Issue 12, 2019

Impact of molecular conformation on triplet-fusion induced photon energy up-conversion in the absence of exothermic triplet energy transfer

Abstract

The use of photon energy up-converted luminescence driven by triplet-exciton annihilation reactions (TTA-UC) is increasingly gaining attention for developing next-generation light-management, and wavelength-shifting technologies. Here we present a spectroscopic study for elucidating the photophysical mechanism that operates in an unusual TTA-UC model system comprising the blue-light emitting poly(fluorene-2-octyl) (PFO) activator mixed with the green-light absorbing (2,3,7,8,12,13,17,18-octaethyl-porphyrinato) PtII (PtOEP) metalo-organic complex. The unconventional character of the PFO:PtOEP composite manifests in the fact that no exothermic triplet energy transfer (TET) is possible between triplet-excited PtOEP and PFO. Yet green-to-blue TTA-UC luminescence of PFO is obtained even when PtOEP is selectively photoexcited by pulsed laser intensities as low as 2.5 mW cm−2. Continuous-wave photo-induced absorption spectroscopy verifies that no energy transfer from triplet-excited PtOEP to the triplet level of PFO takes place, pointing to triplet–triplet annihilation (TTA) events in the PtOEP phase as the origin of the observed TTA-UC PL signal. In the PFO:PtOEP composite, the PtOEP component holds a dual role of annihilator/sensitizer; photon energy storage in PtOEP is enabled via TTA when triplet exciton diffusion coefficient values of DPtOEP = 4.1 × 10−9 cm2 s−1 are reached. With a simple yet powerful solution processing protocol, and by combining Raman and time-gate photoluminescence (PL) spectroscopy we demonstrate that the brightness of the produced TTA-UC luminescence depends on the molecular conformation of the PFO activator. A four-fold increase in the TTA-UC luminescence intensity is registered in the time-integrated and time-gated PL spectra, when the PFO matrix is arrested in its planar β-phase molecular conformation. Further enhancement of the TTA-UC PL signal is achieved when temperature lowers from 290 K down to 100 K. These results stimulate the development of a theoretical model for the microscopic description of triplet exciton migration in disordered photon up-converting solids. Efficient harvesting of photon energy, which is stored in annihilator/sensitizer moieties via TTA events, can be enabled when the molecular conformation of the activator species is properly tuned.

Graphical abstract: Impact of molecular conformation on triplet-fusion induced photon energy up-conversion in the absence of exothermic triplet energy transfer

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec. 2018
Accepted
25 Febr. 2019
First published
27 Febr. 2019

J. Mater. Chem. C, 2019,7, 3634-3643

Impact of molecular conformation on triplet-fusion induced photon energy up-conversion in the absence of exothermic triplet energy transfer

H. Goudarzi, S. Limbu, J. Cabanillas-González, V. M. Zenonos, J. Kim and P. E. Keivanidis, J. Mater. Chem. C, 2019, 7, 3634 DOI: 10.1039/C8TC06283H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements