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3D Voronoi scaffolds are widely applied in the field of additive manufacturing as they are known for their

light weight structural resilience and share many topological similarities to various natural (bone, tumours,

lymph node) and synthetic environments (foam, functionally gradient porous materials). Unfortunately, the

structural design features that promote these topological similarities (such as the number of vertices) are

often unpredictable and require the trial and error of varying design features to achieve the desired 3D

Voronoi structure. This article provides a toolkit, consisting of equations, based on over 12000 3D Voronoi

structures. These equations allow design features, such as the number of generating points (G), to be

efficiently and accurately predicted based on the desired structural parameters (within ±3G). Based on

these equations we are proposing, to the best of our knowledge, two new mathematical conjectures that

relate the number of vertices or edges, and the average edge length to G in Voronoi structures. These

equations have been validated for a wide range of parameter values and Voronoi network sizes. A design

code is provided allowing any of over 12000 structures to be selected, easily adjusted based on user

requirements, and 3D printed. Biomedical case studies relevant to T-cell culturing, bone scaffolds and

kidney tumours are presented to illustrate the design code.

1 Introduction

Voronoi diagrams or tessellations (2D) and structures or
networks (3D) are geometric arrangements that partition an
allocated space into cells based on the proximity of pre-
defined points. They have been widely studied and applied
since their introduction in Western literature by René
Descartes in 1644.1 Voronoi diagrams have been used to
locate cholera outbreaks,2 select rain gauge locations,3 find

galaxy clusters4 and model functionally gradient porous
materials.5 Voronoi structures have been used to model
foams,6,7 polycrystalline alumina,8 nanoporous
heterogeneous materials,9 epithelial tissues,10–12 tumours,13

lymph node microenvironments14,15 and bone
microenvironments.16–18 The emergence of additive
manufacturing has extended the application of Voronoi
tessellation from mere analysis to the generation of 3D
scaffolds, i.e., Voronoi structures with mesh wrapped around
the wireframes. Voronoi scaffolds have been 3D printed as
supports for hollow objects,19 interlocking architecture,20

optimal lightweight structures,21–23 patient specific bone
scaffolds,24,25 for surgical practice,26 for patient education of
upcoming procedures,27 regenerative medicine and wound
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Design, System, Application

3D Voronoi structures are topologically and geometrically similar to a wide range of biological and engineering structures. These include bone, tissue,
tumours, ceramics, and foams. Voronoi structures can be 3D printed to characterise them and test how guest confinement affects systems behaviour, such
as the strength of a patient's bone or intracellular interactions. Voronoi structures can also be used to decrease the cost of printing solid objects. Instead of
printing a solid plastic object, its shell could be printed with a Voronoi pattern housed inside to decrease ink use. However, Voronoi structures are
currently constructed by defining the central points of each Voronoi cell, rather than the final nodes and edges that make up the structure. This is
inefficient and complicates building highly specific 3D Voronoi structures. This article lists four equations that accurately predict the number of central
points required to build a specific Voronoi structure based on the desired number of nodes, edges, average edge length and Euler's characteristic. We
propose two mathematical conjectures that we found to apply to any of the shown Voronoi structures and might be general. This means highly specific 3D
Voronoi structures can now be designed within seconds.
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healing techniques,28 implantable drug delivery29 and T-cell
culturing environments.14

The wide application of 3D Voronoi structures in the
biomedical, architectural and design fields stems from their
light-weight abilities, customizable properties and the
topological similarities they share with the various
environments listed above. Voronoi structures are highly
cost-effective in 3D printing as they require less material
when compared to regular lattice structures while supporting
equivalent weight loads.22 Their customizable pore diameters
and variable porosities also make 3D Voronoi structures
highly appealing porous structures for modelling various
materials and environments.25 The topological similarities
may be defined in terms of structural parameters, such as
the number of vertices (V), edges (E) or average edge length
(ε). Unfortunately, these structural parameters have hitherto
been unpredictable when designing a 3D Voronoi structure,
thus requiring multiple iterations of differing design
features, such as the number of generating points (G), to
achieve a desired structural parameter (Fig. 1). Therefore,
there is a need for data and equations relating the design
features to the structural parameters, to design Voronoi
structures more efficiently.

