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Fast method of multivariate calibration applied on ESI-MS data for quantification of 

adulteration of EVOO with cheaper edible oils. 

 

 

Page 1 of 12 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name RSCPublishing 

ARTICLE 

This journal is © The Royal Society of Chemistry 2013 J. Name., 2013, 00, 1-3 | 1  

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 

Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Multivariate calibration applied on ESI mass 

spectrometry data: a tool to quantify adulteration in 

extra virgin olive oil with inexpensive edible oils 

J. O. Alves, M. M. Sena, and R. Augusti* 

A constant supervision is required to ensure the quality control in extra virgin olive oil, a quite expensive 

product with worldwide consumption. In this paper, a rapid, simple and efficient method based on the 

application of partial least squares (PLS) approach on electrospray ionization mass spectrometry (ESI-

MS) data was developed for determining adulteration of extra virgin olive oil with four adulterant oils 

(soybean, corn, sunflower and canola). Each model was built with 40 adulterated samples (from 0.5 to 

20.0 % w/w), which were prepared using commercial oils. These models presented root mean square 

errors of prediction of 1.73% w/w for soybean, 1.01% w/w for corn, 1.37% w/w for sunflower and 

1.03% w/w for canola. The methods were submitted to a complete multivariate analytical validation in 

accordance with the Brazilian and international guidelines, and were considered accurate, linear, 

sensitive and unbiased. So, it can be envisaged that this methodology has potential to be applied in 

quality control of extra virgin olive oil samples. 

 

1. Introduction 

Extra virgin olive oil (EVOO) is obtained by cold-pressing the 

fruit of olive tree followed by cold centrifugation. It has been 

traditionally consumed in European countries, and more recently it 

has become increasingly popular due to its potential health 

benefits.1,2 Extra virgin olive oil (EVOO) is particularly expensive 

and because of that unscrupulous producers stretch their profits by 

adulterating it with cheaper edible oils, including soybean (SO), corn 

(CO), sunflower (SF), and canola (CA).1 The adulteration of EVOO 

with canola oil (CA) is considered sophisticated, because both raw 

materials are chemically very similar and have oleic acid as the 

major component.3 

Quality assurance is a key issue in the modern food production. 

Food products are expected to have the right properties and should 

be safe, wholesome, authentic, and with a composition accordingly 

to specific regulations.4 Much effort has been spent in the 

development of reliable analytical methods for the authentication of 

food products in general, and for olive oil in particular. These 

methods have not been limited to the identification of adulterants, 

but have been expanded to quantify adulteration. Most of them are 

based on gas chromatography (GC)2,5,6 and high performance liquid 

chromatography (HPLC)7,8 and have been successfully applied to 

identify and quantify adulterants in olive oil. Nevertheless, these 

methods have the drawbacks of being time-consuming and relatively 

expensive. Moreover, they are divergent with the principles of green 

chemistry as they demand large quantities of solvents and generate a 

lot of residues. Thus, there is a continuing requirement for rapid and 

accurate methods aiming at the complete characterization of 

adulterations in EVOO, which have lead some recent studies that 

combine vibrational techniques, such as mid (MIR)9,10 and near 

infrared (NIR)11 spectroscopy, with multivariate calibration. 

Electrospray ionization mass spectrometry (ESI-MS)12 is a soft 

ionization technique that is fast, versatile, reproducible, and 

sensitive. It is widely used for the analysis of polar and less polar 

compounds, requires little or no sample preparation and provides 

almost instantaneous information about the composition of a certain 

sample. In the last years, many studies have reported the 

employment of direct infusion ESI-MS and the treatment of these 

data with chemometric classification methods: unsupervised (e.g., 
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principal component analysis – PCA, hierarchical cluster analysis – 

HCA) and supervised (e.g., linear discriminant analysis – LDA, 

partial least squares discriminant analysis - PLS-DA). Several types 

of samples as diverse as vegetable oils,13 alcoholic beverages,14 

coffee15 and olive oil,16 have been evaluated by this combined 

approach. Although its use has allowed the attainment of important 

set of information, it is restricted to qualitative analysis. In order to 

exploit the full potential of ESI-MS combined with chemometric 

methods, it seems to be natural to apply multivariate calibration in 

the development of quantitative methodologies. On the contrary of 

other techniques, such as NIR, MIR and UV/Vis spectroscopy, only 

few reports (a total of six) describes the application of multivariate 

calibration on ESI-MS data. Hence, the quantification of biodiesel in 

blends with petrodiesel,17,18 surfactants in oil,19 cholesterol and 

triglycerides in mouse plasma,20 and the determination of protein 

charge–state distribution of myoglobin21 as well as the blend 

composition of commercial robusta and arabica coffee22 have been 

reported. Other authors have used direct matrix assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF-MS) and PLS for determining the concentration of milk of 

different origins in mixtures.4 

In a previous report, we developed a qualitative PLS-DA model 

for detecting EVOO samples adulterated with cheaper oils.23 In the 

present work, a similar PLS-DA method, based on direct infusion 

ESI-MS data, was coupled with specific PLS models and the 

methodology was extended for direct quantification of four 

adulterant oils (SO, CO, SF and CA) in EVOO samples. Other 

important issue addressed herein is the multivariate analytical 

validation, a fundamental requisite for the official recognition of new 

multivariate calibration methods. The extension of analytical 

validation for multivariate methods is not so trivial and this matter is 

absent in all of the previously cited papers.17-22 The developed 

methods were validated by estimating the following figures of merit 

(FOM): analytical sensitivity, selectivity, linearity, trueness, 

precision, bias, residual prediction deviation (RPD), limits of 

detection (LOD) and quantification (LOQ). 

 

2. Materials and methods 

2.1 Sample oils 

All oils were acquired at local stores. Six brands of EVOO of 

well-known trademarks were used to prepare a stock blend. One 

brand of each edible oil (SO, CO, SF, and CA) was used for 

adulterations. The adulterated samples (EVOO with the edible oils) 

were prepared by adding increasing proportions (from 0.5 to 20.0 % 

w/w, with increments of 0.5% w/w) of each adulterant to the EVOO 

sample. The masses of each sample (EVOO, SO, CO, SF, and CA) 

were measured on an analytical balance (Adventurer Pro, Ohaus 

Corporation, Pine Brook, NJ, USA) and forty adulterated samples of 

each class (EVOO with SO, CO, SF, and CA) were therefore 

prepared and analyzed. For the 40 admixtures of each class, 30 were 

selected for the calibration set whereas the other 10 were used for the 

validation set. For each adulterant, authentic replicates (six per 

sample) were also prepared at five levels (4.0, 6.0, 10.0, 14.0 and 

16.0% w/w) in order to evaluate precision. Ten samples of 

commercial EVOO samples were also analyzed for confirming the 

ability of the method to detect unadulterated samples. Five EVOO 

samples adulterated with an ordinary olive oil (at 1.0, 5.0, 10.0, 15.0 

and 20% w/w) were analyzed for confirming the ability of the PLS-

DA model to detect other adulterants. 
 

2.2 Sample preparation 

Aliquots of 100 µL of each sample were transferred to 1.5 mL 

Eppendorf® tubes followed by the addition of 1.0 mL of a solution 

of methanol (HPLC grade, Merck, São Paulo, SP, Brazil)/deionized 

water (Mili-Q, Millipore Corporation, Bedford, MA, USA) 1:1 (v/v) 

with 0.1% of formic acid. The extraction was performed under 

vigorous stirring during 30 s in a vortex apparatus (Phoenix AP-56, 

Phoenix, Araraquara, SP, Brazil). All the extractions were performed 

in triplicate (or sextuplicate-see above) and individually analyzed. 

The aqueous-methanolic phase was then isolated and subsequently 

injected into the mass spectrometer ion source.  
 

2.3 Instrumentation, software and data processing 

The samples (aqueous-methanolic phase of each admixture) were 

injected with a microsyringe at a flow rate of 10 µL min-1 directly 

into the ESI ion source of the mass spectrometer (LCQ-Fleet, 

Thermo-Scientific, San Jose, CA, USA) operating in the positive ion 

mode. The conditions of the instrument were as following: inner 

capillary temperature at 300 ºC, inner capillary voltage of 35 V and 

cone voltage of 3 kV. The mass spectra were collected in the 100-

1000 m/z range. Data processing was performed with the Matlab v. 

7.9 (The Mathworks Inc., Natick, MA, USA) and PLS Toolbox v. 

6.5 (Eigenvector Research Inc., Wenatchee, WA, USA) softwares. A 

homemade routine24 was also employed for the detection of outliers. 

