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enabled exploration of
multicomponent metal oxides for catalyzing
oxygen reduction in alkaline media†

Xue Jia * and Hao Li *

Low-cost metal oxides have emerged as promising candidates used as electrocatalysts for the oxygen

reduction reaction (ORR) due to their remarkable stability under oxidizing conditions, particularly in

alkaline media. Recent studies suggest that multicomponent metal oxides, with their intricate

compositions and synergistic effects, may outperform their single-metal oxide counterparts. However,

exploring the considerable number of potential combinations of multicomponent metal oxides using

experiments would be time- and cost-intensive. Herein, we analyzed 7798 distinct metal oxide ORR

catalysts from previous high-throughput experiments, which included metal elements such as Ni, Fe, Mn,

Mg, Ca, La, Y, and In. These catalysts were tested at different potentials, specifically 0.8 and 0.63 V vs.

reversible hydrogen electrode (VRHE). After feature engineering, we employed the XGBoost method to

build the machine learning model and mapped the performance of unexplored compositions. Feature

explanations suggested that for achieving high current density, attention should be paid to a high

number of itinerant electrons (interant electron) and high configuration entropy. Finally, we identified

promising regions within 15 different ternary metal oxides with higher catalytic activities for catalyzing

the ORR at 0.8 and 0.63 VRHE, respectively. We found that for the current density at 0.8 VRHE, the ternary

systems Mn–Ca–La, Mn–Ca–Y, and Mn–Mg–Ca show promising potential for further investigations, in

particular for hydrogen fuel cells. Similarly, for the current density at 0.63 VRHE, the Mn–Fe–X (X = Ni, La,

Ca, and Y) and Mn–Ni–X (X = Ca, Mg, La, and Y) systems deserve close attention in the future, as they

may contribute to the production of hydrogen peroxide (H2O2) as a commodity. This study highlights the

significant potential of artificial intelligence in accelerating catalyst design and materials discovery,

thereby paving the way for future advancements in sustainable energy technologies.
ue Jia is currently an Assistant
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1. Introduction

Fossil fuel overconsumption has led to increasing environ-
mental issues, such as energy shortage, global warming, and air
pollution.1,2 Consequently, it is signicant to develop sustain-
able technologies for storing, converting, and utilizing renew-
able energy sources to replace conventional energy sources.3

These technologies always rely on electrochemical reactions
associated with facilitating the transformation of H2O, CO2, and
N2 into fuels and chemicals.4,5 Therefore, to accelerate these
reactions, it is essential to explore highly efficient electro-
catalysts, i.e., with high stability and exceptional activity, which
play a crucial role in advancing the transition towards a cleaner,
more sustainable energy landscape.6–8

The oxygen reduction reaction (ORR) is a critical electro-
chemical process occurring within the potential range of ∼0.6–
1.23 V referenced to the reversible hydrogen electrode (RHE),
essential for efficient energy storage and conversion.9,10 This
† Electronic supplementary information (ESI) available. See DOI:
https://doi.org/10.1039/d4ta01884b
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reaction involves two different pathways and can be applied in
different elds:11,12 the rst one is a four-electron (4e) pathway
occurring at high potentials (e.g., 0.8 VRHE), which is signicant
in hydrogen fuel cells and metal–air batteries;13,14 the other
pathway is a two-electron (2e) pathway prevailing at lower
potentials (e.g., 0.63 VRHE), contributing to the production of
hydrogen peroxide (H2O2) as a commodity.15,16 Various mate-
rials may exhibit a preference for different pathways, and even
the same material can adopt different pathways upon adjusting
its structure.11

Conventionally, the state-of-the-art electrocatalysts for the
ORR are Pt-based materials. The ORR pathway for Pt can be
tailored through modications of its coordination, enabling
versatility for various desired applications.11,17 However, the
widespread application of Pt-based electrocatalysts is hindered
by their high cost and scarcity.18 Low-cost metal oxides are
a class of potential alternatives with high stability under
oxidizing conditions, particularly in alkaline media where they
generally demonstrate greater stability compared to acidic
conditions.19 Currently, some metal oxides, such as Mn-based
oxides (e.g., MnO2 (ref. 20) and Li2MnO3 (ref. 21)), perovskite-
type oxides (e.g., LaCoO3 (ref. 22) and ZnSnO3 (ref. 23)), and
recently discovered Sb-based oxides (e.g., Sb2WO6 (ref. 24)), have
demonstrated good electrocatalytic performance for either 4e-
or 2e-ORR under alkaline conditions.

Multicomponent metal oxides, owing to their complex
chemical compositions and synergetic effects, may exhibit
enhanced performance compared to single-metal oxide
compositions.25–28 Recently, Guevarra et al.29 synthesized 7798
different complex multicomponent metal oxides by considering
combinations of two, three, and four elements with 10 atom%
intervals among Ni, Fe, Mn, Mg, Ca, La, Y, and In. This dataset
is, to the best of our knowledge, the largest metal oxide dataset
for the ORR reported to date. Subsequently, they characterized
the ORR activities at different potentials, i.e., high potential (0.8
VRHE) and low potential (0.63 VRHE), under alkaline conditions.
While these high throughput experimental results offer guid-
ance for further research on multicomponent metal oxides, the
activities may only reach local optimal values since there are
numerous other potential combinations if we narrow down the
intervals among these metal elements. However, conducting all
these experiments to identify compositions with higher activi-
ties that reach the global optimal values would be time- and
cost-intensive.30 Meanwhile, though theoretical computations
and microkinetic modeling are powerful tools that aid in cata-
lyst design, the tremendous rst principles computational costs
associated with the complicated electronic and ionic structures
of metal oxides signicantly hamper the development of
a precise microkinetic model.19 This is in part because one
needs to employ electric eld effect simulations to model the
pH-dependent energetics under an RHE scale, and use explicit
models with molecular dynamics to precisely acquire the
potential of zero-charge (PZC) values.14

Materials informatics,31 which enables the extraction of
trends and patterns from materials data through data mining
methods (e.g., machine learning, ML), offers a promising
approach to accelerate materials design and understanding.32–34
12488 | J. Mater. Chem. A, 2024, 12, 12487–12500
Currently, it has contributed to many remarkable achievements
in the eld of catalyst materials, including the successful
exploration of Cu–Al catalysts for the CO2 reduction reaction,35

a Ti–Na2WO4/TiO2 catalyst for oxidative coupling of
methane,36,37 Cu-based nanoclusters for the hydrogen evolution
reaction,38 and boron-doped single atom catalysts for the
nitrogen reduction reaction.39 Furthermore, there are also
endeavors related to the exploration of ORR catalysts utilizing
the combination of large datasets and ML techniques,
including single-atom catalysts,40 PtFeCu,41 and Fe–N–C-based
ORR catalysts.42 Therefore, machine learning is a proven effec-
tive method for accelerating the design of multicomponent
catalysts.

Motivated by the current stages, herein, we focused on
screening potential multicomponent metal oxides for the 4e-
and 2e-ORR activities using ML based on a large experimental
dataset generated by high-throughput experimentation.
Initially, we collected two datasets, both of which have the same
compositions but different target values, i.e., current density
qualied at 0.8 and 0.63 VRHE, respectively. Then, we conducted
a data cleaning process to remove noisy data, resulting in 5353
entries at 0.8 VRHE and 6902 entries at 0.63 VRHE. Subsequently,
a set of descriptors was generated and analyzed using feature
analysis primarily based on Pearson correlation coefficients.
Next, we employed the eXtreme Gradient Boosting (XGBoost)
algorithm to predict the performance of unexplored multi-
component metal oxides and conducted features explanation
analysis, given its superior predictive performance compared to
other tested methods such as Light Gradient Boosting Machine
(LightGBM), articial neural network (ANN), symbolic regres-
sion, and deep representation learnings. Based on the obtained
predictive models, we identied promising regions within 15
different ternary metal oxides with relatively high catalytic
activities at 0.8 and 0.63 VRHE for catalyzing the ORR. We found
that for the current density at 0.8 VRHE, the ternary systems Mn–
Ca–La, Mn–Ca–Y, and Mn–Mg–Ca would be recommended for
further investigations. For the current density at 0.63 VRHE, Mn–
Fe–X (X = Ni, La, Ca, and Y) and Mn–Ni–X (X = Ca, Mg, La, and
Y) systems deserve close attention in the future. Most impor-
tantly, this study indicates the potential of ML in expediting
catalyst design and materials discovery, paving the way for
future advancements in sustainable energy technologies.

2. Method
2.1 Dataset and features

Themulticomponent metal oxide catalyst data for the ORR were
obtained from previous works.29 The dataset includes 7798
distinct samples containing two, three, and four metals across
eight elements, namely Ni, Fe, Mn, Mg, Ca, La, Y, and In. The
general formulas of these samples are AxB1−x oxides, AxByC1−x−y

oxides, and AxByCzD1−x−y−z oxides (note: A, B, C, and D repre-
sent different metal elements). The target properties are the
catalytic activities, quantied as the geometric current density
at 0.8 and 0.63 VRHE, respectively. The Matminer library43 is
a tool for generating input features (i.e., independent variables)
in materials science. In our dataset, the compositions contain at
This journal is © The Royal Society of Chemistry 2024
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most 4 different metal elements. Therefore, we used themodule
“WenAlloys” of the Matminer44 designed for calculating
features for alloys in the matminer featurizers composition
alloy part, and nally obtained 25 input features for the oxide
materials.

2.2 ML algorithms

We employed XGBoost,45 LightGBM,46 ANN,47 symbolic regres-
sion,48,49 deep representation learning from stoichiometry
(ROOST)50,51 and compositionally restricted attention-based
networks (CrabNet)52,53 to develop predictive models for
current densities in the unit of mA cm−2. Details can be found in
the ESI.† Data scaling preprocessing, development of ANN
models, and performance evaluations, including the calcula-
tion of the coefficient of determination (R2) and root mean
squared error (RMSE), were conducted using the Scikit-learn
Python library.54 XGBoost and LightGBM models were devel-
oped using the XGBoost45 and LightGBM46 libraries, respec-
tively. The symbolic regression model was built using the PySR
library,48 while the ROOST and CrabNet models were imple-
mented using their respective open resources.50–53 The Mat-
plotlib55 and Mpltern56 tools were employed to plot the ternary
plots.

3. Results and discussion
3.1 Workow

Fig. 1 illustrates the workow of the ML process employed to
explore ORR multicomponent catalysts under alkaline condi-
tions. Following this workow, we respectively built the ML
Fig. 1 Workflow of the ML-based analytical process employed to explo

This journal is © The Royal Society of Chemistry 2024
model for the prediction of activity properties under 0.8 and
0.63 VRHE. The dataset utilized in this study was obtained from
high-throughput experimentation,29 including compositions
and activity properties, i.e., current densities (J, mA cm−2) under
0.8 and 0.63 VRHE. Subsequently, we generated input features
and conducted feature analysis to represent various composi-
tions, and then they were dened as the inputs to establish the
relationship between features and current densities through
ML modeling. We employed both neural network- and tree-
based models with varying hyperparameters and selected the
optimal model (i.e., the models with the hypermeters shown in
the ESI†) by evaluating and comparing their performance.
Based on the best model, we utilized it to predict the current
densities under both 0.8 and 0.63 VRHE for unexplored compo-
sition spaces. Finally, the outcomes of our predictions provided
valuable guidance for further experimental investigations.
3.2 Data preprocessing and feature generation

We collected two datasets, both of which have the same
compositions but different target values, i.e., current density
qualied at 0.8 and 0.63 VRHE, respectively. Upon inspecting the
datasets, we identied some compositions with the original
current density values#0. These data points were considered as
noise and therefore removed, resulting in a total of 6416
remaining data entries under 0.8 VRHE and 7577 remaining data
entries under 0.63 VRHE. The distribution of current densities
under both potentials is depicted in Fig. S1a and b.† For the
analysis of current density in the context of the ORR, a loga-
rithmic function was always employed to assess the distribu-
tion, which enhanced visualizing the data of current density
re multicomponent ORR catalysts under alkaline conditions.

J. Mater. Chem. A, 2024, 12, 12487–12500 | 12489
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Fig. 2 (a and b) Distribution of current densities under (a) 0.8 VRHE and (b) 0.63 VRHE with the values after logarithmic transformation. (c and d)
Pearson correlations among 16 features in the (c) 0.8 VRHE and (d) 0.63 VRHE datasets.
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during processing. Therefore, we used the current density
values aer logarithmic transformation as the nal target pre-
dicted values. Fig. 2a and b show the current density values with
logarithmic transformation under 0.8 and 0.63 VRHE, respec-
tively. Fig. 2a shows that under 0.8 VRHE, the predominant
distribution lies within the range of−2 to 0.6 lg(mA cm−2), while
a smaller portion falls within −6 to −2 lg(mA cm−2). Similarly,
under 0.63 VRHE, the majority is observed within the range of
−1.0 to 0.6 lg(mA cm−2), with a minority falling between −2.5
and −1.0 lg(mA cm−2) (Fig. 2b).

Twenty-ve features were generated for both datasets under
0.8 and 0.63 VRHE using the Matminer.43 However, some
features were in the string but not the values, while others
consistently had a value of zero across all the data. Conse-
quently, we removed these features, resulting in 21 remaining
features for each dataset, including the difference of atomic
radii, difference of electronegativity, valence electron concen-
tration, etc. Fig. S1c and d† show the heatmap of Pearson
correlations among these features. Some features exhibited
12490 | J. Mater. Chem. A, 2024, 12, 12487–12500
high Pearson correlations (red color in the gure, except the
diagonal part), which should be excluded since the high corre-
lation will have a negative impact on the ML model. Conse-
quently, we retained 16 features with low correlation for both
datasets, respectively, as illustrated in Fig. 2c and d. The
remaining features for the datasets under 0.8 and 0.63 VRHE are
the same.

To further assess the data quality, we can construct a quick
ML model and compare the disparity between the experimental
and predicted values. Neural networks have been developed for
half a century and have made signicant progress due to their
capability to handle non-linear relationships.57 Therefore, the
ANN was employed as the initial approach to build the models.
The performance of two models, each built based on one of the
two datasets and evaluated through 10-fold cross-validation, is
illustrated in Fig. 3a and b. Fig. 3a shows that the R2 and RMSE
values of the model on the dataset at 0.8 VRHE are ∼0.71 and
∼0.468 lg(mA cm−2), respectively. For the model of the dataset at
0.63 VRHE (Fig. 3b), the R

2 and RMSE are∼0.74 and∼0.328 lg(mA
This journal is © The Royal Society of Chemistry 2024
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Fig. 3 (a and b) Performance of the initial ANNmodel based on the 10-fold cross validation in the (a) 0.8 VRHE and (b) 0.63 VRHE datasets. (c and d)
Distribution of current densities after cleaning the noisy data in the (c) 0.8 VRHE and (d) 0.63 VRHE datasets. (e and f) Statistics of the materials with
various number of elements in the (e) 0.8 VRHE and (f) 0.63 VRHE datasets.
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cm−2), respectively. The related hyperparameters of these
models can be found in the ESI.† We found a cluster of data
points deviating signicantly from the expected trend in Fig. 3a
and b, indicating inconsistency within the dataset. This
phenomenon can be attributed to two factors: experimental
errors, as mentioned in the source paper of the dataset,29 and
the unbalanced distribution as discussed in Fig. 2a and b.
Therefore, it is reasonable to categorize these data as the noises
of the dataset. The most effective way to address these noises is
to remove the relevant data points, given our substantial dataset
size. Therefore, we rstly compared the bias between the
experimental and predicted values for each sample, as illus-
trated in the insets of Fig. 3a and b. Then we excluded data with
a bias greater than 0.5. Finally, we obtained 5353 data points for
the 0.8 VRHE dataset and 6902 data points for the 0.63 VRHE

dataset, with the distribution of current densities shown in
This journal is © The Royal Society of Chemistry 2024
Fig. 3c and d for our further ML modeling. Additionally, Fig. 3e
illustrates that the 0.8 VRHE dataset includes 8 materials with
onemetal element, 225materials with twometal elements, 1429
materials with three metal elements, and 3691 materials with
four metal elements. Similarly, Fig. 3f shows that the 0.63 VRHE

dataset includes 8 materials with one metal element, 228
materials with two metal elements, 1714 materials with three
metal elements, and 4952 materials with four metal elements.
3.3 Comparison among different ML models

Based on the selected data above, both the two datasets were
divided into an 80% training set and a 20% test set, respectively.
ANN, XGBoost, and LightGBM were selected to build the ML
models and compare their performance on the training dataset.
The reason for selecting XGBoost45 and LightGBM46 was their
J. Mater. Chem. A, 2024, 12, 12487–12500 | 12491
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Fig. 4 (a and b) Comparison of (a) R2 and (b) RMSE among the models built by ANN, XGBoost, and LightGBM on the training and test sets at 0.8
VRHE. (c and d) Comparison of (c) R2 and (d) RMSE among the models built by ANN, XGBoost, and LightGBM on the training and test sets at 0.63
VRHE. (e and f) Comparison between the experimental and predicted values by XGBoost on the training and test sets at (e) 0.8 VRHE and (f) 0.63
VRHE. The unit of RMSE is lg(mA cm−2).

Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
ba

la
nd

ži
o 

20
24

. D
ow

nl
oa

de
d 

on
 2

02
5-

10
-1

6 
17

:1
1:

40
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
high performance across various ML tasks.58,59 Hyper-
parameters were optimized using 10-fold cross-validation to
prevent overtting, with the details shown in the ESI.† The 10-
fold cross-validation results are shown in Fig. S2.†

For the 0.8 VRHE dataset, the R2 scores for the training and
test sets are “0.91, 0.88”, “0.94, 0.89”, and “0.90, 0.88”,
respectively for ANN, XGBoost, and LightGBM (Fig. 4a). The
RMSE values for the training and test sets are “0.218, 0.251
lg(mA cm−2)”, “0.173, 0.242 lg(mA cm−2)”, and “0.231, 0.256
lg(mA cm−2)”, respectively for ANN, XGBoost, and LightGBM
(Fig. 4b). For the 0.63 VRHE dataset, the R2 scores for the
training and test sets are “0.86, 0.85”, “0.92, 0.88”, and “0.88,
0.86”, respectively for ANN, XGBoost, and LightGBM (Fig. 4c).
The RMSE values of the training and test sets are “0.217, 0.222
lg(mA cm−2)”, “0.170, 0.200 lg(mA cm−2)”, and “0.205, 0.213
12492 | J. Mater. Chem. A, 2024, 12, 12487–12500
lg(mA cm−2)”, respectively for ANN, XGBoost, and LightGBM
(Fig. 4d). Therefore, XGBoost demonstrates a superior
performance on both our training and test sets. Fig. 4e and f
illustrate the comparison between the experimental and the
predicted values by XGBoost, highlighting its accuracy in the
data training. The additional comparison results for the ANN
and LightGBM can be found in Fig. S3.†

Furthermore, there may be other methods that can perform
better compared to the above models built by elemental
features and the XGBoost method. One such method is using
symbolic regression,48,49 which can offer better interpretability,
as it provides searches for the optimal mathematical formula
between a set of features shown in Fig. 2c and d and target
values. The equation results for the 0.8 VRHE and 0.63 VRHE

datasets are shown in Tables S3 and S4.† The best R2 score, even
This journal is © The Royal Society of Chemistry 2024
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lower than 0.2, indicates the presence of strong nonlinear
relationships between features and target values, making it
difficult to nd equations based on our datasets. Additionally,
there are methods to generate vector features based solely on
the elements and stoichiometry of compositions, rather than
relying on elemental property features generated by Matminer.
These methods can be combined with deep learning
approaches, which may offer better performance, such as
ROOST50,51 and CrabNet.52,53 Fig. S4† illustrates the performance
of models constructed using ROOST and CrabNet on both the
training and test datasets. The R2 value shows a slight
improvement compared to Fig. 4e and f when Matminer
features and XGBoost methods were combined. However, the
features and models fail to capture the differences among
compositions with low target values, as the true values are
different, but predicted values almost always fall in the same
narrow ranges (Fig. S4†). Therefore, for the utilization of
Fig. 5 (a and b) Feature importance in predicting current densities at (a
derived from the XGBoost model in the (c) 0.8 VRHE and (d) 0.63 VRHE d

This journal is © The Royal Society of Chemistry 2024
XGBoost, considering its comparable performance with deep
learning models and interpretability based on feature impor-
tance, this model is ultimately chosen for our prediction.

Fig. 5a and b illustrate the feature importance in predicting
current densities at 0.8 and 0.63 VRHE using XGBoost embedded
in the XGBoost Library.45 The top three important features for
the 0.8 VRHE dataset are the number of itinerant electrons
(interant electrons), the number of itinerant electrons in the p
electron orbitals (interant p electrons), and conguration
entropy, sorted by the importance from high to low (Fig. 5a),
while for the 0.63 VRHE dataset, the top three features are the
same but the order is sorted as interant electrons, conguration
entropy, and interant p electrons. The SHapley Additive exPla-
nations (SHAP) method60 offers an explanation for the output of
ML models. Fig. 5c and d display the SHAP values derived from
the XGBoost model. These values indicate the features' inu-
ence on themodel output, ordered by their mean absolute SHAP
) 0.8 VRHE and (b) 0.63 VRHE using the XGBoost. (c and d) SHAP values
atasets.
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Fig. 6 Predictive current density values at 0.8 VRHE for the fifteen ternary systems based on the trained XGBoost model. (a–o) Ternary systems of
(a) Mn–Ca–La, (b) Mn–Ca–Y, (c) Mn–Mg–Ca, (d) Mn–Ni–Ca, (e) Mn–Mg–La, (f) Mn–Ca–Fe, (g) Mn–Ni–La, (h) Mn–Ca–In, (i) Mn–Fe–La, (j) Mn–
La–Y, (k) Mn–La–In, (l) Mn–Ni–Fe, (m) Mg–Mg–Y, (n) Mn–Ni–Y, and (o) Mn–Mg–Fe.
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value across the dataset. Although there are slight differences
among the feature importance order compared to Fig. 5a and
b due to different calculation methods, the top three important
features remain almost consistent. In the 0.8 VRHE dataset
(Fig. 5c), the interant electron emerges as the most important
feature with the highest SHAP value. A higher value of interant
electron corresponds to a positive SHAP value, suggesting
a positive inuence on the current density. Conversely, a lower
value indicates a negative inuence. The interant p electron
consistently exerts a negative inuence on the current density.
Conguration entropy, on the other hand, exhibits a positive
inuence on current density when its value is higher. Fig. 5d
illustrates the distribution of SHAP values in the 0.63 VRHE

dataset. The inuence trends of features on current densities
are similar to those observed in the 0.8 VRHE dataset. These
plots suggest that for achieving a high current density, more
attention should be paid to the high interant electron values
and high conguration entropy.
3.4 Mapping the activity and providing predictions

Mn, Ni, and Fe are the commonly studied elements in metal
oxides for alkaline ORR.61,62 Besides, the experimental dataset
also indicates that the addition of La can enhance activity,
which is in agreement with a recent study which found that
oxidized La can serve as an active site for the ORR in alkaline
media.63 Consequently, our investigation primarily focuses on
systems containing at least on Mn, Ni, Fe, or La. Specically,
we explored materials containing three metal elements due to
their ease of forming a single phase. This results in 52 possible
ternary compositions. The interval between compositions was
set at 1 atom%, resulting in 5591 compositions for each
system, totaling 266 032 different compositions.

3.4.1 Prediction of current density at 0.8 VRHE. The pre-
dicted current densities at 0.8 VRHE for these compositions were
generated using our developed XGBoost model. In Fig. 6, the
top een ternary systems with the highest maximum values
are presented, sorted from highest to lowest. The prediction of
the other 37 ternary systems can be found in Fig. S5–S7.† These
een systems include the Mn–Ca–X (X = La/Y/Mg/Ni/Fe/In)
system (Fig. 6a–d, f and h) and the Mn–La–X (X = Mg/Ni/Fe/Y/
In) system (Fig. 6e, g, i–k), as well as the Mn–Ni–X (X = Fe/Y)
and Mn–Mg–X (X = Y/Fe) systems (Fig. 6l–o). It is notable that
the inclusion of Mn signicantly contributes to the current
density, as each of these systems contains Mn.
Table 1 Compositions with the highest predicted current density values

No. Ternary system Com. with max. value

1 Mn–Ca–La Mn0.59Ca0.21La0.2
2 Mn–Ca–Y Mn0.57Ca0.25Y0.18

3 Mn–Mg–Ca Mn0.85Mg0.04Ca0.11
4 Mn–Ni–Ca Mn0.62Ca0.38
5 Mn–Mg–La Mn0.84La0.16
6 Mn–Ca–Fe Mn0.98Fe0.02
7 Mn–Ni–La Mn0.84La0.16
8 Mn–Ca–In Mn0.89Ca0.38

This journal is © The Royal Society of Chemistry 2024
Table 1 shows the compositions with the highest current
density values for each system, corresponding to Fig. 6.
Readers can combine Table 1 with Fig. 6 to identify regions
with high performance in these ternary systems. We found
that the ternary Mn–Ca–X (X = La/Y/Mg) system (Fig. 6a–c)
demonstrates the highest values. However, in most ternary
systems, the compositions with the highest current densities
are actually binary metal oxides. For example, in Mn–Ca–X (X
= Ni/In) (#4 and #8 in Table 1), the composition with optimal
values is Mn0.62Ca0.38, and in Mn–La–X (X = Mg/Ni/Fe/Y/In)
(#5, #7, and #9–11 in Table 1), it is Mn0.84La0.16. This
suggests that the inclusion of Ni andMg inMn–Ca, andMg/Ni/
Fe/Y/In in Mn–La, may not contribute to the improvement of
current densities. Therefore, for the current density at 0.8
VRHE, the ternary systems Mn–Ca–La, Mn–Ca–Y, and Mn–Mg–
Ca would be recommended for further investigations.

3.4.2 Prediction of ORR current density at 0.63 VRHE.
Similarly, the predicted values at 0.8 VRHE for these unexplored
compositions were also generated using our developed XGBoost
model. Fieen ternary systems exhibit maximum current
density values greater than 0.25, as shown in Fig. 7. The
prediction of the other 37 ternary systems can be found in
Fig. S8–S10.† From this observation, it can also be inferred that
the inclusion of Mn is crucial in contributing to the current
density since each of these systems contains Mn. Among these
systems, the Mn–Fe–X (X = La/Ca/Y/Ni/Mg/In) system (Fig. 7a–
d, f–g) yields the highest values, followed by the Mn–Ni–X (X =

Ca/Mg/La/Y/In) system (Fig. 7e, h–k). Additionally, Mn–Ca–X
(X = La/Mg/Y) and Mn–Mg–X (X = La) systems (Fig. 7l–o) also
show promising ORR performance. Table 2 shows the compo-
sitions with the highest current density values for each system,
corresponding to Fig. 7. Readers can combine Table 2 with
Fig. 7 to identify regions with high performance in these ternary
systems.

Additionally, we observed that for the Mn–Mg–Fe and Mn–
Fe–In systems, the compositions with optimal values are
Mn0.98Fe0.02 (Table 2), suggesting that the inclusion of Mg or In
into the Mn–Fe system may not provide advantages for the
activity. However, the addition of La (#1 in Table 2), Ca (#2 in
Table 2), Y (#3 in Table 1), and Ni (#4 in Table 2) into Mn–Fe
systemsmay be benecial to the ORR performance. Similarly, in
the case of Mn–Ni–In, the optimal composition is Mn0.99Ni0.01,
indicating that In is not advantageous for the Mn–Ni system.
Conversely, adding Fe, Ca, Mg, La, or Y can show favorable
effects on the Mn–Ni system.
(denoted as: Com. with max. value) for each system

