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Dissolved organic matter (DOM) is ubiquitous in aguatic environments and challenging to characterize due to its
heterogeneity. Optical measurements (ie., absorbance and fluorescence spectroscopy) are popular
characterization tools, because they are non-destructive, require small sample volumes, and are relatively
inexpensive and more accessible compared to other techniques (e.g., high resolution mass spectrometry).
To make inferences about DOM chemistry, optical surrogates have been derived from absorbance and
fluorescence spectra to describe differences in spectral shape (e.g., E2:E3 ratio, spectral slope, fluorescence
indices) or quantify carbon-normalized optical responses (e.g., specific absorbance (SUVA) or specific
fluorescence intensity (SFI)). The most common interpretations relate these optical surrogates to DOM
molecular weight or aromaticity. This critical review traces the genesis of each of these interpretations and,
to the extent possible, discusses additional lines of evidence that have been developed since their inception
using datasets comparing diverse DOM sources or strategic endmembers. This review draws several
conclusions. More caution is needed to avoid presenting surrogates as specific to either molecular weight or
aromaticity, as these physicochemical characteristics are often correlated or interdependent. Many

surrogates are proposed using narrow contexts, such as fractionation of a limited number of samples or
Received 1st April 2024

Accepted 26th June 2024 dependence on isolates. Further study is needed to determine if interpretations are generalizable to whole-

waters. Lastly, there is a broad opportunity to identify why endmembers with low abundance of aromatic
DOI: 10.1039/d4em00183d carbon (e.g., effluent organic matter, Antarctic lakes) often do not follow systematic trends with molecular

rsc.li/espi weight or aromaticity as observed in endmembers from terrestrial environments with higher plant inputs.

Environmental significance

Dissolved organic matter (DOM) is ubiquitous in aquatic environments and plays important roles in environmental biogeochemical processes and water
treatment operations. A common method to detect and characterize DOM is through readily accessible optical measurements. This critical review discusses the
foundations and more recent insights into how optical measurements are used as surrogates for DOM chemistry.

composed primarily of carbon, nitrogen, oxygen, and hydrogen
(with small contributions from phosphorous and sulfur).*”

1 Introduction

Ubiquitous in aquatic environments, dissolved organic matter
(DOM) is a heterogeneous mixture of organic compounds
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DOM optical properties impact a multitude of processes in
natural and engineered systems. For example, in lakes and
rivers, DOM absorbs light, which decreases the light penetra-
tion in the water column and simultaneously produces tran-
sient oxidants.*® In engineered systems, DOM can both inhibit
treatment through light screening or enhance it through reac-
tive intermediate formation.”® Across contexts, DOM impacts
biogeochemical processes through the surface reactivity of
metal (nano)particles and other mineral surfaces.” By charac-
terizing either DOM quantity or quality, optical measurements
are indirect surrogates for DOM reactivity, such as biodegrad-
ability," contaminant sorption,"»** water treatment effi-
ciency,'" and disinfection byproduct formation."” Given these
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multiple roles, a significant research effort aims to advance the
use of optical surrogates to characterize DOM physicochemical
properties and the impact of natural and engineered processes
on these properties.

Optical measurements (i.e., absorbance and fluorescence
spectroscopy) are among the most frequent and oldest tech-
niques to study DOM. Two chapters by Berzelius (1806) are
commonly attributed as first reports of DOM color,* and its
inquiry is as old as the debate over the color of water. Predating
the discovery of Raman scattering, Bancroft (1919)" outlines
the contemporary debates about color and the challenge of
reconciling observations of blue water bodies with yellow resi-
dues upon evaporation. Concomitantly in Saville (1917),"® the
drinking water industry was discussing the implications of
color on water treatment. To the best of our knowledge, the first
recognition of fluorescent DOM was Dienert (1908)," who
observed DOM fluorescence as a source of error during a fluo-
rescein tracer study prior to deliberately investigating different
source waters in a 1910 study.*

Ilustrated in Fig. 1c and d, current DOM research using
optical measurements leverages spectral parameters (e.g:,
specific ultraviolet absorbance (SUVA) and fluorescence index
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(FI)) to serve as surrogates for DOM physicochemical properties
like molecular weight (or size) and aromaticity. The number of
publications reporting optical surrogates has continued to grow
(Fig. 1a and b). The draw of optical measurements is their ease
of use compared to other methods. For most applications,
whole-water samples can be characterized directly with as little
as ~4 mL of sample. The limited sample volume and ease of
measurement permits high coverage across spatiotemporal
scales, whether in natural systems or engineering applications.
Recent studies have also taken advantage of the short analysis
time to characterize spectra across multiple chemical (e.g., pH,*
borohydride reduction,”* photooxidation®) or fractionated
sample (e.g, solid phase extraction®)
dimensions.

Despite their success and frequent use, optical surrogates
are often not paired with independent measures of molecular
weight and aromaticity, such as size exclusion chormatography
(SEC) or nuclear magnetic resonance (NMR), respectively. This
decision is understandable due to instrumental, sample, or cost
limitations, but it leads to applying generalized interpretations
in contexts different from the original studies in which physi-
cochemical relationships were proposed. As a result, trends
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Fig. 1 Overview of optical surrogates for characterizing dissolved organic matter (DOM). Annual number of publications referencing (A)
absorbance- or (B) fluorescence-based surrogates in the indexed abstract. Details about search terms are in ESI Text 1.1 Depictions of (C)

absorbance- and (D) fluorescence-based surrogates.
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observed in one context are applied to explain results in
another. Within DOM studies, changes in optical surrogates
have been leveraged to explain qualitative changes in physico-
chemical characteristics, such as its photochemical reactivity®®
or selective removal by coagulation.”” A quantitative example is
applying regression models developed in other studies to report
quantitative values for aromaticity and molecular weight in
a new data set using only absorbance measurements.*® More
broadly, interpretations derived from DOM samples in natural
systems have been applied to different contexts without inde-
pendent verification. Examples include treatment of highly
specific feedstocks or anthropogenic waste streams**?*° and
production of microplastic-derived organic matter.>** The lack
of independent measures of DOM molecular weight and
aromaticity in diverse contexts creates considerable uncertainty
about interpretations derived from optical measurements,
limiting progress in the field.

This critical review examines the foundation for optical
surrogates commonly used to assess DOM molecular weight
and aromaticity. For each surrogate, we review and scrutinize
(1) the earliest known studies defining the surrogate and
subsequent variations in definition that may be points of
ambiguity in current literature, (2) the earliest known studies
relating optical surrogates to aromaticity and/or molecular
weight, (3) the experimental context for original studies (e.g.,
soil vs. water) that may constrain current interpretations, and
(4) the continued inquiry into direct lines of independent
evidence (e.g., NMR, membrane fractionation, SEC, etc.) for
each surrogate. Although we focus the scope of this review on
aquatic environments, many surrogates originated from soil
science. We expect that this information will be useful to
scientists and engineers studying DOM in aquatic systems and
may serve as a framework for other environments, such as
atmospheric aerosols.**?**

With respect to reviewing more recent, continued inquiry
into optical surrogates, we focus on studies that (1) included
a diverse range of source materials, (2) contrasted allochtho-
nous and autochthonous endmembers, and (3) chemically
characterized samples by multiple methods. Five papers are
a consistent thread throughout the article due to data avail-
ability and breadth of organic matter sources.

First, Kellerman et al. (2018)** presents optical surrogates
paired with Fourier-transform ion cyclotron resonance mass
spectrometry (FT-ICR MS) data from 37 isolates collected from
diverse aquatic environments, representing arguably one of the
strongest available datasets for this inquiry. Their samples were
collected from aquatic systems and isolated using either reverse
osmosis (RO) or XAD resin to produce natural organic matter
(NOM), hydrophobic organic acid (HPOA), and fulvic acid (FA)
fractions. Compared to the scope of this review article, all the
optical surrogates discussed were published in the original
paper with one exception. The original paper did not publish
peak intensities or full excitation-emission matrices (EEMs). A
fluorescence intensity was estimated by reconstructing inten-
sities from decomposed parallel factor analysis (PARAFAC)
components (ESI Text 41). The measure of aromatic carbon in
this paper was the relative abundance of formulae classified as

This journal is © The Royal Society of Chemistry 2024
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condensed or polycyclic aromatic formulae as described in
Section 2.3.2.

Two papers by Maizel and Remucal also characterized
aromatic carbon using FT-ICR MS. Maizel and Remucal (2017)%*
compared two endmember isolates, Suwannee River fulvic acid
(SRFA) with Pony Lake fulvic acid (PLFA), and provided insight
into molecular weight trends using ultrafiltration (UF) size
fractionation. Another paper, Maizel and Remucal (2017),%
collected samples from seven different lakes in northern Wis-
consin of diverse trophic status. Both papers interpreted FT-ICR
MS data by calculating the double bond equivalents (DBE).**

The fourth paper is McKay et al. (2018)* presenting optical
surrogates from both aquatic and soil isolates, predominantly
from the International Humic Substances Society (IHSS). These
samples were paired with aromaticity data (**C NMR) from
other primary sources.**** The last study, Mostafa et al. (2014),*
used UF to contrast two endmember samples: Suwannee River
natural organic matter (SRNOM) and a secondary treated,
wastewater effluent (EfOM).

Although measures of aromatic carbon derived from '*C
NMR and FT-ICR MS are not directly comparable, both have
become widely used methods to examine relationships between
optical surrogates and aromatic carbon across diverse sources.
Readers are referred to original sources for more details about
study-specific instrumentation and methods. Lastly, many
studies use IHSS isolates, and these materials have been iso-
lated in different batches, each with a unique reference
number. Readers are referred to original sources to determine if
isolates presented across studies originated from the same
batch.

Across the figures which synthesize data from multiple
studies, several conventions are applied. In figures where
correlations are calculated for literature data, the Spearman
rank correlation coefficient (ps) and associated p value (ps) are
presented. This approach does not assume linearity between
variables. If the original paper fit a non-linear model, these
models are shown with the annotated equation (e.g:, Fig. 4b).
Least-squares linear regressions are shown selectively to high-
light trends within a dataset. Regressions are not shown if rank
correlations were not statistically significant (e.g., Fig. 4c, PLFA),
or if generalized regressions would be suspect due to data
clustering (e.g., Fig. 4c, Lakes). To include data from three
literature sources,**?*>* some surrogates were not calculated in
the original study and were later calculated from spectra in the
Korak and McKay (2024)* meta-analysis; the original study that
generated the data is attributed in the text and figures. Lastly,
the conventional “et al.” is intentionally not printed in figure
annotations due to space constraints; reference numbers are
noted in the captions.

This review has three main Sections (2-4) followed by
conclusions. Section 2 (background) presents some of the
fundamental principles of absorbance and fluorescence spec-
troscopy, because some surrogates directly stem from these
equations. Sections 3 and 4 cover absorbance and fluorescence
surrogates, respectively. Within these sections, subsections
focus on individual optical surrogates, detailing their genesis
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and exploring continued inquiry. These sections could be read
in any order according to reader interest.

2 Background

In this section, terminology follows recommendations by the
International Union of Pure and Applied Chemistry (IUPAC)*®
unless otherwise specified. Generally, fundamental equations
are presented for single compounds. DOM is a heterogeneous
mixture, and the terms DOM and dissolved organic carbon
(DOC) are often used interchangeably; distinctions are made
when the context is specific to DOC concentration ([DOC])
measured on a carbon basis. Since not all DOM is optically
active, compositional surrogates would be interpreted as
“apparent” values for the mixture.