The relative intensities of ions corresponding to each m/z value 

were used for building the data matrix. The data were collected from 

mean mass spectra recorded for each replicate. Initially, a PLS-DA 
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model (similar to the one described in our previous paper)23 was 

built and applied to differentiate the adulterated from the 

unadulterated samples. In sequence, four specific quantitative PLS 

models (one for each type of adulteration) were built and validated. 
 

2.4 Multivariate analytical validation 

Multivariate analytical validation is a relatively recent issue that 

is not completely well-established. Since the application of 

multivariate calibration methods has grown very rapidly, the 

harmonization between the validation aspects of univariate and 

multivariate methods has become necessary. The first guidelines to 

address this topic were launched in 2000, describing standard 

practices for infrared multivariate quantitative analysis.25 Since then, 

the analytical validation of multivariate methods has been discussed 

for applications in different areas, such as pharmaceuticals,26 

foods,27 agricultural products,28 and in other fields.29 In almost all of 

the cases, this discussion is related to the use of vibrational 

techniques, mainly NIR spectroscopy. However, to the best of our 

knowledge, no investigations using mass spectrometry coupled to 

multivariate validation have been so far described. Concerning 

specifically food analysis, Brazilian and international official 

validation guidelines have completely ignored multivariate 

approaches.30-33 

In this paper, robust validation procedures were adopted, 

including outlier detection, by the evaluation of abnormal values of 

leverage, spectral and prediction residuals;24,28 linearity assessment, 

using statistical tests to verify the randomness of the fit residuals; 

accuracy evaluation (performed similarly to univariate calibration); 

estimate of selectivity, sensitivity, LOD and LOQ based on the 

concept of net analyte signal (NAS).26,34 Other FOM, such as bias 

and residual prediction deviation (RPD) were also estimated. 

Particularly, the linearity was verified by applying the tests of Ryan–

Joiner (RJ), Brown–Forsythe (BF), and Durbin–Watson (DW) to the 

model residuals, in order to evaluate their normality, 

homocedasticity and independency, respectively. A deeper 

discussion about multivariate analytical validation can be found 

elsewhere.26-29 

 

3. Results and discussion 

3.1 Mass spectra 

The ESI(+) mass spectra of the EVOO stock blend and pure SO, 

CO, SF and CA oils are shown in Figure 1. These mass spectra were 

obtained from the same brands and lots of oils than those used in our 

previous work,23 for which a PLS-DA model was developed. 

Consequently, these mass spectra displayed herein are practically 

identical than the ones shown in our previous work.23 The most 

abundant ions for each type of oil are indicated in Figure 1, and 

some of them can be ascribed to specific components based on the 

literature data. For EVOO (Figure 1a), the ions of m/z 121, 137, 165 

and 225 were attributed to tyrosol, hydroxytyrosol, coumaric and 

sinapic acids, respectively.13,16 The ion of m/z 417, the most 

abundant in the MS of EVOO sample, was attributed to the 

protonated form of (1)-1-acetoxypinoresinol.35 The ions in the region 

of m/z 800-900, such as 827 and 843, were generically attributed to 

triacylglycerols (TAGs).36 Some abundant ions can also be attributed 

to specific TAGs in other oils, such as 1,2-dilinoleoyl-3-

oleylglycerol (m/z 881) and 1,2-dilinoleyl-3-palmitoylglycerol (m/z 

855), in the MS of SF oil (Figure 1d), and 2,3-dioleyl-1-

linoleyglycerol (m/z 883), in the MS of CA oil (Figure 1e).37 ESI-

MS were also obtained in the negative mode. PLS-DA and PLS 

methods were also tested on the ESI(-)-MS data, but yielded models 

with much worse predictive ability. For this reason these results 

were not shown and discussed herein. In fact, for almost all the 

papers that deal with the development of PLS models17-22 based on 

direct infusion ESI-MS data, the positive mode is by far 

predominant. 
 