There have been various attempts to provide these data.
However, these were often considering 2D Voronoi
diagrams,30–32 single Voronoi cells,33 a small selection of
possible design features,34,35 a highly specific type of Voronoi
structure,36 or Voronoi scaffolds (which required a more
complex set of design features, such as the mesh
thickness).37

Here, we report correlations based on 12 000 cubic
Voronoi structures built from different arrangements of three
design features, by examining correlations with four different
structural parameters, namely V, E, ε, and Euler's
characteristic (χ). For each structural parameter, a correlation
is derived from the analysis of these 12 000 Voronoi
structures that will allow future Voronoi design features (e.g.,
G) to be accurately predicted from the desired structural
parameter (e.g., E or ε). Section 5 presents three biomedical

case studies to demonstrate the broad applications and
accuracy of these equations.

Fig. 1 summarises the objectives. Table 1 lists the
nomenclature used throughout this paper.

2 Design methods

Voronoi diagrams are designed by populating a defined space
(such as a square or cube) with a certain number of points
(G). Lines are then drawn equidistant to adjacent points
resulting in a collection of Voronoi cells (Fig. 2).

There are three common Voronoi design features: G, the
orientation of those generating points in space (its Pose), and
Lloyd iterations (λ).38 Lloyd iterations (named for its designer,
Stuart P. Lloyd), iteratively average the area (volume) of each
Voronoi cell within the 2D diagram (3D structure) and re-
position the Voronoi generating points to the centroid of
each cell.39 The Voronoi structure is then re-designed around
the new generating points. Throughout a number of these
iterations, a centroidal Voronoi tessellation (CVT) is achieved
where no further iterations will shift the generating points
(Fig. 3). As CVTs differ in various structural parameters when
compared to non-CVTs (such as in stress-weight
capabilities23), a range of 3D Voronoi structures with λ = 0–40
were designed.

Euler's characteristic (χ) was first presented by Leonhard
Euler in 1758 where he noted common topological
relationships between different 2D and 3D geometries.40 He
presented this relationship for polyhedra in the form of eqn
(1), where χ = 2:

χ = V − E + F (1)

Different geometric types result in unique topological
relationships (unique χ), including one for 3D polyhedra that

Fig. 1 A graphical description of the purpose of this research: to find
connections between the Voronoi design features and resulting
structural parameters to efficiently forward engineer Voronoi
structures. Average edge length and number of generating points are
abbreviated to ε and G, respectively.

Table 1 Nomenclature used throughout the text and in the equations

Abbreviation Nomenclature

CVT Centroidal Voronoi tessellation
λ Lloyd iterations
G Number of generating points
V Number of vertices
E Number of edges
F Number of faces
ε Average edge length
χ Euler's characteristic
L Length of the cubic design space

Fig. 2 A 2D plane and 3D cube (left of the arrows) populated with 12
points. Those points are then used as the generating points to design a
2D Voronoi diagram and 3D Voronoi structure (right of the arrows).
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contains a large aggregate of cells, such as a 3D Voronoi
structure.41 This relationship is:

1 = V − E + F − Cells (2)

where the number of “cells” would be the number of Voronoi
generating points, resulting in:

χ = 1 + G (3)

for a 3D Voronoi structure.

3 Computational methods

The Voronoi structures are designed in the visual programming
language Grasshopper, within the Rhinoceros 3D™ software42

(for further information on Grasshopper, see the supplementary
information, Section S3). For this study, the Voronoi boundary
cube, within which the 3D Voronoi structures are designed, is
set at L = 100 cm. This boundary cube may be scaled up or
down, depending on the intended application.

To facilitate the Lloyd iterations, the loop component
within the Grasshopper Anemone package is applied to
iterate over the Voronoi cells' volumetric centres (Fig. 4).