2.1 Absorbance

Absorbance is the process by which a molecule absorbs light
energy (i.e., photons). The energy required to promote an elec-
tron is determined by the energy difference between the ground
and excited states, which is a function of the type of molecular
orbital involved in the transition (n vs. 7) and the presence of
electron delocalization or conjugation.*”** In DOM, absorbance
in the ultraviolet-visible wavelength range (200-700 nm)
primarily promotes 7 bond electrons associated with aromatic
chromophores.* The conjugation of the aromatic ring can be
extended through the addition of electron withdrawing groups,
like carbonyls, or electron donating groups, like hydroxy and
alkoxy groups. Extended conjugation increases the absorbance
maximum wavelength (lower energy transition) relative to
benzene (Fig. 2a). Furthermore, extending the conjugation via
fusion of two benzene rings, as in naphthalene, also results in
lower energy transitions.”* The promotion of electrons associ-
ated with double bonds at 254 nm is why higher carbon-
normalized absorbance is associated with higher aromaticity
(Fig. 2b).*° In the visible wavelength range, chromophore
identity is less clear but could originate from highly conjugated
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interactions between aromatic
49,52,53

aromatics, charge-transfer
moieties, or a combination of these two.

Quantitatively, absorbance is defined as the ratio of incident
(PY) to radiant (P,(¢)) spectral power at a specific wavelength (1)
(eqn (1)). The Bouguer-Beer-Lambert law relates absorbance to
concentration (¢) and pathlength (¢) using a proportionality
constant (¢ or k). Depending on the logarithm convention,
calculations using a base 10 logarithm pairs the terms absor-
bance (A(1)) and molar decadic absorption coefficient (e)
following eqn (1). Calculations using the natural logarithm pair
the terms Napierian absorbance (4.(4)) and molar Napierian
absorption coefficient (k) following eqn (2). Formal derivations
are summarized elsewhere.**** The molar absorption coeffi-
cients k and ¢ are related through eqn (3).

A(2) = log,y Pg

PO =ecl (1)

P _
A.(A) =In Pl kel (2)
k =2.303¢ (3)

Differentiating these conventions is important for calcu-
lating DOM optical surrogates.®® For example, decadic absor-
bance (A(1)) is commonly used to calculate SUVA, whereas
spectral slope calculations fit regressions to linear Napierian
absorption coefficients (e« = kc). Note, the DOM community
commonly uses the acronym a for the linear Napierian
absorption coefficient,”” which is inconsistent with current
IUPAC conventions.*® Decadic absorption coefficients (¢) are
commonly reported for freshwaters, whereas the marine
community typically reports Napierian absorption coefficients.

DOM is generally assumed to follow the Bouguer-Beer-
Lambert law across environmentally relevant concentra-
tions.*** For dilution series, non-zero intercepts indicate the
contribution of non-chromophoric carbon. The effects of the
cuvette or solvent are eliminated by pairing measurements with
a reference cell through either a double beam configuration or
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Fig.2 (A) Molar extinction (e, M~* cm™?) spectra for model aromatic chromophores demonstrating the impacts of electron withdrawing groups
(benzaldehyde, —CHO), donating groups (vanillin; —OH, —OCH3), and extended 7 conjugation on the energy of electronic transitions. The inset
shows the spectrum of benzene. (B) Molar extinction spectra (e, Mc ™t cm™) for DOM isolates from diverse sources with wide variations in
aromaticity and specific ultraviolet absorbance at 254 nm (SUVA,s4). Spectra are from McKay et al. (2018)%*° and paired with 3C NMR data from
other sources.*®*° Samples include Pahokee Peat Fulvic Acid (PPFA), Mississippi River Natural Organic Matter (MRNOM), and Pacific Ocean Fulvic
Acid (POFA).
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subtracting a blank spectrum. To measure absorbance at
ultraviolet wavelengths, a cuvette material with high trans-
mittance (e.g., quartz) is necessary.