3.1 Chemometric modeling 

The analytical strategy proposed herein was inspired in a paper 

that determined different adulterants in gasoline using MIR 

spectroscopy, the SIMCA (Soft Independent Modeling of Class 

Analogy) classification methodology and specific quantitative PLS 

models.38 The present strategy is depicted in Figure 2, and the initial 

step is the building of a supervised PLS-DA (instead of SIMCA) 

classification models. Because these models are similar to the ones 

described (and deeply discussed) in our previous paper,23 only a 

brief mention on them is made herein. A PLS2-DA model was built 

with the mass spectra of 175 samples, 40 from each aforementioned 

adulterated admixture, 10 from unadulterated EVOO samples and 5 

from the EVOO admixtures (see above) adulterated with ordinary 

olive oil. All the samples were correctly classified in their respective 

classes. The PLS2-DA algorithm was employed because all samples 

are simultaneously predicted providing similar results than PLS1-

DA. Unlike PLS1-DA, which builds separately a specific model for 

each class (a y vector is predicted for each class), PLS2-DA allows 

for the simultaneous prediction of all classes in a single model (a Y 

matrix is predicted with each column related to each class). Once a 

sample was detected as adulterated, it is subsequently forwarded to 
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the second step of this strategy, which consists of four PLS1 models 

aiming at determining the content of each adulterant. Samples 

classified as unadulterated do not need further analysis. The five 

samples of EVOO adulterated with ordinary olive oil were not 

attributed to any class, demonstrating the ability of the method to 

detect other unmodeled adulterant oils. 

 

 

 

 

Figure 1 ESI(+)-MS of the following oils: (a) EVOO blend, (b) soybean (SO), (c) corn (CO), (d) sunflower (SF), (e) canola (CA). 

 

 

Figure 2 Chemometric strategy used with ESI(+)MS data for identification and quantification of adulterated EVOO samples. 
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For each adulterant model, the samples (a total of 40) were split 

into 30 and 10 for the calibration and validation sets, respectively. 

The calibration samples were chosen in order to homogeneously 

cover the analytical range, from 0.5 to 20.0% w/w of each 

adulterant. The initial attempts to build PLS models invariably 

showed a first latent variable (LV) that accounts for much more 

variance in the X (mass spectra) than in the Y (concentrations) 

blocks. This indicates variation in X that is unrelated to Y, which 

may disturb the multivariate modeling and cause imprecise 

predictions for new samples. This situation justifies the use of 

orthogonal signal correction (OSC),39 a preprocessing technique for 

removing the information in X unrelated to y vector. The data were 

then mean centered. The number of LV in each model was chosen 

by contiguous cross-validation blocks (with nine splits), based on the 

lower values of root mean square errors of cross validation 

(RMSECV). As an alternative to OSC, discrete variable selection 

using the successive projection algorithm (SPA)40 was also 

attempted, but it was not succeeded. 

In sequence, the four PLS models were optimized using a 

procedure for the detection of outliers. This procedure was based on 

a robust methodology that identifies samples with extreme leverages, 

large residuals in the X block (spectral data) or large residuals in the 

Y block (concentration values)24,28 at 95% confidence level. These 

outliers can be removed within a limit of 2/9 (22.2 %) of the total 

number of samples, as established by the Brazilian and international 

guidelines.30,41,42 Outliers in the validation set were also detected by 

the jackknife (externally studentized residuals) test,41 but this was 

only performed after finishing the optimization of the calibration set. 

The number of outliers detected varied from one to three for each set 

of adulterated samples. Particularly, the samples corresponding to 

the lowest level, 0.5 % w/w, were considered outliers in almost all 

the models, excepting for CA. The only sample excluded from this 

model was the one adulterated with 19.5% w/w. The number of LV 

used for building each model varied between three and five. The 

parameters for each model are shown in Table 1. The results 

describing the predictive ability of each model will be discussed later 

in this paper (analytical validation, section 3.3). 

 

 

 

 

 

 

Table 1. Parameters for the optimized PLS models regarding 

samples of EVOO adulterated with four edible oils: SO, CO, SF and 

CA. 

Parameter SO CO SF CA 

Number of 

calibration samples 
29 27 29 29 

Number of 

validation samples 
8 9 9 8 

Number of LV 5 4 5 3 

 

The development of these quantitative methods does not demand 

ion identification. Nevertheless, it is also possible a qualitative 

interpretation of the models by analyzing their regression 

coefficients shown in Figure 3. Ions with positive regression 

coefficients contribute for predicting each specific adulterant, while 

ions with negative coefficients are related to EVOO. It is noteworthy 

that some diagnostic ions for EVOO previously identified by other 

authors,13,16 such as tyrosol (m/z 121), hydroxytyrosol (m/z 137) and 

coumaric acid (m/z 165), presented negative regression coefficients 

for all the PLS models. Other significant negative regression 

coefficients were observed for the ions of m/z 319, 361, 379, 443, 

449, 505, 549, 811, 827 and 843. The last three ions were ascribed as 

TAGs, as observed in the ESI(+)-MS of EVOO (Figure 1a). The 

ions that most contribute for predicting SO, CO, SF and CA 

adulterant oils are indicated in Figures 3a-d. 
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Figure 3 Regression coefficients for PLS models of the following 

oils: (a) SO, (b) CO, (c) SF and (d) CA. 