The four different structural parameters (V, E, ε, and χ) are
calculated for each Voronoi structure. All parameters are
determined using standardised Rhino components after all
duplicate lines and points are removed, as shown in Fig. 5.
The Poses were generated through a random number
generation algorithm within Rhino.

This design code is then written into the Python plugin
within Grasshopper and parallelized to increase the efficiency
two–three fold.14 Using this code, thousands of Voronoi
structures are generated in under a few hours. This open-
access design code is provided in the supplementary
information and allows any of over 12 000 structures to be

downloaded as a 3D printable STL file. The code is fully
adaptable to create 3D Voronoi structures of different shapes
and sizes.

For this research, two sets of 3D cubic Voronoi
structures are designed and examined to observe both the
depth and breadth of different Voronoi patterns. Set A
contains structures designed from G = 5–18, 20 Poses, and
λ = 40 resulting in 11 200 structures. Set A covers structures
with V = 25–90 and E = 50–170. However, as previous
research into 3D Voronoi applications required more
complex structures, a further 1250 structures are designed
from G = 30–300, covering structures with V = 180–1600

Fig. 3 A collection of 2D Voronoi diagrams (top row) and 3D Voronoi
structures (bottom row) after 0, 2, 10 and 40 Lloyd iterations. Both
reach a centroidal Voronoi tessellation after 10–40 iterations. The 3D
Voronoi structures are all Pose 5 and have an Euler's characteristic of
13. The first structure has 60 vertices, 116 edges and an average edge
length of 32.74 units while the final three structures have 58 vertices,
112 edges and average edge lengths of 33.26, 33.12, and 33.11 units,
respectively.

Fig. 4 The Grasshopper code to design the 3D Voronoi structures and
loop through the Lloyd iterations. The “cluster” component holds all
the components required to build the initial L = 100 cm cube used as
the Voronoi design space. The “Pop 3D” component then populates
the boundary box with the defined number of points (set by the
“generating points” number slider). The “Pose” slider indicates the
saved orientation of those points in space. The “Voronoi3” component
then generates the 3D Voronoi structure. The boundary representation
(Brep) is then deconstructed with the “DeBrep” component before the
“Avr” (average) operation is applied to locate each Voronoi cell
centroid for examination. These centroids are then looped through the
“loop end” back to the “loop start” component and set as the new
generating points for the Voronoi structure. This continues for the
number of iterations set in the “Lloyd iterations” slider.

Fig. 5 The Grasshopper code that calculates and provides the
structural parameters for the 3D Voronoi structures. These parameters
are the number of vertices, V; number of edges, E; average edge
length, ε; and Euler's characteristic, χ. The “cluster” component holds
all the components required to build the 3D Voronoi structure. The
“DeBrep” (deconstruct Brep) and “Box Prop” (box properties) allow for
each face within the Voronoi structure to be counted. Any duplicate
points are removed through the “dupPt” (duplicate points) component
and the number of faces is obtained through the “Lng” component
(list length). This is introduced into Euler's equation (V − E + F = χ)
along with the number of vertices and edges obtained through the
“Wires” (wireframe) and “L-Net” (network from lines) components after
removing any duplicate points (“dupPt”) and lines (“dupLn”). The
average edge length is obtained from the “Avr” component, after
converting the edge lengths from strings to numbers through “Num”

component.
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and E = 400–3200 (set B).16 As the structural parameters
observed in set A are negligibly affected by differing Poses
and reached a CVT after λ = 10–25, only 5 Poses and λ = 25
are used in set B. All final results provided in section 4 are
a combination of all 12 000 structures produced including
all Poses and Lloyd iterations.

4 Voronoi equations

Over 12 000 different Voronoi structures are designed ranging
from G = 5–300. The correlations between the different
design features of these structures (G, Poses and λ) and the
various structural parameters (V, E, ε, and χ) are then
examined. From these data, equations predicting G based on
V, E, ε, and χ are extracted. Correlations between χ and design
space size are also examined as a function of V, E, and ε.

The graphs that describe the correlations between a
structural parameter and G include a combination of Voronoi
structures that undergo no Lloyd iterations (λ = 0) to those
that have 25–40. Separate graphs comparing the structural
parameters of Voronoi structures that only undergo 0–5
iterations and graphs that only examine CVTs are also
produced. However, these graphs are highly similar to those
that examine all the Voronoi structures with all the equations
correctly predicting G within ±3. Therefore, the graphs below
include all Voronoi structures, regardless of λ.

As the Pose of the points is randomly assigned, there is no
direct correlation between the Pose and any of the
parameters listed above. Therefore, the following sections
only discuss the relationships between the structural
parameters, G and λ. All data pertaining to Poses is in the
supplementary information.

4.1 Vertices and edges

As shown in Fig. 6, V and E are directly proportional G (R2 =
0.99).

Performing a linear regression on these data above
produces the following correlations both of which accurately
predict G within ±1:

G = (V + 8.53)/5.45 (4)

G = (E + 21.10)/10.89 (5)

Graphs showing how V and E evolve as a function of λ are
also examined. The final Voronoi structures (the one with the
highest λ) have a lower V and E than the original Voronoi
structure (λ = 0) in 172 of the 280 Poses (61%) generated from
G = 5–18 (Fig. 7a and b). This is even more prominently
observed in the structures designed with G = 30–300, where
49 of the 50 Poses (98%) have a lower V and E in the final
Voronoi structure when compared to the first (Fig. 7c and d).
This confirms that the Lloyd iterations are producing a CVT,
which decreases the overall number of Voronoi cells in a
structure, resulting in smaller V and E (Fig. 3). As V and E are
directly proportional to each other (eqn (4) and (5)), only
graphs pertaining to V are provided in Fig. 7.

For Voronoi structures with the same G and Pose, if a
vertex is removed or added during a Lloyd iteration, this
results in a corresponding removal or addition of two edges.
This is expected, as Voronoi vertices are connected to four
other vertices, except for the corner vertices. Therefore, the
removal of one vertex leaves four vertices unconnected. The
removal of two edges then allows the four vertices to be
reconnected to each other with the remaining two edges.
Corner vertices are only connected to three other vertices. If a
corner vertex is removed, one of those two unconnected
vertices now becomes a corner (only needing the remaining 3
edges). Therefore, two edges are still required to be removed
to result in a fully connected Voronoi structure.

Out of the 11 200 structures designed from G = 5–18, only
six (0.054%) deviate from this trend. Upon closer inspection,
these six structures contain edges shorter than 0.015 cm,
which results in a missing face or a duplicate vertex within
the structure. Therefore, more or less than two edges are
required to change if a vertex connected to that small edge is
added or removed. However, there were 10 other structures

Fig. 6 The average number of vertices, V (a) and edges, E (b) for
Voronoi structures designed from 5–300 generating points (G). Each
data point is an average of 125–800 Voronoi structures.

Fig. 7 The average number of vertices (V) for each Lloyd iteration (λ)
for Voronoi structures designed from 5 (a), 18 (b), 60 (c) and 300 (d)
generating points (G). A selection of five configurations of the
generating points (Poses) have been chosen for each G. This
demonstrates the variety of different shifts within V due to the λ.
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with edges shorter than 0.015 cm that were consistent with
the trend. Therefore, there may be additional characteristics
that determine which edges result in missing faces or
duplicate vertices.

As the Voronoi structures become more complex
(structures generated from G = 30–300), a higher fraction of
structures deviates from having the removal or addition of a
vertex correspond to the removal or addition of precisely two
edges during a Lloyd iteration (97 out of 1250 structures or
7.8%). All of these structures have edges shorter than 0.015
cm, which appear to show a physical limitation within Rhino
as the edge lengths drop below 0.015 cm. However, due to
the size and complexity of the structures designed from G =
30–300, it is challenging to confirm exactly which edge is
causing the missing face or duplicate vertex. Nevertheless,
167 other structures, containing edges shorter than 0.015 cm,
did follow the trend.

