
Measuring city-scale green infrastructure drawdown 
dynamics using internet-connected sensors in Detroit

Journal: Environmental Science: Water Research & Technology

Manuscript ID EW-ART-02-2023-000098.R1

Article Type: Paper

 

Environmental Science: Water Research & Technology



Measuring city-scale green infrastructure drawdown dynamics using internet-1

connected sensors in Detroit2

3

Brooke E. Mason,∗a and Jacquelyn Schmidta and Branko Kerkeza
4

5

Abstract: The impact of green infrastructure (GI) on the urban drainage landscape remains largely unmeasured at high temporal and6

spatial scales. To that end, a data toolchain is introduced, underpinned by a novel wireless sensor network for continuously measuring7

real-time water levels in GI. The internet-connected sensors enable the collection of high-resolution data across large regions. A case study8

in Detroit (MI, US) is presented, where the water levels of 14 GI sites were measured in-situ from June to September 2021. The large9

dataset is analyzed using an automated storm segmentation methodology, which automatically extracts and analyzes individual storms10

from measurement time series. Storms are used to parameterize a dynamical system model of GI drawdown dynamics. The model is11

completely described by the decay constant α, which is directly proportional to the drawdown rate. The parameter is analyzed across12

storms to compare GI dynamics between sites and to determine the major design and physiographic features that drive drawdown dynamics.13

A correlation analysis using Spearman’s rank correlation coefficient reveals that depth to groundwater, imperviousness, longitude, and14

drainage area to surface area ratio are the most important features explaining GI drawdown dynamics in Detroit. A discussion is provided15

to contextualize these finding and explore the implications of data-driven strategies for GI design and placement.16

17

1 Water Impact Statement18

Globally, green infrastructure (GI) has become a popular stormwater management solution, but its impact on the larger urban drainage19

landscape remains unverified. A low-cost, low-maintenance sensor is introduced for real-time, high-resolution GI monitoring. When20

coupled with an automated data toolchain, we show how investments in monitoring networks support a more targeted and data-driven21

approach to GI placement, planning, and maintenance.22

2 Introduction23

Urban areas around the world are struggling to manage stormwater runoff and flooding– a challenge compounded by rapid urbanization24

and climate change.1,2 Gray infrastructure, which consists of gutters, drains, and pipes, is the traditional method for collecting and25

conveying stormwater away from urban areas. Recently, green infrastructure (GI) has become a popular alternative, used either as26

a standalone stormwater management practice or in concert with traditional gray infrastructure.3,4 GI attempts to mimic the natural27

water cycle by using plants, soil, and landscape design to capture and filter local runoff.3,5 One of the most common GI practices is28

bioretention cells, or rain gardens, which are depressed vegetated areas that capture and reduce runoff by allowing it to evapotranspire29

or exfiltrate into surrounding soil.6
30

Communities worldwide are investing in GI for managing stormwater at increasing scales. For example, China plans to spend over31

US$ 1.5 trillion on GI in 657 cities by 2030.7 In the midwestern US, the city of Detroit, Michigan invested US$ 15 million in GI between32

2013–2017 and will invest US$ 50 million by 2029.8 These investments assume adding more GI assets will positively impact stormwater33

outcomes, however, sufficient data to support this claim has yet to be produced.3,5,9,10
34

Real-time monitoring of stormwater infrastructure at high temporal and spatial resolutions is now possible with Internet of Things35

(IoT) technologies.11,12 Real-time sensing has been successfully deployed to monitor depths and flows in stormwater13 and sewer36

networks.14,15 Recently, some studies have used sensors, such as pressure transducers connected to data loggers, to monitor GI.16–19
37

While these studies provided high resolution measurements, they required frequent field maintenance (e.g., downloading the data38

onsite, replacing batteries), making this approach impractical for obtaining large-scale, and/or long-term data. Therefore, there is still39

a need for GI IoT solutions.40

To that end, we introduce an end-to-end data toolchain based on new wireless sensors for estimating real-time drawdown in GI, the41

speed at which stormwater is evapotranspired and exfiltrated into the native soil.5,18 These wireless sensors are low-cost, easy to install,42

and can be deployed at scale to create large, long-term, high-resolution datasets of urban drainage conditions. When combined with43

an analytics toolchain, our approach can be used to automatically learn GI dynamics from data on a storm-by-storm basis. To study the44

value of a city-wide dataset, we present a case study of these GI sensors deployed in Detroit. This novel dataset is used to characterize45
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the drawdown dynamics of GI over multiple storms. The core contribution of this paper is a new sensor and data analysis methodology,46

along with experimental results that show which factors are the strongest predictors of drawdown dynamics for the studied GI network.47

