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erm photon energy storage in
diazetidines via [2+2] photocycloaddition†
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and Grace G. D. Han *

We report a series of p-functionalized phenylbenzoxazoles that offer remarkable energy storage, exceeding

300 J g−1, for the first time among intermolecular cycloaddition-based molecular solar thermal energy

storage systems. The [2 + 2] photocycloaddition of phenylbenzoxazoles generates diazetidine

cycloadducts that store energy for up to 23 years in the solid state and release energy upon triggered

cycloreversion. The solid-state phase transition contributes to increasing overall energy storage

densities, and the dearomative cycloaddition process is revealed to be critical for maximizing the intrinsic

energy storage capacities. The solvent-assisted cycloreversion is also used to accelerate the energy

release from the emerging molecular scaffold.
Introduction

The concept of molecular solar thermal (MOST) energy storage
has been largely demonstrated using photoswitches that
undergo either E–Z isomerization or intramolecular cycloaddi-
tions, with examples including azo(hetero)arenes,1–4 hydra-
zones,5 dihydroazulenes,6,7 fulvalene diruthenium8,9 derivatives,
and norbornadienes.10,11 In particular, norbornadienes that
undergo intramolecular [2 + 2] photocycloaddition to generate
quadricyclanes have been recognized for storing a large quan-
tity of energy over 300 J g−1,12,13 primarily in the solution state. A
quadricyclane bearing a four-membered ring is highly strained
and thus destabilized, which rationalizes a large energy differ-
ence between a thermodynamically-stable norbornadiene and
its cycloadduct, quadricyclane. Additionally, the intramolecular
[2 + 2] cycloadditions in molecular scaffolds beyond norborna-
dienes have been rigorously investigated for MOST energy
storage, including many bicyclic dienes14 such as bicycloocta-
dienes.15 Signicant effort has also been devoted to identifying
potential intramolecular switchable systems with favorable
parameters for energy storage, such as optimal light absorption
ranges,16–19 enhanced fatigue resistances,20–22 prolonged
thermal half-lives,23–26 diverse switching mechanisms,27,28 and
high quantum yields of photoisomerization.29–33 In contrast,
energy storage capitalizing on intermolecular photo-
cycloaddition reactions34–36 remains relatively underexplored,
which opens up new opportunities to harness the potential of
a wide range of photochemistry.
ty, 415 South Street, Waltham, MA 02453,
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18854
For example, a class of solid-state MOST compounds has
recently emerged, storing photon energy via crystalline-state
intermolecular photochemical reactions, as seen in the [2 + 2]
photocycloaddition of styrylpyryliums37 and [4 + 4] photo-
cycloaddition of anthracenes.38 These systems exhibit thermally
activated cycloreversion in the solid state, which improves the
gravimetric density of the released energy in the absence of
solvents. However, the reported cycloaddition-based MOST
systems present intrinsically suboptimal energy storage
capacity. A maximum energy storage density (DHstorage) of 42 kJ
mol−1 (51 J g−1) was achieved for styrylpyryliums,37 which is
substantially lower than the average DHstorage values of photo-
switches – over 100 kJ mol−1 and 300 J g−1 for conventional
MOST systems such as azo(hetero)arenes39–41 and norborna-
dienes.42,43 Donor–acceptor substituted anthracenes offer larger
DHstorage up to 96 kJ mol−1 or 221 J g−1,38 while they have not
matched the capacities of traditional photoswitches. Moreover,
their cycloadducts, i.e., dianthracenes, reported rather short
half-lives of 1–6 days, which makes them suboptimal for long-
term energy storage.

Thus, it has been a challenging quest to discover an inter-
molecular cycloaddition reaction that allows for enhanced and
long-term energy storage in cycloadducts even at elevated
temperatures. To improve DHstorage, it is necessary to destabilize
the metastable cycloadducts, and heteroatom substitution to
the strained rings would be a potential strategy for ne-tuning
the stability of the rings. A theoretical study estimates that
substituting a cyclobutane with one nitrogen atom slightly
lowers the strain energy of the azetidine ring (106 kJ mol−1)
compared to cyclobutane (110 kJ mol−1).44 On the other hand,
the ring strain of a 1,3-diazetidine, a four-membered ring
composed alternatively of C and N atoms, is predicted to be
signicantly larger (128 kJ mol−1), which makes the diazetidine
© 2024 The Author(s). Published by the Royal Society of Chemistry
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a desirable MOST energy storage compound. Furthermore, the
formation of 1,3-diazetidines can be induced via [2 + 2] cyclo-
additions of C]N bonds,45 and they have been reported to
undergo thermally activated cycloreversion in solutions.46–48

However, the MOST energy storage potential of diazetidines
has been rarely investigated, presumably because of the relative
scarcity of [2 + 2] C]N bond photocycloaddition processes and
the predominant research effort emphasized on their use in
synthetic procedures.49–51 To date, there is only one report that
evaluated the exotherm of acid-catalyzed reversion of a dia-
zetidine in solution (116 kJ mol−1) by Paillous and co-workers in
1982.48 Nonetheless, the use of acid hinders further cycloaddi-
tion of phenylbenzoxazoles, limiting the use of the scaffold for
energy storage. Follow-up studies in 1986 and 1987 reported the
photodimerization and dehalogenation of 2-(4-halophenyl)
benzoxazoles, as well as solution-state cycloreversion of two
diazetidines.52,53 Independently, Mohr and co-workers discov-
ered the solid-state dimerization of oxazolones and solution-
state acid-catalyzed cycloreversion of their diazetidine dimers
in 1984.54 Yet, in these early studies, the potential of dia-
zetidines for photon energy storage remained unexplored; none
of their energy storage densities, durations, cyclabilities, solid-
state energy storage capabilities, or solid-state energy release
characteristics were known.

Herein, we unravel the [2 + 2] cycloaddition and reversion
processes of phenylbenzoxazole/diazetidine and report design
principles for achieving exceptionally large energy storage
densities and long energy storage times in the solid state, now
on par with state-of-the-art photoswitches. Additionally, we
unveil solvent-assisted cycloreversion of diazetidines, which
employs a minimal amount of solvent instead of acid to facili-
tate efficient energy release under mild temperature conditions.

Results and discussion

We inspected a series of p-functionalized phenylbenzoxazole
(PB) derivatives that undergo light-induced [2 + 2] cycloaddi-
tions to form diazetidine (DA) moieties (Fig. 1a). The DAs can be
thermally activated to revert to PBs, releasing the stored energy
Fig. 1 (a) An energy diagram illustrating solar photon energy storage thro
by triggered cycloreversion of diazetidine (DA). (b) Reversible photo-ind
derivatives 1–4. (c) Solution-state UV-vis absorption spectra of PB-3 and
setup: hexane/water biphasic solution under oxygen-free conditions.

© 2024 The Author(s). Published by the Royal Society of Chemistry
(DHstorage) as heat. The functional groups were varied to test
their inductive effect on energy storage: H (1), F (2), Cl (3), and
Me (4) (Fig. 1b). In addition, the varied functional groups
effectively control the melting points of PBs, which allows for
decoupling the exothermic cycloreversion of DAs and endo-
thermic melting of PBs. Any overlap between these two
processes results in reduced overall energy release (vide infra),
which can be averted by judicious molecular designs.

PBs and corresponding DAs exhibit intrinsically overlapping
absorption in the UV range (Fig. 1c and S1†), which limits the
effective UV-induced [2 + 2] cycloaddition either in solid or in
solution. Furthermore, p-functionalized PBs predominantly
exhibit photoluminescence in solid.55,56 To overcome the chal-
lenge, we performed the irradiation of PBs under hexane/water
biphasic conditions where PBs are dissolved in the hexane layer
(Fig. 1d).53,57 The hexane/water interface facilitates the precipi-
tation of the formed DA cycloadducts by anchoring them and
allowing them to grow into bigger solid particles. The DA solids
are less prone to undergo UV-induced [2 + 2] cycloreversion,
which in turn resulted in 70–90% yield of cycloaddition in 3
days. Achieving similar yields required longer reaction time
under single-phase solution-state reaction conditions such as in
pure hexane (Table S1†). The quantum yield of PB cycloaddition
is also reported to increase signicantly under biphasic condi-
tions in previous studies.52,53 The 2PB / DA conversion is
conrmed by solution-state nuclear magnetic resonance (NMR)
spectroscopy and Fourier-transform infrared (FT-IR) spectros-
copy (Fig. S2–S23†). We have additionally attempted the
dimerization of PBs with p-CN and p-OMe functional groups
among others in various solvents. However, the compounds
with strong electron-donating and -withdrawing substituents
did not result in the formation of stable dimers, which could be
attributed to the facile cycloreversion of DAs in solutions.

Heat release from the collected DAs was investigated using
differential scanning calorimetry (DSC) (Fig. 2a and b). For
compound 3 with a p-Cl substituent, DA / 2PB cycloreversion
was observed upon heating, releasing DHstorage, followed by the
sharp melting transition of the generated PB-3 (Fig. 2a). The
ugh [2 + 2] cycloaddition of phenylbenzoxazole (PB) and energy release
uced [2 + 2] cycloaddition and thermal reversion between PB and DA
DA-3 in toluene. (d) Schematic illustration of the photo-cycloaddition

Chem. Sci., 2024, 15, 18846–18854 | 18847
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Fig. 2 (a) DSC thermograms of PB-3 and DA-3measured during the first heating (black) and cooling (blue) cycle. (b) DSC thermograms of DA-1,
DA-2, and DA-4, measured during the first heating cycle. (c) Relative Tm-PB and Tonset of compounds 1–4. (d) PXRD patterns of PB-3 and DA-3.
Red highlighted areas represent the exotherms of cycloreversion (DHstorage). Grey highlighted areas represent the endotherms of melting of
phenylbenzoxazole; Tm-PB, melting point of phenylbenzoxazole; Tc-PB, crystallization point of phenylbenzoxazole; Trev, peak temperature of
thermal reversion; Tonset, onset temperature of thermal reversion; DT, difference between Tm-PB and Tonset.
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molten PB-3 crystalizes when cooled, identical to the pristine
PB-3's melting and crystallization behaviors, which conrms
the generation of PB-3 from DA-3's cycloreversion. In particular,
the formation of crystalline-state PB indicates the nature of the
solid-to-solid transition of the DA / 2PB reaction.

Similarly, the heating curves of DAs 1, 2, and 4 show
exothermic cycloreversion, while the simultaneous cyclo-
reversion and melting of PBs results in a reduced overall exo-
therm (i.e., integrated area of the exothermic peak, highlighted
in red) (Fig. 2b). The melting points of PBs 1, 2, and 4 (Tm-PB) are
101 °C, 102 °C, and 112 °C, respectively, much lower than that
of PB-3 at 149 °C (Fig. 2c and S24†). A large temperature gap
(DT) between Tm-PB (marked in grey) and the onset of DA's
reversion (Tonset, marked in red) over 78 °C is necessary for the
complete solid-to-solid cycloreversion and heat release, as
observed for compound 3. The powder X-ray diffraction (PXRD)
of PB-3 and DA-3 conrms the crystalline nature of both
compounds (Fig. 2d). Because of the smaller DT values for 1, 2,
and 4 (35 °C, 38 °C, and 52 °C, respectively), their heat release
Table 1 Thermal parameters for the cycloreversion processa

Cycloreversion Tm-PB (monomer)

Solid-state

Tonset (°C) DT (°C) DHstorage (kJ mol

1 101 66 35 101
2 102 64 38 109
3 149 71 78 146
4 112 60 52 117
Styrylpyrylium 250 132 118 42
Anthracene 197 59 138 102

a Tm-PB, melting point of the phenylbenzoxazole monomer; Tonset, onse
difference between Tm-PB and Tonset.

18848 | Chem. Sci., 2024, 15, 18846–18854
was compromised by the subsequent melting of PBs, limiting
the DHstorage values to 256–280 J g−1. In contrast, compound 3
shows the largest DHstorage value of 318 J g−1 among all
compounds (Table 1). The photon energy storage and subse-
quent heat release of the PB/DA system are also repeatable. We
conducted a cycling test for compound 1 with repeated 300 nm
irradiation and 15-minute thermal activation at 110 °C. The
solubility of PB-1 gradually decreased over the repeated cyclo-
addition and cycloreversion, which slightly lowered the
conversion of PB-1 aer the 2nd cycle. However, no degradation
was detected by NMR over 5 cycles, conrming the system's
stability and cyclability (Fig. S25 and S26†).

These different heat release processes observed between DA-
3 and other DAs 1, 2, and 4 were rigorously compared using an
isothermal DSC, and the kinetics of condensed-phase
exothermic cycloreversion reactions were analyzed. The cyclo-
reversion of DA-3 was monitored at 105 °C, which clearly
showed a gradual increase in heat release over time that peaks
and decays aer 3 hours of the isothermal reaction (Fig. 3a). The
Solvated-state

−1) DHstorage (J g
−1) Tonset (°C) DHstorage (kJ mol−1) DHstorage (J g

−1)

260 39 108 277
256 30 133 312
318 34 109 237
280 23 94 224
51 n/a n/a n/a
195 n/a n/a n/a

t temperature of cycloreversion; DHstorage, energy storage density; DT,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) A DSC thermogram of DA-3measured at 105 °C. (b) Conversion of DA-3 over time at 105 °C. (c) A DSC thermogram of DA-2measured
at 80 °C. (d) Conversion of DA-2 over time at 80 °C. (e) A DSC thermogram of DA-2 solvated by toluene during the first (black) and second
heating (red) and the first cooling (blue) cycle. (f) Conversion of DA-2 over time in toluene at 70 °C. Red highlighted areas representDHstorage. The
R2 values are for the red curves fitted for 1st-order kinetics.
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conversion (a) of DA-3 over time indicates an autocatalytic
process, displaying a sigmoidal function with a very short
induction period (Fig. 3b). Other solid-state reactions including
[3 + 2] thermal cycloadditions58 and [2 + 2] 59 or [4 + 4]
photodimerizations60–62 have been reported to show autocatal-
ysis, which is attributed to the molecular cooperativity in the
crystalline-state reactions. Thus, we hypothesize that DA/ 2PB
cycloreversion occurring in the solid state also undergoes
a cooperative autocatalytic process. In contrast, the isothermal
DSC measurement of DA-2 at 80 °C primarily displayed
a decaying exothermicity (Fig. 3c) and decelerating reaction rate
over time (Fig. 3d). The isothermal DSC and kinetic analysis of
DA-1 and DA-4were similar to those of DA-2 (Fig. S27–S32†). The
1st-order kinetics found in the cycloreversion of DAs 1, 2, and 4
indicate that the reactions likely proceed in disordered phases,
which is supported by the simultaneous cycloreversion of DAs
and melting of resulting PBs (Fig. 2b). Thus, not only the degree
© 2024 The Author(s). Published by the Royal Society of Chemistry
of heat release but also its kinetics are revealed to largely
depend on the molecular designs and their phase transition
during the condensed-phase cycloreversion.

To examine pristine DHstorage values of all compounds, we
employed solvation that circumvents the unfavorable melting of
PBs that are generated upon cycloreversion. A small amount of
toluene (25 mL) was added to DAs (0.6 mg) at room temperature,
and the mixture was heated to induce a DA / 2PB reaction, as
evidenced by the broad exotherm in Fig. 3e. For compounds 1–2
experiencing a complete overlap of the cycloreversion and
melting transitions, the measured DHstorage signicantly
increased in the solvated state (Table 1). In contrast, DHstorage