Theoretically, if G remains constant, the size of the cubic
design space has no effect on V and E, as the design space is
simply scaled up or down. However, to provide robust
confirmation that eqn (4) and (5) can be applied to any cubic
design space, over 4000 new Voronoi structures are designed
(from G = 5–300) in different cube sizes (ranging from L =
10–150 units). All these structures have the same V and E as
their respective Voronoi structures designed in the L = 100
cm design space. This confirms that both eqn (4) and (5) can
be applied to any cubic Voronoi structure.

4.2 Average edge length

A power law relationship (R2 = 0.99) is observed between G
and ε (Fig. 8):

G = (ε/101.41)(−1/0.45) (6)

When tested, this equation accurately predicts G within 0–
10, with an average deviation of ±3.

Unlike V and E, ε depends on the size of the cubic design
space the Voronoi structure is built in. For G to be
dimensionless the denominator, 101.41, needs to be in the
same units as ε. As the cube is designed from L = 100 cm
(very close to 101.41), this provides additional confirmation

to the accuracy of this equation. Therefore, it is proposed to
simplify this to:

G = (ε/L)(−1/0.45) (7)

where L is the length of the cubic design space. This equation
accurately predicts G within 0–11 (average deviation ±3).
Although the deviation is slightly higher than for eqn (6), this
equation proves highly accurate for changing box sizes, as
discussed below.

Over 4000 structures designed in different cube sizes (L =
10–150 units) conform to eqn (7). The deviation is 0–5
(average ±2) between the calculated and known value of G.
This is an even higher level of accuracy compared to eqn (7)'s
prediction for the original set of Voronoi structures.

Data correlating ε and λ are also examined. The Voronoi
structures designed from G = 5–60 show no further
fluctuations in ε after λ = 15–20, indicating a CVT is reached.
However, those designed from G = 90–300 continue to show
slight fluctuations in ε even after λ = 25.

4.3 Euler's characteristic

There is a linear relationship (R2 = 1) between G and χ (Fig. 9).
Performing a linear regression on the data above produces

eqn (3). This demonstrates that the Voronoi structures
designed, accurately follow Euler's eqn (3) for 3D polyhedra.
The only structures that deviate from eqn (3), are mostly the
same ones mentioned in section 4.1, which were missing a
face or contained a duplicate vertex. There are 13 additional
structures (designed from G = 210–300), where the addition
and removal of a vertex corresponds to two edges but the
Euler values deviate from eqn (3). This appears to show that
multiple missing faces or duplicate vertices have occurred in
these structures which, together, still result in the addition
and removal of vertices corresponding to two edges but not
Euler's characteristic conforming to eqn (3).

Fig. 10a shows how the number of structures that deviate
from eqn (3) increases as the complexity of the structures
increases (fewer edges shorter than 0.015 cm). These
structures are also compared with λ (Fig. 10b). This shows
that 76% (78/103) of all these structures occur for λ < 15,

Fig. 8 The average, of the average edge lengths (ε) for Voronoi
structures designed from 5–300 generating points (G). Each data point
is an average of 125–800 Voronoi structures.

Fig. 9 Euler's characteristic (χ) for Voronoi structures designed from
5–300 generating points (G). Each data point is an average of 125–800
Voronoi structures.

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
ge

gu
žs

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
02

5-
10

-2
9 

11
:0

8:
52

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4me00036f


Mol. Syst. Des. Eng., 2024, 9, 912–919 | 917This journal is © The Royal Society of Chemistry and IChemE 2024

indicating that the closer the structure is to a CVT, the less
likely it is to have an edge shorter than 0.015 cm and deviate
from eqn (3). This also confirms that Lloyd iterations are
producing CVT that decrease the overall number of Voronoi
cells in a structure, reducing the occurrence of shorter edges.

4.4 Summary table

Table 2 contains the full toolkit of the equations presented in
this paper in order to design Voronoi structures purely off a
desired structural parameter.

5 Biomedical applications

Voronoi tessellation is widely used in the modelling of
biological structures.15,16 When applied to disease modelling,
Voronoi structures could enable in vitro experimentation, as
well as in silico simulation of complex microenvironments.
The equations presented in Table 2 provide a practical toolkit
allowing Voronoi structures to be efficiently built based on
the desired values for V, E, ε, and χ. These equations are then
tested in a collection of different biomedical case studies to
determine their accuracy and effectiveness.

Firstly, eqn (4) is tested in the design of a 3D T-cell
culturing structure, where the Voronoi structure is modelled
off the fibroblastic reticular cell (FRC) networks of the lymph
nodes.15 Previous research has shown that, based on FRC
networks in the T-cell zone of a mouse lymph node,
approximately 65 vertices fit inside a L = 100 μm cube for a
Voronoi structure design.43 Inserting this desired parameter
into eqn (4) produces G = 13 and 800 new structures are then

designed from these generating points to test how accurately
eqn (4) performed. Of the 800 structures, 95 have exactly 65
vertices and the other ones have between 61 and 68. To
compare this with structures designed from G = 12 and 14,
800 new structures are also generated from those generating
points. None of the structures generated from G = 12 or 14
have 65 vertices (Fig. 12). This demonstrates that eqn (4) has
correctly predicted the number of generating points required
to achieve the desired structural parameter of 65 vertices.

Secondly, eqn (5) is tested in the design for a 3D Voronoi
structure of a patient's trabecular bone, which may be used
to examine the structural fragility resulting from
osteoporosis.44 As Voronoi structures have been shown to
accurately model the bone microenvironment,16,24 a Voronoi
structure is designed to model a patient's trabecular bone
derived from E calculated in a segment of the patient's bone
microenvironment (1388 edges).44 However, a more detailed
model would require further parameters, such as anisotropy
and inhomogeneity, to increase accuracy. Inserting this value
into eqn (5), produces the estimated value of G = 129. To test
the accuracy of the predicted value, 100 Voronoi structures
are designed from 129 generating points. The 100 structures
have a range of E = 1342–1438 with an average of 1376 edges.
As with the T-cell culturing environment, structures with G
on either side of the predicted value (128, 130 and 131) are
also examined. The 50 structures designed from G = 128 have

Fig. 10 The number of Voronoi structures designed from a specific
number of generating points (G) that have an Euler characteristic, not
equal to 1 + G (a). These same structures are then ranked according to
the number of Lloyd iterations (λ) they have completed (b).

Table 2 A list of equations that predict the number of Voronoi
generating points (G) based on a specific structural parameter. The
respective ranges of the various structural parameters the equation has
been tested in, and the average deviation is also provided. The number of
vertices, edges, average edge length, the length of the Voronoi cubic
design space, and Euler's characteristic are represented as V, E, ε, L, and χ,
respectively

Equation Range tested Average deviation

(4) G = (V + 8.53)/5.45 V = 25–1700 ±1
(5) G = (E + 21.10)/10.89 E = 45–3400 ±1
(7) G = (ε/L)(−1/0.45) ε = 7–55 ±3
(3) G = χ − 1 χ = 6–301 ±0

Fig. 11 A visual representation of three different biomedical
applications of 3D Voronoi structures, where the Voronoi design
features (generating points – G) have been calculated purely off
desired structural parameters (number of vertices – V, edges – E and
average edge length – ε). The edge length of the cubic design space
has been abbreviated to L. The images of the 3D Voronoi structures
have been converted to scaffolds (had a mesh wrapped around them)
for illustration purposes. The environmental images displayed are from
the following papers, for the lymph nodes (a),43 bone (b)17,44 and
kidney tumour (c).13
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an average of 1363 edges, E = 1386 for those generated from
G = 130 and E = 1399 from G = 131 (Fig. 12). It is noted that
the structures generated from G = 130 have an average
number of edges closer to the desired value of 1388 than
those generated from 129 points. However, the prediction
from eqn (5) is still within the listed deviation of G ± 1
(Table 2).