3 Background48

3.1 GI design standards49

Many communities rely on established stormwater management manuals, which detail how to select, design, construct, and maintain50

stormwater infrastructure, including GI. A manual’s goal is to set forth best management practices which will elicit a certain level51

of performance, such as mitigating peak flow or infiltrating a certain fraction of runoff.20 Regional and local manuals set design52

requirements (e.g., site selection, GI selection/sizing, soil media composition, underdrain sizing, plant selection) as well as performance53

metrics.6 These design requirements and performance metrics exist for a variety of reasons, for example to ensure public safety and54

limit liability by eliminating trip hazards, adding barriers around water features, and reducing standing water to control mosquitos,55

but most fundamentally, to ensure that stormwater is being managed consistently across various sites. As an example, in the US, two56

common metrics for rain gardens and bioretention cells include the maximum allowable ponding time, generally 12–48 hours,21–23
57

and infiltration rate, typically 2.5–5 cm/hr.6,21,23
58

3.2 GI measurements59

Monitoring is needed to confirm whether a GI is meeting desired management goals. Additionally, monitoring can be used to determine60

whether local stormwater manuals are setting appropriate design standards and performance metrics. Due to the sheer number of61

sites and the cost of measuring quantitative metrics, cities often rely on visual inspection or modeling to assess performance.5 If GI62

monitoring is carried out, it is generally limited to certain time periods and conditions.3,5,24
63

Recent technological advances have opened up new possibilities for low-cost, high resolution stormwater sensing.11,12 Despite their64

availability, the uptake of these technologies for GI management has been limited. According to a national survey of officials in water65

utilities and agencies, however, assumed high construction and maintenance costs associated with smart GI are the two main barriers66

to adoption.25 As such, the concept has yet to be vetted at scale.67

3.3 Measuring drawdown rate68

While infiltration rate can vary substantially even within the same GI, the drawdown rate indicates the time it takes water to drain, which69

is representative of the entire system.26,27 Drawdown rate is an averaging approach because it reduces the measurement variability due70

to small-scale heterogeneities in soil and vegetation conditions.28 Understanding how quickly water levels recede after a storm (i.e.,71

drawdown rate) can provide valuable insights into how effectively a particular GI asset manages excess water.18 It can offer information72

about the system’s ability to mitigate flooding, erosion, and the persistence of standing water. Drawdown analysis can be particularly73

relevant in assessing a system’s resilience against subsequent storm events. If a GI asset can efficiently and quickly lower its water levels74

after one storm, it might be better prepared to handle subsequent storms and help prevent inundation and potential damage.75

The drawdown rate of GI is a function of the design features, building and maintenance practices, and the surrounding and un-76

derlying physiographic features.3,28 Design features include size, soil type, and vegetation. During site construction, how the sites are77

excavated and graded can cause significant soil compaction which ultimately impacts GI drawdown rates.29 Physiographic features78

include the native soils, topography, land use type, depth to groundwater, and sunlight.3,30 These features may have a strong effect79

on GI drawdown. For example, a shallow groundwater table (< 2–3 m) may result in more saturated media, which forms a smaller80

hydraulic gradient, impeding infiltration into the GI and exfiltration out of the GI into surrounding native soil.31,32 This suggests that81

the drawdown rate of GI is governed by the complex interactions of these factors. Few large-scale data sets exist to verify this at scale,82

however. Monitoring drawdown can provide an initial lens to assess these factors and then set appropriate design, placement, and83

construction standards.84

Drawdown rate has been traditionally measured via drawdown testing. A GI is filled with water (either synthetically or via rainfall)85

until ponding occurs, then the drain depth (∆h) and time (∆t) are recorded.19,28 These measurements are typically conducted manually86

with the help of a watch and gauge plate. Using these measurements, the drawdown rate (qdd) is then calculated as follows:87

qdd =
∆h
∆t

(1)

The drawdown rate can also be used to calculate the combined volume of water captured via exfiltration and evapotranspiration (Vdd):88

Vdd = qdd · tdd ·φ ·A (2)

where tdd is the storm event duration, φ is the porosity of the soil media, and A is the surface area of the GI.18
89

Drawdown testing is generally only done pre- and post-installation,18 but occasionally assets are tested as they age to track how90

they change over time.17,33 Unfortunately, the laboriousness of drawdown testing results in most communities having sparse datasets91

of in-situ GI drawdown. Furthermore, drawdown is inherently non-linear18, meaning that drawdown rate may change over the course92
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of a storm and in response to ambient conditions. To gain a complete picture of GI behavior, more data are needed than what can be93

obtained from a single drawdown test taken during a single storm event.94

Fig. 1 A GI sensor installed in a rain garden (top right). The sensor’s hardware layer (center) includes the PVC well, microcontroller, cellular modem,
and pressure transducer. The cloud services layer (left) includes the database backend, along with applications for controlling sensor behavior and
visualizing data (bottom right).

4 Materials and methods95

4.1 Green infrastructure wireless sensors96

A wireless sensor was designed to continuously measure drawdown in GI (Fig. 1). Specifically, the device measures water level97

fluctuations in real-time (Fig. 2). At the time of writing, the sensor costs approximately US$ 1,000 to build and US$ 25 annually for98

telecommunication and data storage services. The form factor of the sensor is similar to a water well, consisting of a 1.5 m long, slotted99

PVC pipe with one end holding the sensor and the other holding the remaining hardware components. The sensor uses the vetted Open100

Storm hardware and cloud services stack detailed in Bartos et al. (2018).13 The hardware layer relies on an ultra-low power ARM101

Cortex-M3 microcontroller (Cypress PSoC). The microcontroller manages the sensing and data transmission logic of the embedded102

system. The sensor measures water levels to a reported accuracy of ±0.762 cm using a pressure transducer (Stevens SDX 93720-110),103

which converts a barometric reading to a 4–20 milliampere (mA) output. The sensor is equalized for atmospheric pressure changes104

and was calibrated in the laboratory using a standard water column. The device is connected to the internet with a 4G LTE CAT-4105

cellular modem (Nimbelink NL-SW-LTE). The cellular modem enables bi-directional communication between the sensor and a remote106

cloud-hosted web server. The device is powered using a 3.7 V lithium-ion battery (Tenergy) that is recharged by a solar panel (Adafruit107

500). Power consumption measurements were used to confirm that when the device is on, power consumption is in the milli-amperage108

range and when the device is in sleep mode, it is in the micro-amperage range. With these power consumption numbers the sensor can109

stay in the field for up to 10 years without needing a battery replacement.110

To mitigate potential soil ingress and the need for frequent maintenance, a protective screen was added around the pressure sensor111

(white cap in Fig. 1). This screen serves as a physical barrier that prevents soil particles from directly contacting the sensor surface.112

This design choice was made to reduce the likelihood of sensor fouling and to extend the time between cleaning and recalibration.113

While some sensor technologies do require regular maintenance and recalibration,the protective screen minimizes these requirements114

by preventing direct contact with soil particles that might lead to drift or inaccurate measurements.115

Field maintenance is required if sensor drift or inaccurate measurements are suspected. Sensor drift is defined as a small temporal116

variation in the sensor output under unchanging conditions. Sensor drift can be detected in this case when the sensor’s “zero” reading117

changes over time. The other type of inaccurate measurement occurs if a sensor provides a zero reading during periods of rainfall.118

There are several possible explanations for this malfunction. First, since the sensor operates by converting current to depth, there could119
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be an issue with the analog circuitry resulting in inaccurate current measurements. Second, the sensor could be physically damaged120

during node assembly or deployment. Third, the sensor provides a venting tube for equalizing atmospheric pressure changes. Although121

a cap is added to the tube to keep moisture out, if the cap is faulty, condensation can enter the tube and cause inaccurate readings.122

Finally, the PVC well may clog with sediment. To rectify any of the above sensor malfunctions, the sensor is swapped for a new one,123

which only takes a few minutes of field work.124

Long-term monitoring requires ongoing attention to data quality. The study design included periodic checks to ensure the stability125

of sensor measurements and the potential need for recalibration. We aimed to strike a balance between data accuracy and practical126

considerations of maintaining sensors in real-world conditions.127

The sensor measurements were validated in the field using a gauge plate and digital, time-lapse photography by an outside con-128

sultant.34 During rain events, photos were taken of the ponded water and gauge plate measurement every ten minutes (ESI Fig. A1).129

There was an average alignment of 11 mm between the camera-recorded and sensor-recorded depth measurements (ESI Fig. A2).130

Installation of the sensor takes less than 30 minutes by one person and requires digging a 1 m deep hole using a simple, off-the-shelf,131

handheld post hole digger. The sensor is placed in the hole and backfilled with soil. Real-time data begins streaming to a web dashboard132

as soon as the unit is deployed. The sensor is deployed such that an water level of 0 m indicates dry conditions, while a measurement133

above 1 m indicates water is ponding on the surface.134

The sensor takes measurements every ten minutes and reports data to the server once every hour. Measurements are transmitted135

over the cellular network via a secure connection to a cloud-hosted server. Data and metadata are stored in an InfluxDB database.35
136

Measurements are then made available for visualization and sharing with partners through Grafana,36 a dashboarding software used to137

plot measured water level over time. Both InfluxDB and Grafana instances are hosted on an Amazon Web Services (AWS) Elastic Cloud138

Computing (EC2) instance.37 The system is entirely open source and the complete codebase, hardware schematics, and how-to guides139

have been made available as part of this paper on github.com/kLabUM/GI_Sensor_Node.140

Fig. 2 Illustration of the water flows into and out of a green infrastructure asset. The sensor measures real-time water levels using a pressure
transducer.

4.2 Automatically learning GI dynamics from data141

To enable comparisons between sites without losing temporal information due to averaging, we synthesize and parameterize a draw-142

down model automatically from data. We assume that water levels inside GI can be approximated as a first-order linear dynamical143

system, which evolves according to the differential equation:144

dh
dt

= αh ; α < 0 (3)
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where h represents the initial water level in GI and α is the decay constant– a measure of how fast the water level inside a GI recedes145

following a storm. Changes in GI water levels are influenced by various factors such as infiltration, evaporation, evapotranspiration,146

and potential limitations like saturation and infiltration capacity. While a first-order decay model simplifies these dynamics, it serves as147

a starting point to capture the overall trend of drainage post-storm. This model provides a basic framework for analysis and enables148

the quantification of certain aspects of performance. While reductionist to some extent, employing a single parameter, such as α, to149

describe the drawdown curve, we can identify broad trends and assess relative differences across installations.150

In this formulation, the decay constant is directly proportional to drawdown rate and provides a single parameter that can be151

compared between sites. A relatively larger magnitude α corresponds to a faster rate of drawdown, while a smaller magnitude α152

corresponds to more slowly changing water levels. More relevant to cross comparisons between sites, however, is that α embeds both153

temporal and magnitude information in one parameter. In other words, two sites could have similar bulk performance metrics, such as154

average volume capture over 24 hours, but exhibit vastly different drawdown curves. As such, studying the decay constant α allows us155

to compare sites while taking advantage of the temporal granularity of our sensor data.156

Linear regression is used to fit the drawdown model to the water level sensor data of each storm. To fit the data to Eqn. 3, we find157

the fit that best captures the relationship between the water level and its first derivative [h(t), dh
dt ] (Fig. 3, left col.). The slope of this158

line is the decay constant, α. This method selects the most dominant rate of decay in the data. The fit of the model is evaluated using159

two metrics: the coefficient of determination (R2) and root mean squared error (RMSE). To illustrate the methodology, the fit of the160

drawdown model to the sensor data for three distinct storms is shown in Fig. 3.161

Since we calculate α for every storm, drawdown dynamics of each site can be compared on a storm-by-storm basis, or the set of α ’s162

can be combined into a single value for a given site. A single value of α can be thought of as a regression in [h(t), dh
dt ] feature space163

across all storms. This allows us to model the expected water level drawdown curve for a future storm. The resulting model could be164

used to inform estimates on how long a GI would take to drain given an initial water level of h(0) m, for example. A parameterized165

decay model can also be used to simulate the GI’s behavior as part of a broader hydrologic simulator (e.g., US EPA SWMM38).166

While the decay constants describe the non-linear dynamics of drawdown, the water level dataset also enables the estimation of two167

static variables – average drawdown rate and total volume captured. We lose the temporal granularity of our data when calculating168

these static variables, but we gain bulk performance metrics. Using Eqn. 1 and Eqn. 2, we estimate these parameters for all storms169

captured by the GI.170

4.2.1 Implementation171

An automated process is developed to identify individual storms in the sensor data. This methodology requires water level data, in172

this case provided by our sensors. Identifying individual storms can be challenging because there is no hard-and-fast definition of what173

constitutes a storm; it may have one or several peaks. Therefore, there is a level of subjectivity and discretion involved in determining174

what qualifies as a storm event. Our dataset contains both single and multiple-peak storms, necessitating the flexibility to capture all175

variations.176

To address this challenge and to ensure consistency we used the find_peaks() function of Python Scipy Signal library to automati-177

cally identify local minima and maxima in the water level data.39 To find the maxima we pass the water level time series to the function,178

which returns a list of indices corresponding to peaks (local maxima). To find the minima, we pass the negative of the water level time179

series, which then returns a list of indicies for local minima. We use two of the function’s optional parameters to refine which points180

qualify as "peaks": prominence (p) and distance. Prominence is a measure of how high a local maxima stands out in comparison to its181

neighboring local minima. The prominence parameter was adjusted for each site such that the selected peaks corresponded reasonably182

well to local rainfall measurements40 and captured a meaningful segment of water level drawdown for each storm. We set the distance183

parameter to 3 hours, meaning adjacent local minima/maxima must be at least 3 hours apart to be selected. An example of the resultant184

automated storm segmentation is provided in Fig. 3, top row. While rainfall data are not required for the method, they can nonetheless185

be used as a secondary check, by visually lining up storms detected in the water levels with those measured by nearby rain gages.186

Once the storms were isolated, the drawdown model is fit to the data using the OLS() function of Python’s statsmodels library.41
187

The function uses ordinary least squares to fit the provided data. We pass [h(t), dh
dt ] to the function and it returns the linear coefficient,188

α, that minimizes the squared error. Fig. 3 (column 1, rows 2–4) show the fits of [h(t), dh
dt ] for three storms in one rain garden. Now189

that we have obtained α, we can plot the resultant drawdown model for each storm using the explicit solution to our first-order linear190

dynamical system (Eqn. 3). The explicit solution is191

x =Ceαt +b (4)

where C and b are scaling and offset parameters that are adjusted to fit the magnitude of the storm. Fig. 3 (column 2,rows 2–4) plots192

the resultant drawdown model for three different storms measured at the same site.193

The fit of each model is quantified using the coefficient of determination (R2 score) and root mean squared error (RMSE) using194

Python’s Scikit-learn library.42 If a model performs worse than a model that naively predicts the mean of the target variable, the R2
195

score (which should always be less than 1) can be negative. This is an indicator that the chosen model has not captured the underlying196

trend in the data. Since our process is automated and designed to automatically detect storms and fit drawdown models to the data, we197
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Fig. 3 (Top row) Time series water level measurement from a GI overlaid with nearby publicly-available precipitation data. The orange boxes indicate
distinct storm events automatically detected by a peak finding algorithm. The decay constant α is fit for three distinct storms in the same GI. (rows
2–4, left) To find α, we fit a line for the relationship between water level (x-axis) and the change in water level (y-axis). (rows 2–4, right) The found
α’s are then plotted against the actual water levels experienced from the three distinct storms. The R2 value for each fit is also provided.

did not manually discard raw observations, but rather used a negative R2 score as an indicator that the automated modeling procedure198

did result in a viable model. Therefore, any drawdown model with a negative R2 score was excluded. This poor fit is due to automated199

nature of the approach. Some storms may not always be segmented in a way that would be done manually, and the automated algorithm200

may not converge to a viable solution. Excluding models with negative R2 thus removes models that do not contribute positively to the201

overall predictive power or performance of the broader set of models.202

4.3 Case study203

We selected Detroit, Michigan, US for the GI monitoring network (latitude 42°19’53”, longitude −83°2’44”). Detroit has a unique204

opportunity for extensive GI installations because approximately 103 km2 (28%) of the city is classified as vacant land.43 The city is205

located at the outlet of three major watersheds (i.e., Rouge River, Clinton River, Lake St. Clair) where flows eventually discharge into206

either Lake St. Clair or the Detroit River. Due to Detroit’s location in the floodplain, most of its soil is poorly drained clay and silt.44
207
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Fig. 4 Map of the 14 GI sites selected for sensors in Detroit, Michigan, US.

Detroit also has a shallow groundwater table. Teimoori et al. (2021) found that the modeled depth to groundwater in Detroit ranged208

from approximately 1–3 meters below the ground surface.45 Detroit’s climate follows a four-season pattern, with average temperatures209

ranging from −7.11°C to 28.7°C. Detroit averages 87 cm and 137 days of precipitation per year.46 Precipitation is dispersed relatively210

evenly throughout the year as rain and snow, but heavier amounts occur in spring and winter.44
211

Detroit has a combined sewer system for managing stormwater and wastewater which flows into the second largest wastewater212

plant in the world.44 During extreme rainfall events in 2021, the sewer conveyance and wastewater plant’s treatment capacity was213

exceeded on multiple occasions, resulting in billions of gallons of raw sewage being directly discharged into Detroit waterways.47 In214

addition, backups in the sewer system resulted in residential basements being filled with sewage-laden runoff.47 The need to mitigate215

flooding and sewer overflows has driven the City of Detroit and organizations like the Detroit Sierra Club to prioritize GI installations.8
216

In partnership with the Detroit Sierra Club, a non-profit organization, 14 GI sites were selected for deployment in summer 2021217

across 155 km2 of Detroit to monitor GI performance (Fig. 4). Since 2015, the Detroit Sierra Club has been working with community218

partners and Detroit residents to build GI, primarily small residential rain gardens. GI were selected that varied in terms of age, size,219

and surrounding land use type. Twelve sites were rain gardens designed and built by Detroit Sierra Club and their partners, and two220

were engineered and commercially built bioretention cells. The design and site data for the GI were provided by Detroit Sierra Club221

(ESI Table A1). Moving forward, each site is identified by an alpha numeric code (e.g., S1 for site 1).222

4.4 Correlation analysis223

Once the decay constants were extracted from the Detroit sensor network, a correlation analysis was conducted to determine which224

design and physiographic features explain GI drawdown, as quantified by the decay constant α. Design features included the GI’s225

location, surface area, drainage area, storage volume, soil media depth, age, and drainage area to surface area ratio (DA/SA ratio). The226

DA/SA ratio, also known as the hydraulic loading ratio48,49, was calculated by dividing the drainage area by the surface area. Since we227

cannot explicitly calculate inflow without highly localized measurements of precipitation, which were unavailable, this quantity is used228

to capture the relative amount of inflow to each GI. The physiographic features for each GI were extracted from public GIS datasets of229

percent imperviousness, land use type, elevation, slope, native soil type (i.e., hydrologic soil group), and depth to groundwater. ESI230

Section B provides detailed steps on how the GIS datasets were downloaded, processed, and the features were extracted for each GI.231

The datasets investigated included both non-normal continuous (e.g., surface area, elevation) and ordinal (e.g., land use type, hy-232

drologic soil group) variables. To handle both types of variables, Spearman’s rank correlation coefficient was selected for the correlation233

analysis.50 Spearman’s rank correlation coefficient is a nonparametric measure of the strength and direction of the monotonic relation-234

ship between two ranked variables,51 making it a valuable tool for identifying non-linear relationships. It operates independently of235

the distribution of variables, which is an advantage in non-parametric contexts. Unlike hypothesis testing, which addresses whether236
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an observed correlation could have occurred by chance, Spearman’s correlation assesses the real-world significance or the practical237

implication of the relationship.238

Spearman’s rank correlation coefficients were computed using the corr() function of Python’s Pandas library.52 A dataframe of239

the mean decay constants, physiographic features, and design features for the GI monitoring network was passed to the function. The240

function requires a correlation method, which was set to ’spearman’. Readers are directed to a Zenodo web portal to freely obtain the241

data and code referenced in this paper.53
242

5 Results243

5.1 Sensor network performance244

Deployment of the GI monitoring network began mid-June 2021 and 14 operational sensors were deployed by early July 2021 (instal-245

lation dates provided in ESI Table A2). The measurement period consists of data collected between June 15, 2021, and September 1,246

2021. During the measurement period, there were only two instances of prolonged data loss— S8 and S12 had a two-hour and 24-hour247

data gap, respectively. These losses did not impact the measurement of storm response at either site. Sensor drift was not an issue, with248

an average drift of < 2.5 cm. There was one maintenance trip on August 11th to swap S12’s sensor because it indicated the GI was249

empty during periods of rain (ESI Table A2).250

5.2 GI drawdown analysis251

The measurement period coincided with Detroit’s 7th wettest summer on record, which included several historic rain events: 15.2 cm252

of rain on June 25th, 5.6 cm on July 16th, and 6.9 cm on August 12th.54 During the measurement period, a total of 122 drawdown253

models (i.e, storm events) were identified across the network (orange boxes in Fig. 5 (left)). Of the 122 models, 15 failed to converge254

to a numerically viable α and were therefore excluded. A mean of 7.4 models were analyzed for each site with the number varying255

widely per site: 21 for S11 versus 1 for S8. This variation per site is due to the automated process of detecting and fitting models, the256

GI’s installation date (see ESI Table A2), and the spatial variation in rainfall55.257

Site No. Models α RMSE R2 Drawdown Rate Volume Captured
Analyzed (mean, hr−1) (mean) (mean) (mean, cmhr−1) (mean, m3)

S1 11/11 −0.040 5.159 0.834 0.614 1.974
S2 3/3 −0.011 6.306 0.875 4.521 4.218
S3 4/4 −0.044 4.776 0.885 4.713 1.738
S4 9/12 −0.305 9.109 0.524 0.797 14.197
S5 9/9 −0.146 4.611 0.727 0.494 5.216
S6 5/6 −0.024 3.420 0.916 0.410 1.680
S7 9/9 −0.069 6.088 0.802 0.261 2.759
S8 1/3 −0.397 2.998 0.922 0.626 2.839
S9 9/12 −0.102 15.964 0.606 7.317 3.681
S10 11/12 −0.119 13.744 0.697 0.751 1.489
S11 21/24 −0.200 12.209 0.738 0.255 29.423
S12 3/3 −0.047 4.531 0.806 0.771 2.126
S13 6/6 −0.072 3.777 0.921 2.972 2.102
S14 7/8 −0.021 6.630 0.637 3.981 7.167

Table 1 The results from fitting the decay models for the GI monitoring network. We report the mean decay constant α for each GI and how well the
decay constant α fit the sensor data as measured by RMSE and R2. We also report the average drawdown rate (cmhr−1) and volume captured (m3).

The mean fit of the drawdown model to the sensor data was R2 = 0.746 ±0.111 and RMSE = 8.579 ± 4.168. The fitted decay258

constant α varied by storm and by GI (Fig. 5 (right)). Across all models and sites, the mean decay constant α and standard deviation259

was −0.119 ± 0.124 hr−1. The average decay constant per site varied by two orders of magnitude, from −0.011 hr−1 (S2) to −0.397260

hr−1 (S8). The mean drawdown rates ranged from 0.255 to 7.317 cmhr−1 and the mean volume captured ranged from 1.489 to 29.423261

m3. The number of models identified versus analyzed, as well as the mean decay constant α, RMSE, R2, average drawdown rate, and262

average volume captured for each GI is provided in Table 1.263

The decay constant α corresponds with the GI’s drainage dynamics. During the measurement period, most GI completely drained264

between storm events (S4, S8–S11), providing full storage for the next storm event (Fig. 5 (left)). S2, S6, and S12 always had some265

water present in their soil media, limiting the amount of storage for each subsequent storm. During the measurement period, most266

sites experienced ponding (water level > 1 m). However, ponding did not exceed 12 hours for most sites (11 of 14 sites). S6, S11, and267

S9 experienced extended periods of ponding during the June 25th storm for 22, 29, and 21 hours, respectively. Sites S6 and S11 also268

experienced extended ponding for approximately 24 hours during the July 16th storm, and S11 ponded for about 16 hours during the269

August 12th storm.270
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Fig. 5 (left) Water level (m) measured across all sites on the left y-axis with rainfall (cm) on the right y-axis. Storm events are highlighted by the
orange boxes. Prominence (p), the minimum increase in water level needed for a storm event to be considered distinct, is labeled for each site. (right)
A boxplot showing the variance in each GI’s decay constants measured for all highlighted storms. The whiskers represent the 5th percentile on the
lower end and the 95th percentile on the upper end, indicating the range within which the majority of data points fall.

5.3 Correlation analysis271

Spearman’s rank correlation coefficients between the GI design features and the decay constants ranged from 0.01 (site age) to 0.34272

(DA/SA ratio) (Fig. 6). The decay constants were most correlated with the DA/SA ratio (0.34) and drainage area (0.23). Drainage area273

and DA/SA ratio were highly correlated with each other (0.92); therefore, we focus the analysis on the DA/SA ratio. The sites with the274

largest DA/SA ratios had the smallest magnitude decay constants (i.e., drained the slowest). Soil media depth, storage volume, surface275

area, and age had limited impact on the decay constants (0.16, −0.09, 0.06, and 0.01, respectively).276

The correlation coefficients between the physiographic features and the decay constants ranged from −0.02 (slope) to −0.64277

(groundwater depth) (Fig. 6). The decay constants were most correlated with groundwater depth (−0.64), latitude (−0.56), im-278

perviousness (0.43), and longitude (0.37). The closer groundwater was to the surface, the slower the site drained (i.e., the smaller279
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Fig. 6 Spearman’s rank order correlation coefficients for the decay constants, design features, and physiographic features.

the decay constant’s magnitude). Groundwater is also highly correlated with latitude (0.98), which explains the correlation between280

latitude and the decay constants. Longitude, however, is not correlated with groundwater but still has a positive correlation with the281

decay constants. The decay constants’ magnitude decreases for sites further away from the western border towards central Detroit,282

where the smallest magnitude decay constants are, increasing again towards the eastern border. In terms of imperviousness, the greater283

the imperviousness, the smaller the decay constant’s magnitude. This was not always the case, however. For example, S1 and S12284

are 53 and 52% impervious and their mean α ’s are −0.040 and −0.047 hr−1, respectively, while S9 is 92% imperviousness with a285

mean α of −0.102 hr−1. The remaining physiographic features are either highly correlated with the explanatory variables discussed286

above (elevation and longitude: −0.73; land use type and imperviousness: 0.80) or are minimally correlated with the decay constants287

(hydrologic soil group: 0.10; slope: −0.02).288

The relationship between the decay constant and its most correlated design feature, DA/SA ratio, and physiographic feature, ground-289

water depth, was explored further. We show groundwater depth versus DA/SA ratio for estimated decay constants in Fig. 7a. Given290

that decay constants were retrieved for individual sites and individual storms, the figure reflects averaged surface fit across all the291

observations. The shape of Fig. 7a is bounded by the observations made by the sensor network and was not extrapolated beyond those292

bounds. The colored contours indicate the expected decay constant based on the combination of groundwater depth and DA/SA ratio.293

The red contours indicate slower drawdown while the blue/grey contours indicate faster drawdown. To frame the interpretation of the294

figure, the corresponding drawdown rates are also color coded in (Fig. 7b).295

In our study, decay constants with magnitudes ≥ −0.20 hr−1 result in the drainage of one meter of water in under 24 hours (Fig.296

7b). Fig. 7a shows there are various combinations of groundwater depth and DA/SA ratio that achieve this performance metric. On one297

end of the spectrum, groundwater can be as shallow as 7.5 m if it has a small DA/SA ratio of 1–2. On the other end of the spectrum,298

groundwater must be at least 10 m deep with a DA/SA ratio no larger than 8. Furthermore, if the groundwater table is < 7.5 m, a299

slower drawdown rate is observed regardless of the DA/SA ratio (bottom edge of Fig. 7a). Similarly, when the DA/SA ratio is >8, the300

drawdown rate is slow regardless of the groundwater depth (right edge Fig. 7a).301

Using groundwater depth as a guiding parameter for the placement of green infrastructure installations holds the potential to302
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Fig. 7 (a) A surface fit of the calculated decay constants (hr−1) based on groundwater depth (m) (y-axis) and DA/SA ratio (x-axis). (b) The
drawdown model curves for the range of decay constants found in (a). Blue indicates faster drawdown rates while red indicates slower rates.

optimize their effectiveness within the broader stormwater management context. By considering the depth of the groundwater table,303

planners and designers can strategically position GI elements such as rain gardens, bioswales, and permeable pavements. A shallow304

groundwater table often suggests limited infiltration capacity due to the proximity of the water table to the surface.56–58 In such305

cases, placing GI in areas with deeper soil profiles or utilizing subsurface systems might be more effective. Conversely, areas with306

deeper groundwater tables offer increased potential for water storage and infiltration, making them suitable candidates for various GI307

installations. Such an approach could ensure that the GI elements can effectively contribute to stormwater management by aligning with308

desired natural hydrological characteristics of the site. By integrating groundwater depth considerations into GI placement decisions,309

municipalities and urban planners can enhance the resilience and performance of stormwater management strategies, leading to more310

sustainable and efficient urban water management systems.311

6 Discussion312

6.1 GI drawdown dynamics313

The data toolchain introduced in this paper provides an automated way to analyze high resolution hydrologic data, such as water levels314

in GI. This is enabled by the storm segmentation methodology, which automatically extracts and analyzes data from individual storms.315

As sensor networks scale, manual data analysis will become infeasible, demanding that we discover means by which to automatically316

extract relevant data for analysis or training of machine learning algorithms becomes infeasible. As demonstrated here, the approach317

automatically identified storm events and subsequently analyzed them to train models for the decay constants. The application of a318

peak-find algorithm to extract events from other types of data (flows, rainfall, soil moisture, etc) should be explored in future studies.319

The water levels from the 14 sensors indicate the GI are generally performing as designed, despite record rainfall. The GI met and320

exceeded the requirement specified by Detroit’s GI design manual that ponding time should not exceed 24 hours.23 Below the ground321

surface, the performance varied by site and storm. To completely drain 1 m of water in 24 hours a GI must have a decay constant ≥322

−0.2 hr−1 (Fig. 7b). Only 2 of the 14 gardens had an average decay constant above this threshold. Therefore, most sites have restricted323

storage capacity when they experience consecutive storms.324

Fitting a drawdown model for each storm and each site resulted in variability across decay constant estimates. Statistical uncertainty325

is inherent in a study of this scale, and may manifest across measurements, deployment consistency, and model assumptions. Some326

variability in the decay constants was likely due in part to the spatial and temporal variation in rainfall.55 The decay constants may also327

have been impacted by changes in GI conditions such as the swelling and shrinking of the soil media following wet and dry periods,328

and the creation of preferential flow paths after extended dry periods.59
329

Naturally, a highly granular and continuous sensor dataset can be expected to reveal dynamics and nonlinearities that are not330

apparent in single measurements or short-term experimental campaigns. We contend that the use of the decay constant poses a331

first step in the analysis of this large dataset and provides an initial balance by enabling a metric for cross-site comparisons without332

compressing large amounts of sensor data into an over simplistic summary that ignores dynamics entirely. Future studies could explore333

the nuanced variabilities dynamics more explicitly.334

Cross-site comparisons of water level dynamics revealed patterns driven by site design and physiographic features. It is difficult to335

directly attribute the variation seen between sites to the variations in these features due to the complexity of the physical processes that336
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govern GI drainage dynamics. The correlation analysis found broadly, however, that GI with DA/SA ratios smaller than 8 have faster337

drawdown rates. Therefore, when designing GI, the size of the garden in relation to the size of the drainage area is critically important.338

These results align with Davis (2007),60 which found that a large cell media volume to drainage area ratio and drainage configurations339

were the two most dominant factors that improved GI performance.340

Across the broader landscape, GI drawdown dynamics were highly correlated with two physiographic features: groundwater depth341

and longitude. Faster drawdown rates were correlated with a deeper groundwater table and locations on the outskirts of Detroit. This342

illustrates the importance of evaluating groundwater levels when planning urban GI installations, especially since many urban areas343

have shallow groundwater tables,61 including Detroit.45 The correlation with longitude may be explained by prolonged soil compaction344

from development in central Detroit.62
345

Some physiographic features had low correlation with the decay constants. Detroit is relatively flat, which may explain the low346

correlation with elevation and slope. The low correlation between the decay constants and the hydrologic soil group of the surrounding347

soil is more difficult to posit. Our physiographic input data were limited to public datasets, whose accuracy is driven by factors outside348

of the control of this study. The low spatial resolution of publicly available raster datasets may oversimplify the physiographic features349

at a GI site. In the future, site surveys may provide better data for analyzing these physiographic features interaction with the decay350

constants.351

Our results have several implications for the future of stormwater management. Considering the broader urban drainage landscape352

and the potential impact of physiographic features on GI drawdown rates, measurements should become a core component of how353

managers choose to invest in GI. For example, measuring the drawdown rate, groundwater depth, and/or soil compaction at a site354

before installation could reduce the risk of installing GI in locations that will have impeded drainage regardless of how well they are355

engineered. Beyond single sites, an investment into an entire measurement network may help support a more targeted and data-driven356

approach to GI placement, planning, and maintenance. The application of this methodology could result in empirical design guidance,357

such as an empirical “heatmap”, as shown in Fig. 7a. Such illustrations could serve as a field-validated guide for managers who want to358

push the performance of their infrastructure without focusing all of their limited resources into one particular design or locale. Naturally,359

this would require the collection and analysis of more data, but the increasing reliability of technology and automation afforded by some360

of the tools in this paper may reduce the barrier to adoption.361

One potential limitation of this work is the duration of our study period. Over longer periods of time we would expect to see362

fluctuations in the decay constants due to seasonal conditions (e.g., the rate of evapotranspiration falling during colder months63) and363

due to longer-term trends (e.g., deterioration of the GI’s drainage capacity due to clogging64). In future work, how the decay constants364

vary over time should be investigated to determine these seasonal and long-term changes. The reliability of the sensors should enable365

long-term data collection with reduced measurement overhead.366

6.2 Beyond site-level drawdown dynamics367

This study used the high temporal and spatial resolution dataset produced by a sensor network to provide a first order analysis of368

the variability in GI drawdown dynamics, but the sensor network could also be used for a variety of other purposes. Large GI sensor369

networks have potential for use in long-term GI monitoring. These data can used to develop a deeper understanding of how GI370

installations fit into the larger urban drainage network, but this may also require the application of expanded tools for data analysis.371

Given the accessibility to and availability of modern Machine Learning libraries, the data collected by these networks could be used to372

inform predictive tools and interactive design guides. The sensor data can also be used to iterate on site design or inform maintenance373

schedules. While previous studies have developed methods for estimating maintenance schedules,65 they require a calibrated model.374

Whereas real-time measurements tracked over longer periods of time could show when drainage rates slow, potentially indicating that375

the GI soil media is clogged and should be replaced. Future research would need to validate this approach. These data may also be used376

for community education and engagement by communicating to residents and community groups how and where GI may be expected377

to work well.378

7 Conclusion379

This study introduces a wireless, real-time sensor for measuring GI drawdown. Networked together across Detroit, these sensors provide380

high temporal and spatial resolution data for analyzing city-scale urban drainage conditions. To isolate individual storms in this large381

dataset, we designed an automated storm segmentation methodology based on peak finding. To our knowledge, this study is the first to382

monitor GI at this scale and combine it with a data-driven workflow to reveal explanatory features of drawdown dynamics. In Detroit,383

the groundwater table, imperviousness, longitude, and DA/SA ratio are the most important features impacting drawdown rates. To384

confirm this finding for other regions, high resolution and long-term GI monitoring is necessary.385
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