values were larger in the solid state than in the solvated state for
compounds 3–4 for which the cycloreversion and melting are
either partially or completely resolved. This suggests that the
exothermic solid-to-solid phase transition of DA / 2PB cyclo-
reversion contributes to the overall heat release of compounds
Chem. Sci., 2024, 15, 18846–18854 | 18849
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3–4, whereas the melting event undermined the heat release of
compounds 1–2. It is worth noting that the solvation energy of
PB generated upon cycloreversion in toluene is negligible at the
experimental concentration (Fig. S33†). When the PB concen-
tration was increased by 2.5 fold, a broad endothermic peak was
observed with an integrated value of 3 J g−1, suggesting a minor
endothermic effect even at higher concentrations. The ther-
mogravimetric analysis (TGA) (Fig. S34†) and solution-state DSC
measurements of all compounds are shown in Fig. S35,† and
the NMR spectra of the restored PBs aer DSC are shown in Fig.
S36–S39.† The 1st-order kinetics of solution-state cycloreversion
for all compounds were observed by the analysis of their UV-vis
absorption changes (Fig. 3f, S40–S43†).

The markedly lower Tonset (below 40 °C) for cycloreversion of
DAs in toluene, compared to those in the solid state (Table 1),
suggests that solvation also lowers the activation energy for
thermal cycloreversion. This reduction is attributed to the loss
of intermolecular interactions in the crystalline state upon
solvation, which allows for a more facile cycloreversion of DA
species. Our DFT calculations also suggest that the stabilization
of the polarized transition state using solvents with high
dielectric constants further contributes to the acceleration of
the cycloreversion process in solutions (Fig. S44†, Tables S2–
S5†). Our measurement of the enthalpy of activation (DH‡) of
cycloreversion corroborates this nding (Table 2). The DH‡ and
half-life (t1/2) of DA's cycloreversion were characterized in both
solid and solution states using DSC and UV-vis spectroscopy.
Notably, solid-state DAs exhibit exceptionally long thermal t1/2
(ranging from days to 23 years), highlighting the potential for
stable energy storage for years even at elevated temperatures.
Remarkably, the t1/2 of DAs reduces to hours in toluene, making
solvent-assisted cycloreversion a viable option. Solvation-
catalyzed cycloreversion is more favorable for repeating MOST
energy storage and release cycles, compared to the reported
acid-catalyzed reversion method that requires the removal of
acid before the next cycle of photo-cycloaddition. Thus, the
solvation method is effective for maximizing and
accelerating energy release from low-melting PBs at tempera-
tures below 40 °C.

Table 1 summarizes the critical thermal parameters relevant
to the cycloreversion of DAs 1–4 in both solid and solvated
states. It also lists the metrics of a styrylpyrylium and an
anthracene derivative that has exhibited the largest energy
storage among cycloaddition-based solid-state MOST systems
reported so far. Compounds 1–4 demonstrate substantial
Table 2 Eyring activation energy parameters and the extrapolated half-

DA / PB

Solid-state

DG‡ (kJ mol−1) DH‡ (kJ mol−1) DS‡ (kJ mol−1) t1/2 (da

1 117 121 0.013 306
2 115 116 0.004 135
3 125 131 0.021 8372
4 118 154 0.122 642

a DG‡, Gibbs free energy of activation; DH‡, enthalpy of activation; DS‡, en

18850 | Chem. Sci., 2024, 15, 18846–18854
DHstorage, both per molecule and per gram, comparable to those
of norbornadienes42,43 and phase-transition MOST compounds
based on azo(hetero)arenes.39–41 These values reach up to 146 kJ
mol−1 or 318 J g−1, signicantly surpassing those of styr-
ylpyryliums (max 42 kJ mol−1 or 51 J g−1) and anthracenes (max
102 kJ mol−1 or 195 J g−1). The PB-3/DA-3 pair therefore offers
the highest energy storage density among all reported solid-
state MOST systems utilizing intermolecular cycloadditions
(Table S6†).

