution on the PEIs enhanced the stability of the NPs during membrane crossing; lipid association between PEIs of the LA-bearing NPs as well as parallel orientation of the siRNAs provided protection against their dissociation (unlike NPs from native PEI). Our observations provide valuable insight into the integrity and structural changes of PEI/siRNA NPs during membrane crossing which will help in the design of more effective carriers for nucleic acid delivery.

Graphical abstract: Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
20 Sept. 2019
Accepted
04 Dec. 2019
First published
05 Dec. 2019

Nanoscale, 2020,12, 1032-1045

Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles

Y. Nademi, T. Tang and H. Uludağ, Nanoscale, 2020, 12, 1032 DOI: 10.1039/C9NR08128C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements