Analytical Methods

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/methods

Graphical Abstract 254x190mm (96 x 96 DPI)

Journal Name

RSCPublishing

ARTICLE

1

6 7 8

9 10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Cite this: DOI: 10.1039/xoxxooooox

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Advantages, drawbacks and applications of mixed Ar-N₂ sources in inductively coupled plasma-based techniques: an overview

G.L. Scheffler and D. Pozebon

This review deals with mixed gas $Ar-N_2$ plasmas, highlighting advantages, limitations and applications of them in inductively coupled plasma optical emission spectrometry (ICP OES), inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) techniques, covering publications in the last three decades. Fundamental plasma parameters (such as electron number density, excitation or ionization temperatures, oxides and spatial profiles of ions distribution), performance of the mixed gas $Ar-N_2$ plasmas, figures of merit are presented and discussed in order to demonstrate the effects of adding N_2 to the Ar-ICP.

1. Introduction

Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP OES) have been widely used for elemental or isotopic analysis over the last decades. However, non-spectroscopic interferences (also known as matrix effects), operating costs, insufficient energy for effective ionization of certain elements (such as halogens, S and P), interferences by polyatomic ions in ICP-MS, and limitations for samples with organic solvents and/or carbon have been found.¹⁻⁶ These drawbacks have stimulated research for partial or total replacement of Ar by other gases (atomic or molecular), producing the so-called mixed-gas plasmas.⁹⁻¹¹

Mixed Ar-N₂ plasmas are obtained when one of the three main flows of Ar (principal, auxiliary or nebulizer) is partially or totally replaced, or when N2 is just added to them. The higher thermal conductivity of N₂ causes better heat transfer in the ICP, which results in better energy coupling between the induction zone and the central channel of the ICP. Therefore, the addition of N₂ may affect several processes occurring in the ICP. As a consequence, several interferences by polyatomic ions in ICP-MS and non-spectroscopic interferences in both ICP-MS and ICP OES can be mitigated, which extends the application for more complex matrices, an important advantage for these techniques. Nitrogen can be handled safely and well tolerated by conventional ICP OES and ICP-MS instruments when compared to other mixed-gas plasmas such as Ar-He or Ar-O₂ and Ar-H₂. Thus, mixed gas Ar-N₂ plasmas have more potential for applications, solving specific spectroscopic or nonspectroscopic interferences.

Review articles about mixed-gas plasmas were published - by Montaser and Van Hoven,⁹ encompassing only atomic emission spectrometry, in 1987, and by Durrant¹¹, emphasizing ICP-MS, in 1993. The theme was also reviewed and discussed in books published by Montaser and Golightly, in 1992,⁴ and Beauchemin et al., in 2000.⁵ Since then, instrumentation has undergone various changes but new review articles on this field have not been published. The present review is about mixed-gas Ar-N₂ plasmas exclusively, with the aim to highlight the effects of N₂ addition to the Ar-ICP. Studies and applications using ICP-based techniques (ICP OES, ICP-MS and LA-ICP-MS) published in the last three decades are presented.

2. General and fundamental aspects of mixed Ar-N₂ plasmas

The N₂-Ar-ICP moves closer to the state of local thermodynamic equilibrium (LTE) as the concentrations of N₂ in the plasma gas is increased; the LTE model predicts that the N₂-Ar-ICP has maximum temperatures (9900 - 10100 K) comparable to that of Ar-ICP (10600 K).⁹⁻¹¹ However, the predicted temperature is reduced as the concentration of N₂ is increased.¹² Increasing of thermal conductivity in the ICP is expected with N₂ addition, since N₂ has a thermal inductivity 32 times that of Ar at 7000 K.¹³

Addition of N_2 to the outer gas may decrease the excitation temperature and cause excess of cooling due to high thermal conductivity.⁹ Addition of N_2 to the auxiliary gas is not common because unstable plasmas are usually obtained. Thus, N_2 has mostly been added to the nebulizer gas and introduced in the central channel of the Ar-ICP.¹ Addition of N_2 to the nebulizer gas tends to cause a widening of the central channel through the ICP, an effect that tends to reduce the sensitivity in ICP-MS whereas addition to the outer gas causes an overall constriction of the entire plasma.¹⁵ In any case, whenever Ar is completely replaced in one or more Ar flows, care should be taken to watch for a secondary discharge

ARTICLE

60

in non-adequately grounded ICP-MS instruments, which invalidate spatial profiling of ions signal, an useful tool for fundamental studies.¹⁴

Nitrogen is a diatomic gas with vibrational modes and is capable of storing energy. Argon, which is monatomic, has lower heat and electrical capacity than N_2 . As a consequence, a greater applied power is necessary for maintenance and operation of a N_2 -Ar-ICP, which increases instrument cost.¹⁻³ Thus, instrumentation for mixed-gas plasmas has been considered impractical and non-competitive with that for standard Ar-ICP.

Depending on the amount of N_2 added and addition mode, different mixed plasmas can be obtained and the observation height for laterally-viewed plasma (in ICP OES), sampling depth (in ICP-MS), applied power, and gases flow rate must be optimized for each composition of the mixed plasma. If the optimization is not followed, appropriate comparisons of results obtained by using N₂-Ar-ICP and Ar-ICP may end up invalid or impossible. In some cases, a multivariate approach has been used for optimization.^{12,16}

Sesi et al.¹⁷ observed that N₂ addition to the nebulizer gas flow cools the center channel of the plasma They proposed that, as a molecular gas, the vibrational and rotational states of N₂ dissipate heat transferred into the center of the ICP. However, when N₂ was added to the auxiliary gas flow, an increase in the temperature of the central channel was observed. They attributed this effect to N₂, which improves transfer of energy from the outer gas flow to the center channel of the plasma. Comparison of ion signal lateral profiles collected by Agatemor and Beauchemin¹⁸ from an Ar-ICP and N₂-Ar-ICP revealed the plasma shrinks when N₂ is introduced in the outer gas plasma. The different physical properties between N₂ and Ar causes this plasma phenomena (volume reduction), known as thermal pinch or plasma shrinks. The plasma shrinkage moves the IRZ (initial radiation zone) away from the sampling cone, thereby requiring an increase in nebulizer carrier gas flow rate or a lower sampling depth (in ICP-MS) and optimization of the observation height (in laterally-viewed ICP OES).9-11

Chemical elements can be ionized in different ways in the Ar-ICP, mainly by thermal ionization, Penning ionization, or ionization by charge transfer. The thermal ionization involves collisions with energy exchange between atoms, ions or electrons, the Penning ionization does between atoms in the ground state and metastable Ar species, while ionization by charge transfer involves charge exchange between neutral and ionized species. The foreign gas (N₂) added can induce shifts of the thermodynamic equilibrium of the ICP, favouring either process.^{1,9}

Comparison of the analyte profiles with those of background ions suggested that electron-impact ionization is the predominant ionization mechanism in the Ar-ICP whereas charge-transfer with Ar^+ in the N₂-Ar-ICP was suggested by the close match of the Ar dimer ion profile and those of the analytes¹⁹

Houk et al.¹⁰ observed migration of N_2^+ species into the central channel of the ICP when N_2 was added to the outer gas. The authors also cited that Ar^+ and Ar^{2+} can be produced in different regions of the ICP, being Ar^+ present predominantly in the central channel and Ar^{2+} in the induction region. When the outer gas used (Ar) was completely replaced by N_2 , the presence of Ar^+ in the central channel of the ICP was still detected. The authors then suggested the following charge transfer reaction:

$$N_2^+ + Ar \rightarrow Ar^+ + N_2$$

The ionization potential of N₂ (15.58 eV) is close to that of Ar (15.76 eV) and the occurrence of charge transfer reaction among N₂ and Ar in the N₂-Ar-ICP is possible. The similar spin configurations of both species should also be considered.¹⁸ The N₂⁺ and N⁺ species produced may react with oxygen present in the plasma and give rise to NO⁺ (ionization potential of 9.26 eV), a species which can also increase the ionization of the analyte by charge transfer. The formation NO⁺ (strongly bounded, D₀ = 11.76 eV) would also effectively sequester O atoms present in the ICP and prevent the formation of MO⁺ species from analyte ions.

Spatial signal profiles of analytes in different regions of an N₂-Ar-ICP revealed that analytes with low ionization potential (IP) had similar radial profiles to that of NO, while only a small central peak could be observed for analytes with higher IP than NO, suggesting a charge-transfer ionization mechanism between NO and analyte.¹³

2.1. Use of mixed Ar-N₂ plasmas in ICP OES

Addition of N_2 to the Ar-ICP has been early investigated in order to improve the sensitivity for the laterally-viewed ICP and reduce costs due to Ar consumption. Montaser and coworkers.^{13,21} compared the performance of both Ar-ICP and N_2 -Ar-ICP and observed that the analyte and the background signals increased in the same order without improvement of the limit of detection (LOD). These researchers also noted that the noise increased when N_2 was added to the outer plasma gas, restricting the analytical application of the N_2 -Ar-ICP for various emission lines between 200 and 300 nm, due to emission of molecular nitrogen species.^{9,21} In these studies, increasing amount of N_2 was added to the outer gas flow or nebulizer gas flow until complete replacement of Ar by N_2 .

Few studies have focused addition of N_2 to the Ar-ICP axially-viewed.²²⁻²⁴ In the work conducted by Ohata et al.²⁰, N_2 at flow rate of 1 L min⁻¹ was added to the outer gas, being pneumatic nebulization (PN) used for introducing the solution in the ICP. By comparing both Ar-ICP and N2-Ar-ICP, the limits of detection (LODs) of atomic lines were similar or higher in N₂-Ar-ICP while those of ionic lines were lower in the N₂-Ar-ICP. The authors have also observed the ratio Mg(II) 280 nm/Mg(I) 285 nm emission intensities increased from 7 to 20 but became constant at 0.2 L min⁻¹ or higher N_2 flow rate. In a study conducted more recently,²³ a low flow of N_2 (flow rate of 20 mL min⁻¹) was added to the central channel of the ICP, through the nebulizer gas. The ratio Mg(II)280.270 nm/Mg(I)285.213 nm, utilized as diagnostic for plasma robustness, increased from 14 to 20 for PN, and 12 to 25 for pneumatic nebulization with aerosol desolvation (PN-DES). For 40 emission lines evaluated, it was observed that the intensity of most of them increased under addition of N2 to the nebulizer gas (see Figure 1). Detection limits, precision, and linearity of calibration curves obtained by using N2-Ar-ICP were almost similar to those obtained by using Ar-ICP. The slope of calibration curves (sensitivity) was generally improved by N₂ addition but the LODs remained almost the same. The main reason was that N₂ not only enhanced the analyte signal but also the background. However, matrix effects (caused by Na, K and Ca) were mitigated by adding the low flow of N₂ while precision and accuracy were not deteriorated.

With respect to applications using N₂-Ar-ICP, it was found that the addition of a small flow of N₂ (20 mL mi⁻¹) in the nebulizer gas allowed direct analysis of rice slurry, which was introduced into the N₂-Ar-ICP through PN.²⁴ To this end, Y(II)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 (371.029 nm) was used as internal standard; the relative standard deviation (RSD) was typically lower than 10% and accuracy close to 100%. Vaporization of major elements in slurries of metals, metal oxides, metal carbides and coals were in general improved by adding N_2 (10%) to the outer gas.¹⁶ However, the plasma volume and sensitivity were reduced.

The addition of N_2 alters fundamental plasma parameters, however charge transfer reactions between species produced in the ICP (N_2^+ , N^+ , NO^+ , NH^+ , ArN^+) and the analyte cannot be excluded.⁵⁰ An increase of the signal of an emission line with energy similar of that of the gas added is an indication that it promotes charge transfer reactions. However, the identification of this mode of excitation is difficult, mainly because of masking of excitation and collision processes. The effect of N_2 on the electron density, electron temperature, gas kinetic temperature on Ca(II) emission were investigated by Sesi and co-workers.¹⁷ They observed that the addition of N_2 to the central channel of the Ar-ICP decreased the electron density and electron temperature.

Addition of N_2 to the outer gas of an Ar-ICP has a completely different effect than adding it to the central channel gas. The former increases power density and improves plasma robustness (at the expense of sensitivity) whereas the latter cools down the central channel.^{17,25} thus decreasing plasma robustness. However, as N2 possess higher thermal conductivity than Ar, it usually increases energy transfer among the bulk plasma and the central channel when present as a sheathing gas in the central channel. The net effect is dependent on the amount of N2 added to the Ar-ICP. For example, it has been observed^{23,32} the plasma robustness (following the Mg(II)280.270 nm/Mg(I)285.213 nm criterion) was increased by adding a small flow of N_2 (up to 20 or 40 mL min⁻¹) in the central channel of the Ar-ICP. The exact mechanism of action of N₂ in the Ar-ICP is unknown with respect to the reduction of matrix effects in ICP OES. Nitrogen may decrease the plasma electron density in certain regions and, consequently, change the energy distribution in the ICP. Since the electron density decreases, the excitation by electron impact can be reduced, making matrix effects less severe. Besides, electronic equilibrium shifts must also be considered. Another possibility is the decrease of the volume of the central channel of the ICP, thus increasing the applied power density, which results in higher power for excitation and or ionization.

Table 2

Fig. 1

2.2 Use of mixed Ar-N₂ plasmas in ICP-MS

Despite the many advantages of ICP-MS such as a high sample throughput, multi-elemental feature, high sensitivity and very good precision, it is subject to many spectroscopic (by polyatomic ions) and non-spectroscopic interference. The polyatomic ions originate from water, acid and other reagents, matrix constituents, Ar and gases from the atmosphere. While spectroscopic interferences have their origin in background and matrix-induced polyatomic and isobaric ions, matrix effects can originate in the sample introduction system, within the plasma, during the extraction of ions through the sampler and skimmer cones, and during transport of ions through the ion optics. This makes the elimination/correction of matrix effects more difficult than that of spectroscopic interference. Instrumental developments such as double-focusing sector-field ICP-MS with resolution up to 10,000, and collision/reaction cells to chemically resolve the interfering polyatomic ions have been made to eliminate spectroscopic interferences.

The use of mixed-gas plasmas can be useful for reducing interferences in ICP-MS. Addition of N_2 has been made for that purpose, not only to reduce the formation of interfering polyatomic species, but also matrix effects. A more robust plasma is achieved by addition of N_2 to the outer gas,²³ which may improve sample desolvation, vaporization, atomization, and ionization.

Despite the advantages of adding N_2 to the Ar-ICP, it can give rise to interfering polyatomic nitrogen species, as those cited in Table 1. The polyatomic ions generation will depend on the amount of N_2 added, the probability of formation of these ions (diatomic species are more likely than triatomic species), and sample matrix.

Table 1	Potential	inteferences	by	polyatomic	nitrogen	ions	in
ICP-MS							

Isotope	Polyatomic Ions
²⁸ Si	$^{14}N^{14}N^{+}$
²⁹ Si	$^{14}N^{14}NH^{+}, {}^{14}N^{15}N^{+}$
³⁰ Si	$^{14}N^{16}O^{+}$
³¹ P	¹⁵ N ¹⁶ O ⁺ , ¹⁴ N ¹⁶ OH ⁺ , ¹⁵ N ¹⁵ NH ⁺
⁴² Ca	${}^{14}N^{14}N^{14}N^{+}$, ${}^{12}C^{14}N^{14}O^{+}$
⁴⁶ Ti. ⁴⁶ Ca	${}^{14}N^{16}O^{16}O^{+}$ ${}^{32}S^{14}N^{+}$
⁴⁹ Ti	$^{35}\text{Cl}^{14}\text{N}^+$
⁵⁰ Ti. ⁵⁰ Cr. ⁵⁰ V	${}^{36}\text{Ar}{}^{14}\text{N}^+$, ${}^{35}\text{Cl}{}^{15}\text{N}^+$
⁵¹ V	${}^{36}\text{Ar}^{15}\text{N}^+$, ${}^{36}\text{Ar}^{14}\text{NH}^+$, ${}^{37}\text{Cl}^{14}\text{N}^+$
⁵² Cr	$^{38}\text{Ar}^{14}\text{N}^+$, $^{36}\text{Ar}^{15}\text{NH}^+$
⁵⁴ Fe, ⁵⁴ Cr	$^{40}\text{Ar}^{14}\text{N}^{+}, {}^{38}\text{Ar}^{15}\text{N}^{+}$
⁵⁵ Mn	$^{40}\text{Ar}^{15}\text{N}^{+}$, $^{40}\text{Ar}^{14}\text{NH}^{+}$
⁵⁶ Fe	$^{40}\text{Ar}^{15}\text{NH}^{+}$
⁶⁴ Zn	$^{36}\mathrm{Ar}^{14}\mathrm{N_2}^+$
⁶⁸ Zn	$^{40}\mathrm{Ar}^{14}\mathrm{N}_{2}^{2^{+}}$
⁷⁰ Ge. ⁷⁰ Zn	$^{40}\mathrm{Ar}^{14}\mathrm{N}^{16}\mathrm{O}^{+}$

2.2 1 Investigations concerning mixed $\mathrm{Ar}\text{-}\mathrm{N}_2$ plasmas in ICP-MS

2.2.1.1 $N_{\rm 2}$ added to the outer gas

Lam and Horlick ³⁴ reported the analyte (Zn, Ge, As, Sr, Y, Zr, Ru, Te, Cs, Ba and Ce) signal increased 4 times while oxides (MO⁺) and polyatomic background ions (ArO⁺, ArOH⁺, Ar^+ and CIO⁺) decreased under 5% N₂ in the outer gas. By using the same flow of N₂, Beauchemin and Craig⁴⁴ reported that the effect of 0.01 mol L⁻¹ Na on ⁵⁶Fe, ⁵⁷Fe, ⁷⁶Se, ⁷⁸Se was overcome whereas precision and accuracy of ⁵⁷Fe^{+/56}Fe⁺ and ²⁶Ce^{++/56}Fe⁺ ⁷⁶Se⁺/⁷⁸Se⁺ ratios were improved. The sensitivity was reduced up to 5 but the stability of the ICP was better, resulting in similar (for Se) or better (for Fe) LODs. For 2-10% of N₂, the LODs for Cr, Fe, and Se were improved while mass discrimination and matrix (0.01 mol \hat{L}^{-1} K) effect were eliminated. The same authors⁵² have also investigated the effect of K (up to 0.1 mol L⁻¹) on Al, V, Cr, Fe, Co, Ni, Cu, Zn, Se, Cd and Pb under 2-10% N2 in the outer gas. Sensitivity decreased upon addition of N2 along with the signal-to-noise (S/N) and signal-to-background (S/B) ratios, except for those analytes suffering interferences from Ar polyatomic species (Cr, Fe and Se) where N_2 then improved S/N and S/B. The decrease in sensitivity was smaller for Cd, Zn and Se, as N₂ probably improved the ionization of these elements (which are

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60

ARTICLE

not 100% ionized in an argon plasma). Mass discrimination was reduced in the m/z range 51-78. The effect of 0.01 mol L^{-1} K in the m/z range 51-114 was eliminated with 10% N₂ in the outer gas. According to Holliday and Beauchemin,¹⁹ the N2-Ar-ICP (5.9% N_2 in the outer gas) revealed to be more robust than the Ar-ICP. Matrix-induced enhancement effect was greatly reduced and oxide formation decreased by an order of magnitude, but sensitivity was worsened. The spatial distribution profile of ions in the ICP suggested that electron impact is the predominant mechanism in Ar-ICP. In N2-Ar-ICP, a similar profile of signals of Ar²⁺ and analytes suggested charge transfer as the predominant mechanism; the ion transferring charge could be NO^+ , or N^+ or Ar^+ , which originated in the induction region and migrated towards the central channel. Agatemor and Beauchemin¹⁸ conducted a multivariate optimization for maximum sensitivity in an attempt to find conditions for minimizing matrix effects without sacrificing the LODs. At optimized conditions they observed that the analyte (Al, Be, Bi, Co, Ir, Li, Mo, Pb, Pd, Pt, Rh, Ru, Th, Tl, U, V) signal suppression in presence of 0.1 mol L⁻¹ Na was significantly higher in Ar-ICP than in the mixed-gas plasma with 0.13% N₂ in the outer gas and 0.11% in the central channel where N₂ was added as a sheath gas around the nebulizer gas flow. Adding N2 to both the outer gas and the central channel significantly increased plasma robustness. Such mixed-gas plasma was more efficient at reducing matrix effects. Better LODs were observed for Al, Co, Pd, and V with the optimized mixed-gas plasma compared to argon plasma at maximum sensitivity. Radial profiles obtained for Pt suggested better energy transfer between the toroidal zone and the central channel in the N₂-Ar-ICP..

2.2.1.2 N₂ added to the nebulizer gas

A study conducted by Evans and Ebdon ⁴¹ revealed the production of ArCl⁺, ArO⁺, Ar₂⁺ and Cl₂⁺ in the ICP was reduced under 30 mL min⁻¹ of N_2 in the nebulizer gas. According to Newman and colleagues,⁴³ formation of NdO^+ in the supersonic expansion was depressed and precision of isotope ratio measurements $(^{x}Nd/^{144}Nd)$ improved for a N₂ flow rate up to 5 mL min⁻¹ in the nebulizer gas. As observed by Velde-Koerts and Boer,⁴⁶ interference by polyatomic ions (on ${}^{51}V$, ${}^{52}Cr$, ${}^{53}Cr$, ${}^{58}Ni$, ${}^{60}Ni$, ${}^{63}Cu$, ${}^{66}Cu$, ${}^{66}Zn$, ${}^{68}Zn$, ${}^{75}As$, and ${}^{82}Se$ in presence of 0.02 mol L⁻¹ Na or Cl, 0.01 mol L⁻¹ Ca or Mg, and 0.004 mol L⁻¹ SO₄⁻²) and matrix-induced sensitivity changes were properly reduced at N2 flow rate of 10 ml min⁻¹, whereas the BaO^{+/}Ba⁺ ratio and Ba⁺² signal increased at N_2 flow rate up to 20 ml min⁻¹. Holliday and Beauchemin⁵⁰ investigated distribution of ions in cold Ar-ICP and in N2-Ar-ICP (N2 flow rate ranging from 60 to 120 ml min⁻¹ in the nebulizer gas) in presence and absence of 0.1 mol L^{-1} or 0.01mol L^{-1} Na. The authors observed the central channel in both plasmas was similar and NO⁺ abundant in Ar-N₂-ICP, a species responsible for charge transfer reactions.¹⁹ According to Craig and Beauchemin,⁵¹ interference by Ar_2^+ and $ArCl^+$ on $^{75}As^+$ and $^{78}Se^+$ was reduced in presence of 30 ml min⁻¹ N_2 in the nebulizer gas.⁵¹ Ford and colleagues,⁵⁵ by multivariate optimization of RF power, potential of ion lenses and nebulizer gas flow rate, concluded that the addition of N₂ (up to 8% in the nebulizer gas) did not improve the signal-to-noise ratio and LODs for ⁷Li, ⁹Be, ⁵⁹Co, ⁸⁵Rb, ¹¹⁵In, ¹³⁰Te, ¹⁵⁹Tb, ¹⁹⁷Au, ²⁰⁹Bi, and ²³⁸U. On the other hand, Durrant⁵⁶ observed that the intensity for several isotopes (from ⁷Li to ²⁰⁹Bi) was enhanced while the Ba²⁺, Ce²⁺, BaO⁺, CeO⁺, MoO⁺, TiO⁺, WO⁺ and ZrO⁺ levels were maintained below 3% of their singly charged ions (M^+) under 35 ml min⁻¹ N₂ in the nebulizer gas. Interferences from polyatomic species of nitrogen

and no significant increase in background signals were observed. In general, the signal-to-background ratio was increased.

Applications of mixed gas $Ar-N_2$ plasmas, where N_2 was introduced into the ICP through the outer gas (plasma gas), nebulizer gas or intermediate gas, for element determination using ICP-MS are summarized in Table 3.

Table 3

It can be observed in Tables 2 and 3 that, in general, the main advantages of the addition of N_2 include: increased sensitivity, plasma robustness, precision and accuracy; greater tolerance to complex matrices; and, in the case of ICP-MS, reduction of mass bias, polyatomic ions and oxides. In some cases, degradation of sensitivity and LODs are reported, but most studies demonstrate that the addition of N_2 is beneficial. According to Tables 2 and 3, the beneficial effects observed seem to be independent on the mode of addition of N_2 . However, when introduced in the central channel of the ICP through the nebulizer gas, a much smaller amount of N_2 is necessary for producing beneficial effects.

According to Lam and McLaren¹⁵, the beneficial effect of the addition of N_2 to the outer gas is enhanced by combination with reduction of the water loading. Several authors report the use of a micronebuliser associated with a dessolvation membrane and a low flow of N_2 (10 to 15 mL min⁻¹).⁵⁷⁻⁶⁷ After desolvation, the nebulizer gas is mixed with the small flow of N_2 , for assisting in sample transport and reduction of oxide production in the plasma.⁶⁴ The main benefits observed in several applications were reduction of oxides and polyatomic ions, and better precision in isotope ratio measurements. Nevertheless, the effect of N_2 alone has not been systematically evaluated in most of these applications methods.⁵⁹⁻⁶⁷

3 LA-ICP-MS

The use of laser ablation (LA) associated with ICP-MS has grown substantially on the last decade. It combines the conveniences of solid sampling with the high sensitivity of ICP-MS.¹⁻³ However, the need of matrix-matched standards for calibration and fractionation effect (different vaporization for different isotopes) still deprive the use of LA-ICP-MS in routine quantitative analysis.

Addition of a molecular gas to the Ar-ICP may be beneficial for analytical purposes in PN-ICP-MS. Advantages, particularly an increase in sensitivity and a reduction in oxide levels, can also be obtained in LA-ICP-MS. However, the relatively low water loading of the ICP may influence its thermodynamic properties such that one analytical improvement would be different of those obtained with PN-ICP-MS.

Energy transfer from gas to ablated sample particles within the axial channel of the ICP can be better with a small dose of N_2 in the Ar carrier gas flow. As previously mentioned, the location of the addition of the foreign gas may affect processes in the ICP.¹⁵ Addition of N_2 to the aerosol carrier gas flow results in a plasma resembling cold Ar-ICP, ⁵⁰ with a wider and more diffuse central channel than that found under normal operating conditions of an Ar-ICP. However, the N₂-Ar-ICP is able to vaporize elements to a greater degree than the cold plasma.

Studies and applications dealing with the use of N_2 in LA-ICP-MS are listed in Table 4 where it can be seen that the addition of small flow of N_2 increases the sensitivity and accuracy for various isotopes, decreases interference by oxides and hydrides and decreases mass bias.

Table 4

1

2 3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57

58 59 60

4. Conclusions and perspectives

Addition of N₂ to the Ar-ICP modifies the energy transfer occurring in the ICP, significantly increasing the robustness thereof. To obtain best results with mixed-gas plasmas, the main parameters should be adjusted/optimized to the new plasma generated. Most studies have shown that the introduction of N2 to Ar-ICP is useful for reducing spectroscopic and non-spectroscopic interferences. In numerous applications it is noted that small amounts N₂ added to the outer gas may alleviate interferences by polyatomic ions and oxides in ICP-MS, allowing alternative calibration strategies such as isotopic dilution or the monitoring of unusual isotopes with improved LODs in comparison with those for standard Ar-ICP. This calls for additional and systematic applications for specific samples and analytes. A clear disadvantage of the Ar-N₂ plasmas is the increase of nitrogen-based polyatomic species in ICP-MS or structured background originated by diatomic nitrogen molecules in ICP OES that is not extensively discused in the literature. However, the magnitude of these interferences relies on the amount of N2 added to the Ar-ICP. Further studies about addition of N2 to the Ar-ICP are needed, using low flow of N₂, with newer and more sensitive instrumentation, mainly in the case of ICP OES. There have been few studies about the use of N₂ in ICP OES where, in general, large amount of the gas has been added to the Ar-ICP. This approach lies on the amount that an rf generator designed to operate with Ar can tolerate N₂. However, benefits of N₂ takes place with the use of small amounts of the gas in both ICP OES and ICP-MS techniques.

Care must be taken when comparing results of different studies owing the use of distinct instruments or even gas composition (volumetric fraction) and way of addition, which may produce inconsistent data. It was possible to gauge from the articles reported that N₂ acts more effectively when added in the nebulizer gas (in the central channel of the ICP) rather than in the outer gas plasma. The main reason is the secondary discharge present in several instruments, which has prevented the generation of stable mixed Ar-N₂ plasmas. Therefore, addition of lower amount of N₂ has preferentially been carried out, which can be more effective in the central channel of the ICP. In this case, N₂ does not reach directly the induction region of the ICP and less energy is spent in the bulk plasma (for N₂) vibration and dissociation). Thereby, small amounts of this foreign gas in the central channel increases the energy coupling efficiency, with a little (or none) degradation on the plasma excitation capability.

Fundamental studies including axially/laterally spatial profiles of ions and emission species are required for plasma diagnostics, not only to compute significant changes on plasma characteristics but, also to indicate additional excitation and ionization mechanisms taking place in the Ar-N₂ plasmas. Finally, use of N₂ combined with different sample introduction systems (high efficiency and miniaturized nebulizers, ultrassonic nebulizers, pneumatic nebulizers associated with aerosol dessolvation systems, electrothermal vaporization, and laser ablation) still remain a topic of study mainly to upgrade plasma characteristics in comparison with conventional PN.

Acknowledgements

The authors are grateful to CAPES and CNPq for the scholarships received.

Notes and references

^{*a*} Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil e-mail: <u>dircepoz@iq.ufrgs.br</u>

5. References

- S. J. Hill, *Inductively Coupled Plasma and its Applications*, Blackwell publishing, Oxford, 2007.
- 2. J. S. Becker, *Inorganic Mass Spectrometry Principles and Applications*, John Wiley & Sons publishing, Chichester, 2007.
- 3. A. Montaser, *Inductively Coupled Plasma Source Mass Spectrometry, Wiley-VCH*, New York, 1998.
- 4 A. Montaser and D.W. Golightly. *Inductively Coupled Plasmas in Analytical Atomic Spectrometry*. 2nd ed. Chap. 19. Wiley-VCH, New York, 1992.
- D. Beauchemin, D. C. Grégoire, D. Günther, V. Karanassios, J.-M. Mermet and T. J. Wood. *Discrete Sample Introduction Techniques* for Inductively Coupled Plasma Mass Spectrometry. Elsevier, 2000.
- I. B. Brenner and A. T. Zander, Spectrochim. Acta, Part B, 2000, 55, 1240.
- J. L. Todolí, L. Gras, V. Hernandis and J. Mora, J. Anal. At. Spectrom., 2002, 17, 142.
- 8. J. M. Mermet, Anal. Chim. Acta, 1991, 250, 85.
- A. Montaser and R. L. Van Hoven, CRC Crit. Rev. Anal. Chem., 1987, 18, 45.
- R. S. Houk, A. Montaser and V. A. Fassel, *Appl. Spectrosc.*, 1983, 37, 425.
- 11. S. F. Durrant, Fresenius J. Anal. Chem., 1993, 347, 389.
- 12. B. S. Sheppard and J. A. Caruso, J. Anal. At. Spectrom., 1994, 9, 145.
- A. Montaser, V. A. Fassel and J. Zalewski, *Appl. Spectrosc.*, 1981, 35, 292.
- A. E. Holliday and D. Beauchemin, *Spectrochim. Acta, Part B*, 2004, 59, 291.
- 15. J. W. Lam and J. W. McLaren, J. Anal. At. Spectrom., 1990, 5, 419.
- 16. G. L. Long and I. B. Brenner, J. Anal. At. Spectrom., 1990, 5, 495.
- 17. N. N. Sesi, A. MacKenzie, K. E. Shanks, P. Yang and G. M. Hieftje, *Spectrochim. Acta, Part B*, 1994, **49**, 1259.
- C. Agatemor and D. Beauchemin, Spectrochim. Acta, Part B, 2011, 66, 1.
- A. E. Holliday and D. Beauchemin, J. Anal. At. Spectrom., 2003, 18, 289.
- 20. G. C-Y. Chan and G. M. Hieftje, *Spectrochim. Acta, Part B*, 2007, **62**, 196.
- 21. A. Montaser and J. Mortazavi, Anal. Chem., 1980, 52, 255.
- 22. M. Ohata, Y. Takaku, K. Inagaki, A. Hioki and K. Chiba, *Anal. Sci.* 2009, **25**, 161.
- 23. G. L. Scheffler and D. Pozebon, Anal. Chim. Acta, 2013, 789, 33.
- 24. G. L. Scheffler, V. L. Dresler and D. Pozebon, *Food Anal. Methods*, 2013, DOI: 10.1007/s12161-013-9764-8.