The Bouguer-Beer-Lambert law only describes absorbance -
not attenuance due to light scattering by suspended particles.
Although also measured on a spectrophotometer, attenuance is
a function of both absorbance and light scattering. Isolating the
absorbance phenomenon requires sample filtration. For
absorbance measurements alone (not fluorescence), regulatory
methods (e.g., Standard Method 5310 or USEPA 415.3)*** often
define the dissolved fraction as <0.45 pm using a range of
organic-based materials (e.g., nylon, polyethersulfone). These
filters have low potential to adsorb DOM or leach material that
interferes at 254 nm after sufficient rinsing.®* Across the
research community, selection of filter material and nominal
pore size (e.g., 0.2-0.7 um) is highly variable. This distinction
between absorbance and attenuance is particularly important
for online sensor data.

2.2 Fluorescence

Generated by light absorbance, singlet excited states can return
to the ground state (called S,) through several different path-
ways, one of which is fluorescence. Initially, excited molecules
undergo relaxation to the lowest vibrational level of the first
singlet excited state (called S,),** and fluorescence occurs from
this state when the excited molecule emits a photon with an
energy (o wavelength™') corresponding to the energy gap
between S; and S,. Fluorescence always occurs at emission
wavelengths longer than the excitation/absorbance wavelength
due to the energy lost during relaxation of the singlet excited
state via vibrations and solvent reorientation, which is called
the Stokes Shift.>*** In addition to fluorescence, relaxation from
S; to Sp can occur through non-radiative pathways such as
internal conversion (IC) and intersystem crossing (ISC) to
a triplet state (e.g., T,). From the triplet state, relaxation can
occur through radiative (i.e., phosphorescence) or non-radiative
IC processes. The fluorescence quantum yield (&) is the ratio of
the fluorescence rate constant (k) relative to the sum of the rate
constants for radiative and nonradiative (k,,) decay pathways

(ean (4).
ke

(Df - kf + knr (4)

An analogous quantum yield can be defined for relating ISC
to a triplet state to other pathways.*** For DOM, fluorescence
quantum yields*****” are typically ~1%, and ISC quantum
yields®® are ~5%, suggesting that most photons absorbed by
DOM are lost through non-fluorescence pathways. Although
DOM fluorescence studies have taken advantage of both time-
resolved and steady-state methods,”*”> we focus here on
steady-state methods used to calculate optical surrogates.

Benchtop spectrofluorometers use narrow slits to focus
semi-monochromatic light on a narrow cross section of the
cuvette. Emitted light is measured from a small interrogation
zone perpendicular to the incident light (Fig. 3). Following

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Schematic of the cross-section (top view) of a square cuvette
with annotated dimensions used in fundamental equation derivations.

derivations published elsewhere,””* fluorescence intensity
(I is proportional to @; and the power of light absorbed
(P;(1) — P;(xy)) across the interrogation zone (eqn (5)). Applying
the Bouguer-Beer-Lambert law across the interrogation zone, I;
is not proportional to concentration. Note, this source of non-

linearity is different from inner filter effects (vide infra).

L, = ®(Py(x1) — Py(x2)) = PePi(xi)(1 — e *2) (5)

However, in practice, a linear relationship between I; and c is
commonly observed and is an underlying assumption for many
intrinsic fluorescence surrogates (e.g., ratio of fluorescence
intensities or [DOCJ-normalized fluorescence intensity).”””” A
linear relationship between fluorescence intensity and concen-
tration is supported mathematically by applying a power series
expansion (eqn (6)) and assuming absorbance across the
interrogation zone (Ax) is small. This approximation simplifies
eqn (5) to (7). In practice, regressions between [DOC] and fluo-
rescence intensity often have a non-zero intercept due to non-
fluorescent DOM.”>7¢

keAx  (keAx)®  (keAx)®  (keAx)?