No. Ternary system Com. with max. value

9 Mn–Fe–La Mn0.84La0.16
10 Mn–La–Y Mn0.84La0.16
11 Mn–La–In Mn0.84La0.16
12 Mn–Ni–Fe Mn0.95Ni0.01Fe0.04
13 Mn–Mg–Y Mn0.81Mg0.01Y0.18
14 Mn–Ni–Y Mn0.81Y0.19
15 Mn–Mg–Fe Mn0.98Fe0.02
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Fig. 7 Predictive current density values at 0.63 VRHE for the fifteen ternary systems based on the trained XGBoost model. (a–o) Ternary systems
of (a) Mn–Fe–La, (b) Mn–Ca–Fe, (c) Mn–Fe–Y, (d) Mn–Ni–Fe, (e) Mn–Ni–Ca, (f) Mn–Mg–Fe, (g) Mn–Fe–In, (h) Mn–Ni–Mg, (i) Mn–Ni–La, (j) Mn–
Ni–Y, (k) Mn–Ni–In, (l) Mn–Ca–La, (m) Mg–Mg–Ca, (n) Mn–Ca–Y, and (o) Mn–Mg–La.
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Table 2 Compositions with the highest predicted current density values (denoted as: Com. with max. value) for each system

No. Ternary system Com. with max. value No. Ternary system Com. with max. value

1 Mn–Fe–La Mn0.78Fe0.14La0.08 9 Mn–Ni–La Mn0.89Nin0.01La0.1
2 Mn–Ca–Fe Mn0.69Ca0.1Fe0.21 10 Mn–Ni–Y Mn0.87Nin0.01Y0.12
3 Mn–Fe–Y Mn0.8Fe0.03Y0.17 11 Mn–Ni–In Mn0.99Nin0.01

4 Mn–Ni–Fe Mn0.97Ni0.01Fe0.02 12 Mn–Ca–La Mn0.7Ca0.1La0.2
5 Mn–Ni–Ca Mn0.89In0.01Ca0.1 13 Mn–Mg–Ca Mn0.78Mg0.13Ca0.09
6 Mn–Mg–Fe Mn0.98Fe0.02 14 Mn–Ca–Y Mn0.78Ca0.14Y0.08
7 Mn–Fe–In Mn0.98Fe0.02 15 Mn–Mg–La Mn0.69Mg0.1La0.21
8 Mn–Ni–Mg Mn0.89In0.01Mg0.1
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Previous experimental results have indicated that Mn–Ni–Fe
and Mn–Ni–Fe–La systems warrant attention for alkaline ORR
at 0.63 VRHE.36 Our current ndings further expand upon this by
revealing that Mn–Fe–X (X = La/Ca/Y) and Mn–Ni–X (X = Ca/
Mg/La/Y) systems also exhibit comparable ORR activities.

4. Conclusions

In summary, we have analyzed a large alkaline ORR dataset
from high-throughput experiments and performed data clean-
ing by analyzing the target values. Sixteen features with low
Pearson correlation coefficients were obtained and dened as
effective inputs to develop the model. Comparing the perfor-
mance of ANN, XGBoost, and LightGBM, XGBoost demon-
strated superior performance. Feature explanations based on
the model suggested that high interant electron values and high
conguration entropy may contribute to a higher current
density. Finally, XGBoost models were employed to further
provide predictions for potential catalysts. We found that the
ternary systems Mn–Ca–La, Mn–Ca–Y, and Mn–Mg–Ca show
promising potential for further investigations, particularly in
applications related to hydrogen fuel cells at∼0.8 VRHE. Mn–Fe–
X (X = Ni/La/Ca/Y) and Mn–Ni–X (X = Ca/Mg/La/Y) systems also
deserve close attention as they may contribute to the production
of hydrogen peroxide (H2O2) at ∼0.63 VRHE. It is important to
note that although the data and the model may possess certain
biases, the identication of trends between compositions and
activities remains valuable. Researchers can conduct more
target experiments to delve deeper into these investigations.
Most importantly, this study underscores the potential of arti-
cial intelligence in expediting catalyst design and materials
discovery, paving the way for future advancements in sustain-
able energy technologies.
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