Page 7 of 14

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 50

51 52

53

54

55

56

57

58

59 60

Analytical Methods

- M. Cai, D. A. Haydar, A. Montaser and J. Mostaghimi, *Spectrochim. Acta Part B*, 1997, **52**, 369.
 K. Wagatsuma and K. Hirokawa, *Anal. Sci.*, 1994, **10**, 469.
 S. E. O'Brien, J. R. Chirinos, K. Jorabchi, K. Kahen, M. E. Cree and A. Montaser, *J. Anal. At. Spectrom.*, 2003, **18**, 910.
 I. Ishii, D. W. Golightly and A. Montaser, *J. Anal. At. Spectrom.*, 1988, **3**, 965.
 - 29. E. H. Choot and G. Horlick, *Spectrochim. Acta, Part B*, 1986, **41**, 935.
 - 30. E. H. Choot and G. Horlick, *Spectrochim. Acta, Part B*, 1986, **41**, 907.
 - 31. E. H. Choot and G. Horlick, *Spectrochim. Acta, Part B*, 1986, **41**, 889.
 - 32. H. Wiltsche, F. Moradi and G. Knapp, *Spectrochim. Acta, Part B*, 2012, **71-72**, 48.
 - 33. E. H. Choot and G. Horlick, *Spectrochim. Acta, Part B*, 1986, **41**, 925.
 - 34. J. W. H. Lam and G. Horlick, *Spectrochim. Acta, Part B*, 1990, **45**, 1313.
 - 35. J. Wang, E. Hywel Evans and J.A. Caruso, J. Anal. At. Spectrom., 1992, 7, 929.
 - 36. S. Branch, L. Ebdon, M. Ford, M. Foulkes and P. O'Neil, *J. Anal. At. Spectrom.*, 1991, **6**, 151.
 - 37. K. Akatsuka, J. W. McLaren, J. W. Lam and S. S. Berman, J. Anal. At. Spectrom., 1992, 7, 889.
 - C. Haraldsson, B. Lyven, P. Ohman and J. Munthe, J. Anal. At. Spectrom., 1994, 9, 1229.
 - C. J. Amarasiriwardena, N. Lupoli, V. Potula, S. Korrick and H. Hu, *Analyst*, 1998, **123**, 441.
 - 40. K. Akatsuka, T. Suzuki, N. Nobuyama, S. Hoshi, K. Haraguchi, K. Nakagawa, T. Ogata and T. Kato, J. Anal. At. Spectrom., 1998, 13, 271.
 - 41. E. Hywel Evans and L. Ebdon, J.Anal. At. Spectrom., 1990, 5, 425.
 - 42. M. Ford, L. Ebdon and S. J. Hill, Anal. Proc., 1992, 29, 104.
 - K. Newman, P. A. Freedman, J. Williams, N. S. Belshaw and A. N. Halliday, *J. Anal. At. Spectrom.*, 2009, 24, 742.
 - 44. D. Beauchemin and J. M. Craig, *Spectrochim. Acta, Part B*, 1991, **46**, 603.
 - 45. M. J. Bloxham, P. J. Worsfold and S. J. Hill, *Anal. Proc.*, 1994, **31**, 95.
 - 46. T. van der Velde-Koerts and J. L. M. de Boer, *J. Anal. At. Spectrom.*, 1994, **9**, 1093.
 - 47. G. Xiao and D. Beauchemin, *Can. J. Anal. Sci. Spectrosc.*, 2001, **46**, 28.
 - Y. Zhu, K. Inagaki, H. Haraguchi and K. Chiba, J. Anal. At. Spectrom. 2010, 25, 364.
 - 49. A. E. Holliday and D. Beauchemin, J. Anal. At. Spectrom., 2003, 18, 1109.
 - 50. A. E. Holliday and D. Beauchemin, Can. J. Anal. Sci. Spectrosc. 2002, 47, 91.
 - 51. F. Laborda, H. J. Baxter, H. M. Crews and J. Dennis, J. Anal. At. Spectrom., 1994, 9, 727.
 - 52. J. M. Craig and D. Beauchemin, J. Anal. At. Spectrom., 1992, 7, 937.
 - 53. E. Hywel Evans and L. Ebdon, J. Anal. At. Spectrom., 1989, 4, 299.
 - 54. S. J. Hill, M. J. Ford and L. Ebdon, J. Anal. At. Spectrom., 1992, 7, 719.

- 55. M. J. Ford, L. Ebdon, R. C. Hutton and S. J. Hill, *Anal. Chim. Acta* 1994, **285**, 23.
- 56. S. F. Durrant, Fresenius J. Anal. Chem., 1994, 349, 768.
- C. Fragniére, M. Haldimann, A. Eastgate and U. Krähenbühl, J. Anal. At. Spectrom, 2005, 20, 626.
- 58. B.Klaue and J. D. Blum, Anal. Chem. 1999, 71, 1408.
- 59. M. P. Field, J. T. Cullen and R. M. Sherrell, *J. Anal. At. Spectrom.*, 1999, **14**, 1425.
- M. Krachler, J. Zheng, D. Fisher and W. Shotyk, *Anal. Chem.* 2004, 76, 5510.
- A. G. Coedo, T. Dorado and I. Padilla, *Appl. Spectrosc.*, 1999, 53, 974.
- 62. J. Zheng and M. Yamada, Talanta, 2006, 69, 1246.
- R. Ma, D. Bellis and Cameron W. McLeod, Anal. Chem., 2000, 72, 4878.
- 64. M. P. Field and R. M. Sherrell, Anal. Chem. 1998, 70, 4480.
- Anal. Chem. 1998, 70, 4480-4486
- 65. S. D'Ilio, N. Violante, M. Di Gregorio, O. Senofonte and F. Petrucci *Anal. Chim. Acta*, 2006, **57**9, 202.
- S. D'Ilio, N. Violante, S. Caimi, M. Di Gregorio, F. Petrucci and O. Senofonte, *Anal. Chim. Acta*, 2006, **57**3, 432.
- S. D'Ilio, N. Violante, O. Senofonte and F. Petrucci, Anal. Chim. Acta 597, 2007 195.
- T. D. F. Leite, R. Escalfoni Jr, T. C. O. da Fonseca and N. Miekeley, Spectrochim. Acta, Part B, 2011, 66, 314.
- 69. H. Louie and S. Yoke-Peng Soo, J. Anal. At. Spectrom., 1992, 7, 557
- 70. Q. Ni, Z. C. Hu, Z. Y. Bao and Y.F. Zhang, *Chinese Chem. Lett.*, 2009, **20**, 92.
- Z. Hu, Y. Liu, S. Gao, W. Liu, W. Zhang, X. Tong, L. Lin, K. Zong, M. Li, H. Chen, L. Zhou and L. Yang, *J. Anal. At. Spectrom.*, 2012, 27, 1391.
- 72. T. Iizuka and T. Hirata, Chem. Geol., 2005, 220, 121.
- 73. M. Shaheen and B. J. Fryer, J. Anal. At. Spectrom., 2010, 25, 1006.
- 74 K. Tanaka, Y. Takahashi and H. Shimizu, Anal. Chim. Acta, 2007, 583, 303.
- 75. T. M. Witte and R. S. Houk, Spectrochim. Acta, Part B, 2012, 69, 9.
- 76. S. A. Crowe, B. J. Fryer, I. M. Samson and J. E. Gagnon, J. Anal. At. Spectrom., 2003, 18, 1331.
- 77. Z. Hu, Y. Liu, M. Li, S. Gao and L. Zhao, *Geostand. Geoanal. Res.* 2009, **33**, 319.
- 78. M. Guillong and C.A. Heinrich, J. Anal. At. Spectrom., 2007, 22, 1488.
- 79. Z. Hu, S. Gao, Y. Liu, S. Hu, H. Chen and H. Yuan, J. Anal. At. Spectrom., 2008, 23, 1093.
- T. Hirata and R.W. Nesbitt, Geochim. Cosmochim. Acta, 1995, 59, 2491.
- R.W. Nesbitt, T. Hirata, I. B. Butler, J. A. Milton, *Geostand. Geoanal. Res.*, 1997, 20, 231.