—KCAX
e TR R TR R

KCAX

I)‘:¢fp)\(x1)<lf (17 0

)) = @ P;(x))kcAx  (7)

The practical application of eqn (7) requires fluorescence
measurements that are free of instrumental or other optical
artifacts. Like absorbance, filtration prevents light attenuation
due to suspended particles. For fluorescence, glass fiber filters
(GF/F) are commonly used with a nominal pore size 0.7 pum.
Although GF/F filters have a lower potential to leach fluorescent
material, they still need to be muffled and thoroughly rinsed to
remove any binding material.”® Notably, the common choice of
GF/F filters for fluorescence conflicts with the 0.45 um cut-off
specified in USEPA method 415.3 for absorbance.®® Within the
DOM field, Murphy et al. (2010)7 outlines the broadly accepted
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fluorescence correction procedures.*® These corrections include
instrument-specific correction factors, blank subtraction,
scatter masking, intensity normalization, and inner (filter
corrections. Software packages that perform these corrections
are available in MATLAB,*** R,** and proprietary software (e.g.,
Horiba's Aqualog). Instrument-specific correction factors are
unique to each spectrofluorometer and are often provided by
manufacturers to account for wavelength-specific efficiencies of
light transmission.®*®* Blank subtraction, like absorbance
reference cells, isolates the sample fluorescence independent of
the solvent and cuvette. Blank subtraction is partially effective
to remove Rayleigh and Raman scattering, but most analyses
excise and interpolate scatter.*®***>%¢ Finally, signal normali-
zation scales the intensities by either the integrated area of the
Raman peak for deionized water (Raman Units; RU) or the
emission from a model fluorophore like quinine sulfate
(Quinine Sulfate Units; QSU).5”*®

Inner filter corrections account for light absorbance to and
from the interrogation zone (Fig. 3). Primary inner filtering is
the loss of light between the incident cuvette edge and the
interrogation zone. Secondary inner filtering is the loss of
emitted light between the interrogation zone and the cuvette
edge perpendicular to the incident light. Inner filter corrections
apply broadly across fluorescence spectroscopy, and several
studies have proposed or derived correction procedures over the
past 60 years using absorbance-based approaches,>**
controlled dilution approaches,”® and cell shift methods.?*>*”
The latter two approaches are less common in the DOM
community; readers are referred to the cited references for more
details. The absorbance-based approach is the most common
correction following eqn (8). The correction factor is a function
of the sum of (decadic) absorbance values at the excitation
(A(%ex)) and emission wavelengths (4(Aem)), assuming the same
pathlength for fluorescence and absorbance spectroscopy. If
absorbance and fluorescence measurements use different
pathlengths, absorbance must be normalized to the fluores-
cence pathlength before applying eqn (8). Kothawala et al
(2013) reported that eqn (8) performed sufficiently up to an
absorbance sum of 1.5.>°

AQex) +A(%em)
I)ucorr = I)‘ x 10 2 (8)

To illustrate the magnitude of corrections, consider
a scenario where A(1,) is 0.1 and A(Zep,) is 0.05 making the
absorbance sum 0.15. The observed fluorescence intensity (I;)
would be corrected by multiplying it by a factor of 1.19. If
uncorrected, the observed fluorescence would be 19% too low
due to inner filtering (Fig. S1f). Some studies cite a DOC
concentration threshold to justify the need for inner filter
corrections (or lack thereof). This approach is strongly
discouraged, because inner filter effects are an absorbance-
based phenomenon. A DOC concentration criterium would
assume all DOM has the same absorbance per unit carbon.*

Although broadly used, the derivation of eqn (8) includes
some simplifying assumptions that may not be appropriate in
all cases. Similar to the linearization of eqn (5), inner filter
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corrections also use a power-series expansion (eqn (6)), which
assumes the quantity kcAx is small, to linearize an exponential
term. The second assumption is that the interrogation zone is in
the middle of cuvette (pathlength = ¢/2). The application of
eqn (8) on benchtop spectrofluorometers is generally appro-
priate. Kubista et al. (1994) showed that quantifying the inter-
rogation zone size is not important for most practical
applications, and the same empirical correction equation could
be used for bandpasses between 0.5 and 15 nm.”* However,
adaptation of benchtop methods to other applications, such as
field sensors, may need to reevaluate these assumptions. Full
derivations are provided elsewhere.**>%