Thirdly, eqn (7) is tested in the design of a 3D Voronoi
structure of a kidney cancer tumour, which can be used to
increase a patient's understanding of a complex ontological
surgical procedure or provide a surgical team with an in-
depth model of the impending operation.26,27 Saribudak
et al.13 designed a 2D Voronoi model from a kidney cancer
tumour with ε = 35.0 mm (measured using hematoxylin–
eosin staining).13 Although this parameter was for a 2D
Voronoi diagram, it is applied to a 3D Voronoi structure to
demonstrate the accuracy of eqn (7). For a complete and
accurate model of a kidney cancer tumour, a 3D histological
image of the cell–cell connections within the tumour would
need to be examined. The ε of 35.0 mm is set as the desired
structural parameter for a 3D Voronoi structure built in a L =
150 mm design space. These parameters are then inserted
into eqn (7) where the predicted result is G = 25. Therefore,
100 Voronoi structures are designed from 25 points and ε is
calculated to be 34.1 mm. Once again, 100 Voronoi structures
are also designed from G on either side of the predicted
range (23, 24 and 26). Those generated from 23 lead to ε =
35.5 mm; for those from G = 24, ε = 34.8 mm and for those
from G = 26, ε = 33.6 mm (Fig. 12). It is noted that the
structures generated from G = 23 and 24 have an ε closer to
the desired value of 35.0 mm than those generated from 25.
However, the prediction from eqn (7) is still within the listed
deviation of G ± 3 (Table 2).

These equations also provide a high level of efficiency in
predicting the required parameters to design 3D Voronoi
structures. In Rhino a single 3D Voronoi design code may
take 30 s to design each structure, including time for
changing parameters. Reducing the number of structures
required to achieve specific design parameters from dozens
or hundreds to two or three, results in computational times
being reduced from 30–50 min to 1–2 min.

These three case studies have been visually represented in
Fig. 11.

6 Conclusion

This research provides a toolkit of equations, based on over
12 000 3D Voronoi structures, that allows a 3D Voronoi
number of generating points (G) to be efficiently and
accurately predicted based on the desired structural
parameters (number of vertices – V, edges – E, average edge
length – ε, and Euler's characteristic – χ). With these
equations, we propose, to the best of our knowledge, two new
mathematical conjectures that relate the V, E, and ε to G in a
Voronoi contained in a cube. These equations have been
validated for a wide range of parameter values (V = 25–1700,
E = 45–3400, ε = 7–55 cm, and χ = 6–301) for different Voronoi
network sizes (L = 10–150 cm). They are shown to accurately
predict the number of generating points required to model a
lymph node based on the number of vertices, to model a
trabecular bone based on the number of edges, and to model
a kidney tumour based on the average edge length all within
G ± 3. The observed linear relationships between G and V (or
E) are robust across various Lloyd iterations.

In the future, structures could be generated under other
boundary conditions (e.g., beyond cubes) to examine the
broader applicability of these correlations. Nevertheless,
further mathematical analysis would be required to
examine whether the empirical relationships described in
this work are fundamental. Moreover, this toolkit may be
expanded to include equations that would predict design
features for Voronoi scaffolds (structures with a mesh
wrapped around them), such as porosity, surface area or
curvature. Although this paper has chosen to focus on
biomedical applications, these equations would hold the
same level of accuracy for modelling any of the
environments listed in the introduction. The 3D Voronoi
design code, written in the Grasshopper application within
Rhino 3D™,42 has been provided allowing any of the
thousands of structures to be selected, easily adjusted
based on user requirements, and 3D printed for the wide
variety of ever developing applications.

Data availability

Supplementary information for this article is available at
DOI: https://doi.org/10.17632/bvxrgng7y2.1.

Fig. 12 The accuracy of the presented equations to predict the
number of generating points (G) required to achieve a desired
structural parameter. Three different structural parameters are
examined: (a) the number of vertices – V, (b) the number of edges – E,
and (c) the average edge length – ε. The predicted G has been shown
in purple with the desired structural parameter demonstrated as a red
line (V = 65, E = 1388, and ε = 35 mm). The error bars demonstrate the
maximum and minimum structural parameter values obtained.
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