Journal Name

ARTICLE

Fig. 1 Signal enhancement or reduction of the atomic (I) and ionic (II) emission lines resulting from the addition of N₂ to the nebulizer gas. The numbers inside the figure are the energies of the respective atomic (blue colour) and ionic (red colour) lines in eV. Data extracted from reference 21.

RSCPublishing

Analytical Methods

ARTICLE

Table 2 Studies dealing with mixed gas Ar-N₂ plasmas in ICP OES

Journal Name

Element	Matrix	N ₂ /Addition Mode	Remmarks about the N ₂ Effect	Reference
Cr, Co, Mo, Ni, Tl, Pb, Cd, Zn, V, As e Se	Aqueous solutions	0 - 100%/outer gas	Limits of detection (LODs) and signal/background ratio of ion and neutral atom lines of the high excitation energies, excited in a pure Ar-plasma, were superior to those observed in the Ar-N ₂ plasma when pure N ₂ was used in the outer gas flow; the opposite trend was observed for neutral atom lines of medium excitation energies.	13
Ag, Al, As, B, Bi, Ca, Cd, Co,Cr, Cu, Fe, Mg, Mo, Ni, Se, e Zn	Aqueous solution	0 - 100%/outer gas	The N ₂ -Ar-ICP volume was lower than that of Ar-ICP; the N ₂ -Ar-ICP must be viewed more close to the induction coil; number of bands in the 300 to 500 nm interval of the emission spectra was reduced; N ₂ addition worsened the ICP performance and LODs.	21
K, Mg, Ca, Pb, Cd, Zn	Aqueous solution	0 - 7%/outer gas	The analyte signal increased and the LODs were 5-10 times better; with the addition of 0.2 L min ⁻¹ N_2 , the Mg (II)/Mg (I) ratio increased from 7 to 20.	22
-	-	0 -100%/outer gas	Properties of N ₂ -Ar-ICP were obtained by computer simulation; N ₂ -Ar-ICP moves closer to the state of local thermodynamic equilibrium (LTE) as the concentrations of N ₂ in the outer gas is increased; the LTE model predicts that the mixed-gas plasma has maximum temperatures (9900–10100 K) comparable with Ar-ICP (10600 K); the predicted temperature is reduced as the concentration of the molecular gas is increased; signals in N ₂ -Ar-ICP must be monitored at observation height lower than that for Ar-ICP.	25
Mg, Ca, Ba, Zn, Cd, Fe e Y	Aqueous solution	0 - 0.6 L min ⁻¹ / outer gas	The ternary composition $Ar/He/N_2$ improved the signal-to-noise ratio; He suppressed the background of nitrogen species; higher plasma power was required.	26
Ba, Mg, Cr, Co, Ni, Cd, Pb	0.5% (m/v) Na solution	5%/outer gas	The Mg (II)/Mg (I) ratio increased with the N_2 addition; suppression of the analytical signal was lower by using a direct injection high efficiency nebulizer (DIHEN) and N_2 addition.	27
-	Aqueous solution of Fe	0 - 100/outer gas	Radially profiles of excitation temperature were computed using Fe as thermometric species; N_2 addition up to 10% increased the excitation temperature in 1000 K while total replacement of Ar by N_2 decreased the excitation temperature remarkably.	28
-	-	10%/outer gas	Addition of N_2 decreased by 30 % the electronic density in the central channel of the ICP; the size of the ICP was diminished.	29
Ca, Cd	Aqueous solution of Ca and Cd	0 - 100%/outer gas	The background signal increased due to NO formation; 10% (v/v) N_2 increased the signal- to-noise ratio for Cd.	30
Mg, Cd, Zn, Mn, Cu, Cr, Sr, Co	Aqueous test solution	0 - 100%/outer gas	Profiles of emission signals were collected at various distances above the induction coil; the use of 10% N_2 provided higher signal-to-noise ratio; total replacement of Ar by N_2 degraded the excitation capability of ICP.	31
Ca	Aqueous solution and phosphate matrix solution	0 - 100%/outer gas	The signal-to-noise ratio was better in plasma viewed close to the induction coil; N_2 addition mitigated phosphate matrix effects; interference of K on Ca was reduced; the linearity of calibration curve was preserved.	33
Cr, Co, Mo, Ni, Tl, Pb, Cd, Zn, V, As, Se	Aqueous solution	0 - 100%/nebulizer gas	The LODs were deteriorated	13
Ca	Aqueous solution	16.7%/ nebulizer gas	The central channel of the ICP was widened and shortened whereas the overall diameter of the ICP was not affected; drop of temperature ($3000-5000$ K) and gas-kinetic temperature were observed in the central channel; electron temperature increased in the toroidal zones of ICP when N ₂ was concomitantly added to the intermediate flow. These combined effects caused a 20-fold depression in the calcium ion emission intensity.	17

8 | J. Name., 2012, 00, 1-3

.

Analytical Methods

Journal Name

Table 2 (Continued)

ARTICLE

rable 2 (Continued)				
Several emission lines (from 2 to 18 eV)	Aqueous solution	5%/nebulizer gas (ultrasonic nebulization)	Contribution of charge transfer from the foreign-gas ion was not important to the overall ionization and excitation of the analyte in the normal analytical zone of the plasma (NAZ) and at the concentration used; no evidence of charge transfer between the analytes and nitrogen species (N_2^+ and N^+) was found; reaction of charge transfer between Ar and N_2 may occur.	20
V, Cu, Mn, Cr, Fe, Co, Ni, Cd, Pb, Zn, Mo, W, Pt, Pd, Zr, Au	Aqueous solution with 5% (m/v) Na, K or Ca	0 - 20 mL min ⁻¹ / nebulizer gas	Plasma robustness (Mg(II/Mg(I) increased from 14 to 20 for pneumatic nebulization, and 12 to 25 for pneumatic nebulization with aerosol desolvation; ionic lines were more affected than atomic lines; LODs for N ₂ -Ar-ICP and Ar-ICP were almost similar; precision, accuracy and linearity of calibration curves were not degraded; addition of N ₂ mitigated matrix effects.	23
-	Aqueous solution	0 - 40 ml min ⁻¹ / nebulizer gas/after the spray chamber	The excitation temperature fell initially, but increased considerably for 10-40 ml min ⁻¹ of N_2 ; the ratio (Mg (II)/Mg (I) increased from 7.5 to 12; the ICP extinguished when the N_2 flow was too high.	32
-	-	0-20%/nebulizer gas	Above 20% N_2 the high-temperature zone of the plasma shifted out; the predicted axial channel temperature raised steeply within the load coil, reached a peak near the top turn of the induction coil and then declined gradually at distances of 20-40 mm from the top of the injector tube; as the percentage of N_2 was increased, the axial channel widened; the hottest core of the mixed Ar- N_2 plasma shifted away from the axial channel; the maximum axial temperature was predicted to diminish when N_2 displaces Ar in the nebulizer gas flow; the plasma appeared to move away from the tip of the injector tube as N_2 was added; the presence of N_2 raised the observation height and increased the instability of the plasma whereas the axial temperature was reduced.	25
Ca	Aqueous solution	16.7%/intermediate gas	An increase of about a 1×10^5 electrons cm ⁻³ in the low toroidal regions of the plasma and gas-kinetic temperature about 1000 K throughout most of the discharge were observed; calcium ion emission intensity decreased 1.7-fold.	17