Spectrofluorometers from many manufacturers have been
used by the DOM research community, including Aminco-
Bowman, PerkinElmer, Varian, and Horiba. Small but mean-
ingful differences in fluorescence spectra have been docu-
mented and would be expected between different
spectrofluorometers given differences in hardware.” Even
within Horiba instruments, substantive instrument bias has
been reported between the Aqualog and Fluoromax (e.g:, F3 and
F4), which, in part, results from differences between excitation
gratings in the Fluoromax-4 (plane ruled), that passes more
stray light, compared to the Aqualog (concave holographic).”
Past research has shown that apparent quantum yields at exci-
tation wavelengths less than 350 nm are systematically larger on
the Fluoromax-4 compared to the Aqualog.*® Unfortunately, the
impact of these instrument biases on fluorescence-derived
optical surrogates are not well-constrained in the DOM
research community. In contrast, fluorescence-based surrogates
that rely on intensity ratios at the same excitation wavelength
may be less impacted.

2.3 Estimation of DOM molecular weight and aromaticity

2.3.1 Molecular weight. There are several methods to
characterize DOM molecular weight, including ultrafiltration
(UF),"* size exclusion chromatography (SEC, in the absence'**'*
or presence of high-pressure pumps'*), field-flow fractionation
(FFF),"” and diffusion ordered spectroscopy.'® Other methods
include small-angle X-ray scattering,'®
etry,"° viscosimetric analysis,"™ and cryoscopic techniques.
The most common separation techniques paired with optical
surrogates are UF fractionation, gel permeation chromatography
(GPC), and SEC. In these techniques, separation is based on
molecular size, but data is usually communicated as DOM
molecular weight (e.g., Daltons (Da)) by calibrating elution
volume or membrane cutoffs using polymer standards (e.g.,
polyethylene glycol, polystyrene sulfonate). The assumption is
that the molecular size of DOM is well-represented by the poly-
mer calibration, which has well-documented limitations.*****
With this understanding, it is important to recognize that size-
based separation techniques are not direct measurements of
molecular weight, even though data are presented in units of
molecular weight herein (e.g., kDa).

UF fractionated samples yield categorical molecular weight
classifications (e.g., <1 kDa, 1-3 kDa, >3 kDa). Each filter has
a nominal molecular weight cutoff, but two filters with the same

vapor pressure osmom-
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nominal cut-off may perform differently due to membrane
surface chemistry, DOM concentration, and aqueous ionic
composition.”>"* GPC, without the use of a high-pressure
pump, was commonly used in many early papers by packing
columns with Sephadex resins of different pore sizes.'**'** To
decrease sample volumes and increase resolution, high-
pressure SEC uses macroporous resins with online detec-
tors.'¢'1711% Tn both GPC and SEC, smaller molecules are
retained in the column and elute after longer times compared to
larger molecules. The detector signal can be numerically inte-
grated across the SEC chromatogram to calculate either
a number-average (M,) and weight-average (M,,) molecular
weight. Polydispersity (M/M,,) is generally greater than unity
for DOM, implying that M,, is greater than M,,.

2.3.2 Aromaticity. Characterization of aromatic carbon in
humic substances has transitioned from wet chemistry
methods, like permanganate oxidation,”*'* to instrumental
techniques like Fourier transform infrared spectroscopy
(FTIR),"***>* pyrolysis gas chromatography-mass spectrom-
etry,?#125 13C or proton (*H) NMR,*** and most recently FT-
ICR MS."?*®%1137 Studies comparing DOM aromaticity to
optical surrogates have mainly used quantitative **C NMR on
solid isolate materials.™® Although it achieves higher sensitivity
than liquid-state NMR, existing solid-state '*C NMR data are
predominately from HPOA and fulvic acid isolates and,
importantly, do not represent hydrophilic or transphilic frac-
tions. Although there are several methods for '°C
NMR, 1404250139 ipntegrating the 110-160 ppm chemical shift
region relative to the total area informs the relative abundance
of aromatic carbon (aromaticity (%)).