 

3.3 Multivariate analytical validation 

The four developed PLS methods were validated by the estimate 

of FOMs and the use of appropriate statistical tests. These results are 

summarized in Table 2 and discussed following in this paper. The 

plots of reference versus predicted values are shown in Figure 4. 

The linearity of multivariate methods is estimated by the fit of 

the reference versus predicted values and the most used parameter to 

evaluate it is the correlation coefficient (r). As can be observed in 

Table 2, all of the models have a good linearity, expressed as r 

values above 0.993. Nevertheless, this evaluation cannot be 

grounded only on the r values and the random distribution of the 

residuals should obligatorily be verified. In this work, we used a 

methodology based on three statistical tests, originally prescribed for 

univariate methods.41 The extension of this methodology for 

multivariate methods is simple and an in-depth discussion about 

these tests can be found in the paper by Souza and Junqueira41 and 

the references therein. The first test to be applied is the RJ and the 

residuals would be considered normally distributed if the estimated 

R is above the critical Rlimit, which is calculated as a function of the 

number of samples. At 95%, only the SF model does not meet this 

criterion. However, the residuals for this model were considered 

normal at a confidence level of 99 % (Table 2). In sequence, the 

homocedasticity of the residuals was evaluated with the BF test. The 

residuals should be considered homoscedastic if the estimated 

probability p is above the critical p > 0.05 (95%) value. As can be 

observed, all the models can be considered homoscedastic. Finally, 

the presence of auto-correlation in the residuals was evaluated with 

the DW test, at 95% confidence level. For three out of four models, 

the estimated DW values were within their respective acceptance 

ranges. Only the residuals of the CO oil cannot be considered 

independently distributed. 

The trueness of the models can be evaluated by the absolute root-

mean-square-errors of prediction (RMSEP) and calibration 

(RMSEC) parameters. These parameters varied between 1.0-1.7% 

w/w and 0.6-1.0% w/w, respectively, indicating that the methods 

produced results in good agreement with the reference values. The 

trueness can also be observed by the relative mean errors for 

individual samples, between 3.6% and 8.2%. These values are in 

accordance with Brazilian guidelines, which establish acceptance 

limits of relative errors within −20/+10%.30 The precision was 

evaluated at the level of repeatability by estimating the mean relative 

standard deviation (RSD) for six replicates obtained at five 

concentration levels (4.0, 6.0, 10.0, 14.0 and 16.0% w/w). This is in 

accordance with the ASTM E-1655 regulation,25 which prescribes 

the estimation of the average precision by the pooled standard 

deviation obtained from a number of samples at least equal to the 

number of LV used in the PLS model (five in our case), with six 

replicates per sample. The RSD varied between 1.5% and 7.5%. The 

combined results of trueness and precision allow attesting therefore 

the accuracy of the developed models. 
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For univariate methods the requirement of 100% of selectivity is 

usual, but for multivariate approaches there is no practical meaning 

in establishing this requisite. Unlike for univariate methods, low 

values of selectivity can be observed even for accurate PLS methods. 

For the present models, the estimated values of selectivity only 

indicated that only a small fraction (from 14% to 39%) of the 

analytic signal was used for predicting adulteration. The sensibility 

is dependent on the analytical technique employed and, therefore, 

not adequate for comparisons with other methods. Thus, the 

analytical sensitivity (γ) was estimated by dividing the sensibility by 

the estimate of the instrumental noise (ε = 0.178), which was 

obtained from the pooled standard deviation of 15 replicates of a 

blank sample. The inverse of γ provides an estimate of the minimum 

concentration difference that can be discriminated by the models, 

considering the random instrumental noise as the only source of 

errors. This value also indicates the number of decimal places (two) 

to be used in the expression of the results. However, we decided to 

express the final results with only one decimal place as a more 

realistic option.  