Analytical Methods

Journal Name

Table 3 Applications of mixed gas Ar-N₂ plasmas in ICP-MS

Analyte	Sample	N ₂ /Addition Mode	Remarks of the N ₂ Effect	Reference
Li, Ti, Co, Ba, Ce, Pb, U	Certified urine	1%/outer gas	Addition of 1% N ₂ can eliminate ${}^{40}\text{Ar}{}^{35}\text{CI}^+$ and dramatically reduce ${}^{35}\text{C1}{}^{16}0^+$ and ${}^{37}\text{C1}{}^{16}0^+$, improving accuracy for V, As and Se and respective LODs.	35
Fe, Cu, Mo	Seawater (matrix separation/analyte preconcentration	8%/outer gas	Production of ${}^{40}\text{Ar}{}^{16+}$ in the ICP was reduced, allowing to measurement of ${}^{56}\text{Fe}^+$; iron determination using isotope dilution was possible, with ${}^{56}\text{Fe}$ as the reference isotope and ${}^{57}\text{Fe}$ as the spike, using N ₂ -Ar-ICP and partial aerosol desolvation.	37
As	Urine	1%/outer gas	Interference by ⁴⁰ Ar ³⁵ Cl ⁺ on ⁷⁵ As ⁺ was reduced; accuracy and sensitivity were improved.	39
⁵⁵ Mn, ⁵⁶ Fe, ⁵⁷ Fe, ⁶⁰ Ni, ⁶³ Cu, 66Zn, ¹¹⁴ Cd, and ²⁰⁸ Pb	Seawater (matix separation/analyte pre concentration)	8%/outer gas	Production of 40 ArO ${}^{16+}$ in the ICP was reduced, allowing to measurement of low concentration of Fe by monitoring the 56 Fe ${}^{+}$ signal.	40
²⁷ Al, ⁵¹ V, ⁵² Cr, ⁵⁵ Mn, ⁵⁶ Fe, ⁵⁷ Fe, ⁵⁹ Co, ⁶⁰ Ni, ⁶⁵ Zn, ⁶⁵ Cu, ⁷⁵ As, ⁷⁶ Se, ⁷⁸ Se, ⁹⁸ Mo, ¹¹⁴ Cd, ¹²¹ Sb, ²⁰⁸ Pb	0.1 or 0.01 mol L ⁻¹ Na, river water	2 - 10%/outer gas	Analyte signal suppression was mitigated for a wide range of m/z, allowing the use of a single isotope as internal standard.	47
⁵² Cr, ⁵⁵ Mn, ⁵⁹ Co, ⁵⁸ Ni, ⁶⁵ Cu, ⁶⁴ Zn, ⁷⁵ As, ⁹⁸ Mo, and ²⁰⁸ Pb	Seawater 2-fold diluted (aliquots of 50 µL were introduced in the ICP)	4%/outer gas	Plasma operated at sampling depth 2 mm higher than that for optimal sensitivity provided robust operating conditions that greatly reduced matrix effects while still maintained sufficient sensitivity for analyte quantification; quantification of Mo was accurate; determination of other elements should be possible with more sensitive ICP-MS instruments.	49
As, ⁵¹ V, ⁷⁷ Se, ⁷⁸ Se ⁺	Rice flour, citrus leaves, fish liver, seawater	2%/outer gas	The $ArCI^+$ interference on Se, As and V in presence of 1% CI^- was overcome with the addition of N_2 ; thermal pinch was observed.	54
Mo, U	Seawater	0.13%/outer gas + 0.09 L min ⁻¹ as sheath gas around the nebulizer gas	Accurate determination of U and Mo in certified seawater using external calibration, without matrix-matching was possible (the spray chamber was maintained at 0°); oxide formation was completely suppressed; matrix effects were reduced; a two order of magnitude increase in background intensities was observed at $m/z = 30$ and 54, likely from ${}^{14}N^{16}O^+$ and ${}^{40}Ar^{14}N^+$, respectively; background at m/z 55 and 56 increased presumably from ${}^{40}Ar^{14}NH^+$ (or ${}^{40}Ar^{15}N^+$) and ${}^{40}Ar^{15}NH^+$, respectively; Ar_2^+ formation was reduced.	18
Cu, Cd, Sb, ⁵⁶ Fe, UO ⁺ /U ⁺	Marine sediment, freshwater	8%/outer gas	Oxides were more efficiently reduced compared to partial aerosol desolvation or spray chamber cooling; interference by oxides and hydroxides was overcome; increased desolvation of the aerosol enhanced the beneficial effect of N_2 , allowing to determination of 56 Fe.	15
Li, Ti, Co, Ba, Ce, Pb, U	Certified urine	3%/nebulizer gas	Accuracy for V, As and Se was improved; interference by polyatomic ions was reduced; loss of sensitivity was observed in some extent.	35
As	Urine, tomato leaves, fish tissue	32 mLmin ⁻¹ / nebulizer gas	Interferences by Ar and Cl polyatomic were reduced; accuracy and sensitivity were improved.	36
²⁰² Hg: ¹⁹⁹ Hg ratio	Soil	0.5%/nebulizer gas	The sensitivity was 4 - 6-fold increased by addition of N_2 .	38
As	Urine	3%/nebulizer gas	Interference by ⁴⁰ Ar ³⁵ Cl ⁺ on ⁷⁵ As ⁺ was reduced; accuracy and sensitivity were improved.	39
As, 51 V, 77 Se, 78 Se $^+$	Rice flour, citrus leaves, fish liver, seawater	0-8%/nebulizer gas	The $ArCI^+$ interference on Se, As and V in presence of 1% Cl ⁻ was removed; better results were obtained for 4.5% N ₂ in the nebulizer gas where interferences by MO ⁺ and ArO ⁺ were reduced; plasma shrank away from both sampler cone and torch when N ₂ was added; the central channel of ICP became wider	54

ARTICLE

Analytical Methods

Journal Name

Table 3 (Continued)

As	Rice wheat, citrus leaves, fish liver	4 -5%/nebulizer gas	Production of ArCl was reduced; accurate determination of As was possible even in presence of 1000 mg L^{-1} Cl ⁻ .	42
⁵⁸ Ni, ⁵⁵ Mn, ⁵⁹ Co, ⁶³ Cu, ⁶⁴ Zn, ²⁰⁸ Pb	Seawater	0.8%/nebulizer gas	The interference of 40 ArNa ⁺ on m/z 63 was overcome; sensitivity was reduced; signal-to-noise ratio and LODs were improved.	45
Several isotopes (m/z 1 238)	1 - Peach leaves, lobster hepatopancreas, mussel tissue, oyster tissue, mixed diet, 0.05% (m/v) HCl	8%/nebulizer gas	The LODs were, on average, 2-3 times higher for N ₂ -Ar-ICP; N ₂ addition decreased interference by polyatomic ions (mainly from $ArCl^+$, ClO^+ and Cl_2O^{2+}) and improved the accuracy of the results; the oxide levels were reduced to 0.6%.	51
Pt	Environmental, food and biological samples	0 - 1.5%/nebulizer gas	The level of HfO that interferes on Pt was reduced; sensitivity and signal stability were improved. The beneficial effects were observed in the range from 5 to 15 mL min ⁻¹ N_2 ; a nebulizer/aerosol desolvation system was used for introducing the solution in the ICP.	57
As	Drinking water	0.5 - 5%/nebulizer gas	Nitrogen additions of more than 2% reduced the As signal without further improving the As/ArCl ratio; addition of 2% N_2 yielded the best results and reduced the ArCl signal by a factor of about 5; hydride generation associated with ICP-MS was used.	58
Rare hearth elements (REEs)	Natural water (preconcentration using iron hydroxide)	120 ml min ⁻¹ / intermediate gas	Interference by polyatomic oxide ions was reduced and the sensitivity increased.	48
As, ⁵¹ V, ⁷⁷ Se, ⁷⁸ Se ⁺	Rice flour, citrus leaves, fish liver, seawater	2%/ intermediate gas	Reduction of interference was minimal; tolerance for N_2 was limited to 3%; plasma shrank away from both sampler cone and torch when N_2 was added; the central channel of ICP became wider.	54