For FT-ICR MS, ions are detected, and formulae are assigned
based on the accurate mass using automated programming
algorithms and a set of rules.”®® FT-ICR MS has both instru-
mental limitations, where ion detection may be biased to low
molecular weights,”® and data analysis limitations, where
unambiguous formula assignment is often limited to mass-to-
charge ratios (m/z) between 150-1000."*>"**>'® Using the
assigned formulae, metrics can be calculated, such as modified
aromaticity index (Alnoq)*”* and double bond equivalents
(DBE)."** These metrics are used to group assigned molecular
formulae into chemical characterization categories that suggest
aromatic or condensed aromatic moieties in the DOM samples.
Mass spectral peak intensity-weighted averages, based on all
assigned formulae in a sample, are also reported. For example,
Kellerman et al. (2018)* used Al,,,q*** based on FT-ICR MS data
to calculate relative abundance (%) of two classes: condensed or
polycyclic aromatic formulae (Al,oq > 0.66) and polyphenolic
formulae (0.66 = Al,,,q > 0.5) using the formula bounds of
C1-45H1-92No 4012550 2.

Estimates of aromaticity are not directly comparable when
derived using different instrumental (e.g., NMR or FT-ICR MS)
or calculation methods (e.g., Al;,oq boundary conditions). NMR
probes all "*C carbons, albeit at different shifts depending on
chemical environment. For example, considering two structural
isomers, cyclohexane and hexene (each having one degree of
unsaturation), hexene would have a '*>C resonance at about
120 ppm (from the sp? hybridized carbon), whereas cyclohexane
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would have only aliphatic carbon resonances <60 ppm.**' In
contrast to NMR, FT-ICR MS only detects molecules that can be
ionized (in either positive or negative ion mode) and charac-
terized as having aromatic nature, subject to meeting signal-to-
noise thresholds.”*>'** Past work suggests that UV chromo-
phoric DOM is poorly ionized by negative mode electrospray
ionization* and is therefore poorly represented in the majority
of studies characterizing the chemical nature of DOM with
ultra-high resolution mass spectrometry techniques. In
contrast, a study by Laszakovits et al. (2020) demonstrated that
a higher percent of assigned formulae were characterized as
aromatic and condensed aromatic using laser desorption ioni-
zation (in both positive and negative mode) compared to elec-
trospray ionization.'** For future inquiries relating optical
surrogates to composition, there is an opportunity to explore
multiple ionization techniques.

In this review, FT-ICR MS is considered as a technique to
assess the abundance of aromatic carbon, despite its limita-
tions, due to its growing popularity in DOM research.'** FT-ICR
MS data has also been analyzed to calculate molecular weight
distributions of DOM"*'*” but will not be used as a comparison
measure in this review. Due to incomplete DOM recovery by
SPE™*** and limitations of the analytical mass range>'*4°
and ionization efficiency,”******** values derived from FT-ICR
MS data are far from comparable to other methods that char-
acterize molecular weight. This review focuses on UF and SEC to
characterize molecular weight.

Overall, all characterization methods for molecular weight
and aromatic carbon are subject to sampling, analytical, and
methodological constraints. Readers are referred to primary
sources for details about sample preparation, instrument bia-
ses, method background and limitations, and other challenges
with DOM chemical characterization.

3 Absorbance surrogates

Absorbance-based optical surrogates are listed in Table 1 along
with the equations and primary sources. The following
subsections explore each surrogate.

3.1 Specific absorbance

3.1.1 Definition and genesis. Related