The moderate electronic effect of functional groups on
energy storage can be investigated by comparing the DHstorage

values measured in the solvated-state (Table 1), which excludes
the impact of the solid-to-solid phase transition or melting on
the DSC measurements. Electron-withdrawing groups are
hypothesized to reduce the electron density of the C–N bonds
on a DA ring, destabilizing the metastable photodimer. This in
turn may increase the energy gap between PB and DA, resulting
in the largest DHstorage value of 133 kJ mol−1 for DA-2 with a p-F
functional group. On the other hand, electron-donating groups
such as a p-Me group of DA-4 may increase the electron density
of the DA ring via a modest inductive effect. The dimer is rela-
tively stabilized, which causes a smaller energy difference
between PB-4 and DA-4, leading to the lowest DHstorage value of
94 kJ mol−1 for DA-4.

Lastly, we performed a theoretical investigation, surveying the
role of dearomative cycloaddition in achieving substantial energy
storage densities. We rst analyzed the aromaticity change of each
ring in themolecular structure of PB before and aer cycloaddition
using nucleus-independent chemical shi (NICS)63 indices
(Fig. 4a). According to the chemical structure changes, a prom-
inent loss of aromaticity is expected for PB-1 upon its dimerization
(Fig. 4b). In contrast, the aromaticity changes in phenyl-3H-indole
upon cycloaddition would be insignicant, due to its non-aromatic
central ring (B) (Fig. 4c). The dimerization of phenylbenzofuran
would yield an aromaticity loss similarly to phenylbenzoxazole
(Fig. 4d). These predictions are supported by the calculated NICS
values; while the aromaticity of the outer two rings (A and C)
remains nearly intact aer dimerization, themost notable changes
in aromaticity are found in the central ring B for PB-1 and phe-
nylbenzofuran (Fig. 4e). The dearomative cycloaddition of PB-1 can
rationalize the larger energy difference between PB and DA (DHcalc

of 104 kJmol−1) compared to aDHcalc of 25 kJmol−1 for phenyl-3H-
indole that does not undergo dearomatization. Despite the
signicant dearomatization of phenylbenzofuran, its DHcalc is also
small, which is attributed to the formation of a cyclobutane ring
lives at 298 K of DAs 1–4a

Solvated-state

ys) DG‡ (kJ mol−1) DH‡ (kJ mol−1) DS‡ (kJ mol−1) t1/2 (hours)

100 85 −0.049 8.8
97 63 −0.114 3.4
98 74 −0.081 5.3
97 69 −0.093 3.1

tropy of activation; t1/2, extrapolated half-life of DA at 298 K.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Schematic illustration of NICS calculations, with NICS(0) calculated at the center of each ring and NICS(1) calculated at 1.0 Å above the
plane of the ring. Reversible [2 + 2] dimerization of (b) phenylbenzoxazole, (c) phenyl-3H-indole, and (d) phenylbenzofuran. The aromatic vs.
non-aromatic characters of the highlighted rings are labeled. (e) A table summarizing the calculated NICS(0) and NICS(1) values (HF/6-31G**
level of theory) and energy storage density (DHcalc) of each cycloaddition system (B3LYP-D3/6-31G** level of theory). The coordinates of all
optimized structures are included in Fig. S45, Tables S7–S12.†
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that is not as strained as diazetidine.44 Therefore, we conclude that
both dearomative cycloaddition and the formation of largely
strained cycloadducts are crucial design principles for reaching
signicant MOST energy storage over 300 J g−1.

Conclusions

In summary, we discovered the design principles of diazetidine-
based MOST systems that showcase exceptional energy storage
densities, surpassing 300 J g−1, far exceeding the reported values of
recently discovered styrylpyryliums or anthracenes. Our study
shows that these systems are well-suited for long-term energy
storage, with half-lives up to 23 years, while enabling solvent-
assisted energy release within hours at room temperature. The
incorporation of heteroatoms into cyclic rings and the use of
dearomative cycloaddition strategies were demonstrated to be
crucial in enhancing the system performance. These insights
provide a strong foundation for designing future photo-
cycloaddition MOST systems and offer practical guidance for
developing efficient, high-capacity energy storage solutions.
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