LOD and LOQ were estimated as 3.3 and 10 times of the inverse 

of γ, respectively.26 The results are presented in Table 2 and together 

with the accuracy and linearity evaluations allow establishing the 

analytical ranges from 1.0 % to 20.0 % w/w for all the developed 

methods. The bias was calculated only with the validation samples, 

according to the ASTM normative.25 This calculation consists in a t-

test that employs the estimate of bias and the standard deviation of 

the validation errors, with the number of degrees of freedom equals 

to the number of validation samples. As can be seen in Table 2, all 

the models presented no significant bias, assuring the absence of 

systematic errors. 

Finally, RPD,43 the ratio of natural variation in the calibration or 

validation samples to the size of probable errors occurring during the 

prediction, was estimated. It represents how well the calibration 

model predicts a specific set and it is more appropriate for evaluating 

the performance of a model in absolute terms. According to the 

literature,27,43 good calibration models must have RPD higher than 

2.4. For our models, RPD values varied between 3.1 and 5.6, 

indicating their good quality. 

 

 

 

 

 

 

Figure 4 Plots of the reference versus predicted values for the PLS 

models obtained from the ESI(+)-MS data of samples of EVOO 

adulterated with the following edible oils: (a) SO, (b) CO, (c) SF, (d) 

CA. Full and empty circles refer to calibration and validation 

samples, respectively. 
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4. Conclusions 

In this paper it was developed a chemometric methodology based 

on direct infusion ESI(+)-MS data for detecting four types of 

cheaper oils, soybean, corn, sunflower and canola, used as 

adulterants in EVOO samples. The level of adulteration was 

determined by the PLS method and the four obtained models were 

thoroughly validated, being considered accurate, linear, sensitive and 

unbiased in the range of 1.0% to 20.0% w/w. All this methodology is 

experimentally simple and rapid and demands less than one minute 

for its execution. The present strategy can be extended to incorporate 

more sample variability and to include other possible adulterants. 

This possibility is underway in our laboratory. Finally, this work 

demonstrated the utility of several multivariate tools, which has been 

commonly used for evaluating infrared PLS methods but has never 

been previously applied to quantitative mass spectrometric data. 
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Table 2: Parameters estimated for the PLS models obtained from the ESI(+)-MS data recorded for the samples of EVOO adulterated with SO, CO, SF and CA oils. 

FOM Parameter (unit) 
Soybean (SO) Corn (CO) Sunflower (SF) Canola (CA) 

Value Limit Value Limit Value Limit Value Limit 

Linearity 

Normality R = 0.9829 R > 0.9696 R = 0.9860 R > 0.9689 R = 0.9609 R > 0.9580a R = 0.9706 R > 0.9696 

Homocedasticity p = 0.6193 p > 0.05 p = 0.3357 p > 0.05 p = 0.5683 p > 0.05 p = 0.8622 p > 0.05 

Independency 2.19 1.53 – 2.58 1.42 1.53 – 2.58 1.72 1.54 – 2.57 1.76 1.53 – 2.58 

rb 0.9931 0.9951 0.9984 0.9966 

Bias ... t = 0.86 t < 2.31 t = 0.84 t < 2.26 t = 0.29 t < 2.26 t = 0,57 t < 2.31 

Trueness 

RMSEC (% w/w) 1.0 0.9 0.6 0.7 

RMSEP (% w/w) 1.7 1.0 1.4 1.0 

Relative mean error (%) 8.2 5.4 3.6 5.5 

Precision DPR (%) 6.6 7.5 6.4 1.5 

Selectivity ... 0.14 0.27 0.20 0.39 

Sensitivity c 1.96 4.90 2.13 6.28 

Analytical Sensitivity (γ) (%w/w)-1 11.0 27.5 12.0 35.3 

1/ γ (%w/w) 0.09 0.04 0.08 0.03 

LOD (%w/w) 0.3 0.1 0.3 0.1 

LOQ (%w/w) 0.9 0.4 0.8 0.3 

RPD 
RPD Calibration 3.1 5.6 4.3 5.6 

RPD Validation 3.3 5.5 4.0 5.2 

a Estimated at 99% confidence level. All the other limit values were estimated at 95 % confidence level b Values for the line fitted to the calibration samples.  c Values expressed as the 
ratio between the relative abundance and % w/w.
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