Analytical Methods Accepted Manuscript

ARTICLE

ARTICLE

Table 4 Studies and applications of mixed gas $Ar-N_2$ plasmas in LA-ICP-MS

Journal Name

Analyte	Sample	N ₂ /Addition Mode	Remarks of the N ₂ Effect	Reference
⁵³ Cr, ⁵⁵ Mn, ⁵⁹ Co, ⁶⁶ Zn, ⁷¹ Ga, ⁸⁸ Sr, ⁹⁰ Zr, ⁹³ Nb, ¹⁸¹ Ta, ²³² Th, ²³⁸ U, REEs	Geological reference materials (fused)	2.9%/carrier gas in the ablation cell	Sensitivity increased about 2.4 fold.	68
¹⁴⁰ Ce ⁺ , ²³² Th ⁺ , ¹⁵⁶ CeO ⁺ , ²⁴⁸ ThO ⁺	Gel standard (mixed with carbonaceous binder and pressed)	About 1%/ principal gas, 12%/ carrier gas in the ablation cell	Addition N_2 to the principal gas increased the sensitivity and reduced MO^+/M^+ ratio; addition of about 12% N_2 to the ablation cell had a similar effect, being greatest at a higher forward rf plasma power (1700 W); on addition of N_2 to the plasma gas the diameter of the central channel was visibly reduced.	69
¹¹¹ Cd, ¹¹⁴ Cd, ThO ⁺ /Th ⁺ (as diagnostic tool)	Glass	5-10 mL min ⁻¹ / carrier gas in the ablation cell	The sensitivity for Cd increased by a factor of 3 and oxide interferences decreased by one order of magnitude; the significant increase of NO^+ signal suggested that removal of oxygen through NO formation was the main reason for the reduction of ThO ⁺ .	70
¹⁷⁶ Hf/ ¹⁷⁷ Hf	Zircon	2-4 ml min ⁻¹ / carrier gas in the ablation cell	Precision and accuracy for Hf isotopic ratio determination using MC-ICP-MS (multichannel- inductively coupled plasma-mass spectrometry) were improved; sensitivity was improved and non-linear instrumental mass fractionation for Hf was reduced; ¹⁷⁶ Yb/ ¹⁷⁷ Hf and ¹⁷⁶ Lu/ ¹⁷⁷ Hf ratios decreased, which would aid accurate determination of Hf isotopes in high-content Yb and Lu samples.	71
¹⁷⁶ Hf/ ¹⁷⁷ Hf, Lu e Yb	Zircon	4 ml min ⁻¹ /carrier gas after the ablation cell	Precision of Hf isotope microanalysis for zircon samples by MC-ICP-MS was improved; sensitivityfor Hf, Lu and Yb increased by a factor of 2-3; measured $^{173}\mathrm{Yb}/^{177}\mathrm{Hf}$ ratio changed with the addition of N ₂ , suggesting the different behaviour P between Yb and Hf in ICP; the Lu/Hf ratio did not vary measurably even with the addition of N ₂ , indicating that N ₂ addition did not cause elemental fractionation between Hf and Lu.	72
²⁰⁵ Tl/ ²⁰³ Tl, ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb, ²⁰⁸ Pb/ ²⁰⁴ Pb, ²⁰⁸ Pb/ ²⁰⁶ Pb, ²⁰⁷ Pb/ ²⁰⁶ Pb	Certified glass	0-20 ml min ⁻¹ / carrier gas before the ablation cell	The signal intensity of Tl increased by a factor of 4 and Pb by a factor of 3 at N_2 flow rate of 5 ml min ⁻¹ using femtosecond (fs) laser associated with MC-ICP-MS; abundance of doubly charged ions increased; mass bias was 13% reduced for Tl and Pb at constant N_2 flow rate of 8 ml min ⁻¹ ; oxides level was reduced; background for lighter isotopes (29 Si, 31 P, 39 K, 55 Mn and 66 Zn) were found to increase; polyatomic species of nitrogen increased.	73
¹³⁹ La, ¹⁴⁰ Ce, ¹⁴¹ Pr, ¹⁴⁶ Nd, ¹⁴⁷ Sm, ¹⁵¹ Eu, ¹⁵⁷ Gd, ¹⁵⁹ Tb, ¹⁶³ Dy, ¹⁶⁵ Ho, ¹⁶⁶ Er, ¹⁶⁹ Tm, ¹⁷² Yb, ¹⁷⁵ Lu)	Synthetic CaCO ₃ standards, doped with analytes, carbonatite, glass standards	5 ml min ⁻¹ /carrier gás, after the ablation cell	The sensitivity of ¹⁴⁰ Ce ⁺ increased by 30% (the N ₂ flow was optimized by maximizing the ¹⁴⁰ Ce signal); ablation in He atmosphere and addition of N ₂ to the carrier gas effectively reduced matrix effect (between carbonate and silicate glasses).	74
Y, Cs, Ce, Tb, Tm, Ta, and e respective oxides	Silicate disks (silicon dioxide fusion by adding REEs oxide powders), metal	0 - 20 ml min ⁻¹ / carrier gas, after the ablation cell	Little to no sensitivity enhancement with the addition of N ₂ was found (a sector field instrument and an ICP torch with a grounded shield were used); the NAZ became tinner, diminishing the radial diffusion of ions and yielding optimum M^+ signals; lowest MO^+/M^+ signal ratio and highest T_{gas} values at the position sampled in the ICP were found; the MO^+/M^+ signal ratio decreased by maximizing atomic sensitivity at lower total gas loads; the abundance of MO^+ ions during LA was reduced.	75
Pb isotope ratio (²⁰⁸ Pb/ ²⁰⁶ Pb, ²⁰⁶ Pb/ ²⁰⁷ Pb)	Glass, silicate and sulfide minerals	38 ml min ⁻¹ /carrier gas, prior to the sample cell	The sensitivity was increased and mass bias reduced; precision and accuracy of isotope ratio were improved.	76
Be, B, Ge, As, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, W, Re, Ir, Pt, Au, Tl, Bi	Certified glass	5 ml min ⁻¹ /carrier gas, downstream from the cell	Wider axial ions distribution was observed; signal enhancement was highly dependent on the sampling depth; sensitivity was, in general, 1.4 - 3 fold increased; LODs were improved (by factors of 1.2 - 2.5) and oxide level (ThO ⁺ /Th ⁺) reduced to 0.02% at sampling depth of 6 mm; ICP-induced fractionation could be minimized (U ⁺ /Th ⁺ \approx 1) with no loss of sensitivity.	77

Analytical Methods

Analytical Methods

Journal Name			ARTICLE	
Table 4 (Continued)				
47 elements	Certified glass	0 - 10 ml min ⁻¹ / carrier gas, upstream from the sample cell	Addition of N_2 did not enhance the sensitivity of most elements; a weak sensitivity increase was only found for a few heavy elements such as Au, U and Pb, while other elements were unaffected or lost sensitivity with increasing N_2 flow; the change of the plasma geometry and sampling position were not investigated in detail.	78
65 elements	Certified glass	5 - 10 ml min ⁻¹ / carrier gás, downstream from the sample cell	The sensitivity for most investigated elements increased 2 to 3 times - the degree of enhancement depended, to some extent, on the 1 st ionization energy; oxides and hydrides were reduced by an order of magnitude and 3 times, respectively; Ca^{2+} signal increased; the background signal at m/z 29, 31, 42, 51, 52 and 55 increased due to polyatomic nitrogen ions increase; addition of 5 ml min ⁻¹ N ₂ led to significant wider axial profiles and more uniform distribution of ions with different physical and chemical properties; a very consistent increase of Ar signal by the addition of N ₂ indicated better energy transfer effect by N ₂ in the plasma.	79
Abundances of ²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁴ Pb, ²³⁸ U (for U- Pb isotope geochronology)	Zircon	0.41 ml min ⁻¹ / carrier gas	N ₂ addition was carried out just for enhancing the sensitivity.	80
REEs, Hf, U, PGEs, Re	Zircon	0.4 ml min ⁻¹ /carrier gás, in the sample cell	The addition of N_2 increased the sensitivity for high-mass isotopes	81